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GENERALIZED ILSTOW AND FEYNMAN INTEGRALS

D. L. SKOUG

Let C [α, b] denote the space of continuous functions x(t)
defined on [a, b] 3 x(a) = 0. This space is called Wiener space.
Using the Wiener integral we define, for each nonnegative
integer M, what we call the M Ilstow, M complex Wiener,
M Feynman, limiting M complex Wiener, and limiting M
Feynman integrals of a functional F(x) on C [a, b] and show
various relationships which exist between these integrals. In
particular we give necessary and sufficient conditions for a finite
dimensional functional F(x) to be M Ilstow integrable on
C[a,b].

We consider the set of linear f unctionals x(tι), , x(tn)
where a = t0 < tt < < tn = b and obtain conditions on gj(u) 3
the functional

(1.1) F{x) = gMtJ] - gn[x(tn)]
is M Ilstow and limiting M Feynman integrable on C[a, b].
We then apply these results to the functional

F(t, ξ, x) - exv([bθ[t - s, x(s) + ξ]ds)a[x(t) + ξ]

where Q ^t ^t0, — oo < f < CXD and x e C[0, t0] and show that for
appropriate functions θit, ξ) and σ(ξ), the limiting M Feynman
integral Git, ξ, q) of F(t, ξ, x) exists for

(ί, f, g)e(O,ίo)® Ri® {Rι ~ {0}}

and satisfies there the integral equation

(1.2)
2~

θ[s, u)G(s, u, q) exp (-
2(ί ~ 8)

For M = 0 the definitions of the above mentioned integrals reduce
to the definitions of the Ilstow, complex Wiener, Feynman, limiting
complex Wiener, and limiting Feynman integrals as defined by R. H.
Cameron in [2]. He used the Ilstow integral as an intermediate
integral in his definition of the Feynman integral. The word "Ilstow"
is a contraction of "inverse Laplace Stieltjes transform of Wiener's".

Many of the theorems in this paper are generalizations of theorems
in [2], However, the techniques developed in §4, applied when M — 0,
allow us to reduce the hypothesis of several theorems of [2]. In
particular, we obtain a condition for the Ilstow and limiting Feynman
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integrability of F(x) defined by (1.1), that only requires each g\ to be
essentially of bounded variation on any bounded interval, instead of
each g" being continuous as required by Theorem 7.2 of [2].

These more general integrals allow us to weaken the conditions
required on σ and still obtain the existence of G(t, ξ, q).

2* Generalized Ilstow and complex Wiener integrals and the
banach space B(M, λ)*

DEFINITION 2.1. Let M be a nonnegative integer. Let F(px) be
Lebesque 0 Wiener integrable on [0, ^o] ® C[a, b] and assume 3fM(s)
on [0, °o)3/jf(0) = 0, fv is left continuous and of bounded variation

S CO

e~λs I dfM(s) I < co for some λ > 0,
0

and for almost all sufficiently large λ,

C[a,b~\

Then F(x) will be said to be M Ilstow integrable on C[a, b] and fM(s)
is called the M Ilstow integral of F(x) with parameter s and we

S IL^W s

F(x)dx.
C[a,b]

Notation. Let Iv = {F(x) \ F(x) is M Ilstow integrables on C[a, b]}.

We use the next lemma in the proof of several theorems.

LEMMA 2.1. Suppose f is of bounded variation on every bounded

S CO

e~?°s I df(s) I < co. Then
o

for λ > λ0

(2.1) \°°e-λsdf(s) = X^\°°e-λsdg(s)
Jo Jo

where

(2.2) g(s) = 2π-l\\s - pY'2df(p) .

In addition, g is absolutely continuous on every bounded interval
[0, s0] and g(0) = 0. Finally for λ > λ0

(2.3) [e-λs I dg(8) | ^ λ-*ί V^ s | df(s) \ .
Jo Jo

Proof. Same as proof of Lemma 5 on pp. 346-347 of [2].
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THEOREM 2.1. /,, S IM+ί for M = 0,1, 2, . . Furthermore if
F(x) G /jr

(2.4) /,/+1(s) = 2π-i\\s -
Jo

(2.5) fM+z(s) = 2τr-iΓ(s - p)*dfM+1(p) = [fM(p)dp
Jo Jo

so ίfeαί ίfcβ (M + 2) Ilstow integral of F(x) is differentiable a.e. on
[0, oo) and its derivative is fM(s).

Proof. Assume F(x) e IM with M Ilstow integral fM(s). Define
fM+ι(s) by equation (2.4) and note that (2.1)-(2.3) imply F{x) e IM+1.
To obtain the second equality of (2.5), integrate the middle expression
by parts, substitute for fM+ι from (2.4) and interchange order of
integration.

DEFINITION 2.2. Let λ Φ 0 be a Re λ ^ 0. Let F(x) e IM with M
Ilstow integral fM(s). Then if

(2.6) \~\e-λ \\dfM(s)\ < -
Jo

we say that F(x) is M complex Wiener integrable on C[a, b] with
revar parameter λ (λ is called the reciprocal variance or revar
parameter since in [1], λ"1 denoted the variance parameter) and we
define the value of the M complex Wiener integral to be

Γ f F(x)dx =
JC[α,6]

where if M is odd the square roots have values in the right half
plane. If Re λ = 0 the M complex Wiener integral will be called an
M Feynman integral. For λ = —iq, q real, we denote the M Feynman

CfM

integral of F(x) by q F(x)dx.
JcΓα,δ]

Note that a functional F(x) is M Feynman integrable if and only
if its M Ilstow integral is of bounded variation on [0, oo). In order
to remove this somewhat restrictive condition we shall generalize the
above definition slightly.

DEFINITION 2.3. If in Definition 2.2 we replace (2.6) by

(2.7)
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for all 7] 3 Re η > 0 and if the right member of

*W'λ F(x)dx = X31'2 lim (
G[a,b] V^O JO

(RJ?>0)

exists, we say that F(x) has a limiting M complex Wiener integral
with revar parameter X and we give it the value and notation
specified above.

Notation. The symbol A =5 B shall mean the existence of A
implies the existence of B and the equality A — B.

In terms of the analytic Wiener integral, defined by Cameron on

S anWχ
F(x)dx, we have the following

C[a,b]

theorem.

THEOREM 2.2. For Re λ ;> 0

S w¥ Γ-*w¥ ranW,

F(x)dx ^ F(x)dx ^ F(x)dx
C[a,b] JC[a,b] JC[a,b]

and if Fe Iv then for almost all sufficiently large positive λ we have

F(x)dx .
&]C[a,b\

Proof. Same as proof of Theorem 1 of [2] as the additional
factor λ¥/2 doesn't affect analyticity.

Notation. Let W(M, λ) = {F(x) \ F(x) is M complex Wiener inte-
grable on C[a, b] with revar parameter λ}.

W{M, λ) = {F(x) I F(x) is limiting M complex
Winear integrable on C[α, b] with revar pa-
rameter λ}.

The following theorem follows directly from Lemma 2.1 and
Theorems 2.1 and 2.2.

THEOREM 2.3. W(M, λ) g T7(M + 1, λ) for Re λ > 0 and M =

0,1, 2, . . . . W(M, X) S T (̂Λί + 1, λ) for Re λ ^ 0 and M = 0,1,2, .
Furthermore if F(x) e W(M, X) then the M and (M + 1) complex
Wiener integrals of F(x) are equal (both being equal to the analytic
Wiener integral of F(x) by Theorem 2.2). A similar statement holds
in case F(x) e W(M, X).
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We now define for M = 0,1,2, and λ ^ 0, a space B(M, λ) of
functionals of C[a, b] and discuss some of its properties. In particular
B(0, λ) = Bλ where Bλ was defined on p. 297 of [2].

DEFINITION 2.4. Let λ :> 0 and Λfe{0,1, 2, •••} be given. Let
F(x) be a functional defined on C[α, b] BF(ρx) is Lebesque ® Wiener
measurable in (p, x) on [0, λ~*] 0 C[a, b] and 9

2.8) Nλ(F) = eλ-pdp\ \ F(ρ~*x) \dx < oo
}λ JC[α,6]

where we interpret λ~* to be + oo if λ = 0. Assume further that
there exists a left continuous function f(s) of bounded variation on
every bounded subinterval of [0, oo) 3

(2.9) N'λ{M, F) = \~e~> \ df(s) \ < 00
Jo

and such that for almost all p > λ

(2.10) ρMli\~e-<"df(8) = \ F(p~iχ)dx .
Jo Jc[α,δl

Then we say FeB(M,X) and define the norm of F to be NX(M,F) =
NX(F) + Nλ'(M, F) Note that Nz = N'λ where N,' is defined by (2.1)
of [2] while N&M, •) = N,"( ) if and only if M = 0 where iNΓ/' is
defined by (2.2) of [2].

DEFINITION 2.5. We say that two elements F1 and F2 of £(M, λ)
are equivalent if for almost all (p, x) on [0, λ i ] 0 C[a, b] we have
Fjipx) = F2(px). We define B(M, λ) as the space of equivalence
classes of elements of B(M, λ).

THEOREM 2.4. The space B(M, λ) &αs the following properties:
( a ) B(M, λ) ^IM for λ ^ 0 and Λf = 0,1, 2, - .
( b ) J5(ikί, λ) is a Banach space with norm Nλ(M, •)-

( c ) J5(M, λ) e £ ( M + 1, λ) for λ > 0, cwwZ Λf = 0,1, 2, .
( d) 0 ^ λx ^ λ2 =* B(M, X,) S -B(ilf, λ2).

Proof. Property (a) follows from the definitions of B(M, λ) and
IM. Property (b) follows from Theorem 2 of [2]. Property (c) follows
from equations (2.3), (2.4), (2.9) and (2.10). Property (d) follows as
0 ^ \ ^ λ2 implies that Nh(M, F) <; iSΓ (̂ilf, F ) .

3. Finite dimensional functionals. Let oc^t), mm , <%n(t) be real
functions of bounded variation on [a, b] and let g(uu * ,wΛ) be a real
or complex function defined almost everywhere on Rn. Let
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(3.1) F(X) =

Then F(x) will be called an "^-dimensional functional" on C[a, b]. If
g(uu ---,un) is Lebesque measurable on Rn we call F a measurable
^-dimensional functional. If cc^t), , an(t) are an orthonormal set
on [a, b], (3.1) will be said to express F(x) in "normalized form".

Our next theorem is a generalization of Theorem 3 of [2] and
gives necessary and sufficient conditions that a finite dimensional
functional be M Ilstow integrable and a formula for the M Ilstow
integral.

THEOREM 3. Let F(x) be a measurable n-dimensional functional
on C[a, b] expressed in normalized form by (3.1). Let Me {0,1, 2, •}.
Let K = 0 if n ^ M while if n > M let K equal (n — M)/2 or
(n + 1 — M)/2 whichever is an integer. Then F(x) is M Ilstow
integrable on C[a, b] if and only if the following four conditions
are satisfied:

(1) For sufficiently large λ, the quantity Nλ(F) is finite, where

Nλ(F) =

x I g(p-ll2uu , p~ll2un) I exp ( - W + "2

 +ul))du .

( 2 ) The function In(M, s) defined by

U(wx, ^^un)dut ••• duM+2k

has (K — 1) continuous derivatives all of which of course vanish for
s ^ 0.

( 3 ) The (K— l)th derivative Iiκ~1] {M, s) has a left hand derivative,
which we denote by I^K)(My s), which is of bounded variation on every
bounded interval and which is a true Kth derivative of In(M, s) except
on the countable set where it has jumps.

(4) For sufficiently large λ, the quantity N'λ(F, M) is finite,
where

( + ) / f

N'λ{F, M) = (J-j Jo e-' I dsΓn

κ\M, s) \ .

Moreover when conditions (1) through (4) are satisfied we have
f or s > 0

F(x)dx = (-±Λ Ii*\M, s)
] \2π
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Note that when K = 0, conditions (2) and (3) reduce to In{M, s) being
of bounded variation on every bounded interval.

COROLLARY TO THEOREM 3. For

M=1,2,.. ,IM_1^ IM, B(M - 1, 0)

g B(M, 0), B(M, 0) g B(M - 1, 0), W(M - 1, 0)

, 0) and W(M, 0) g W(M - 1, 0) .

Proof. Let ^(u 1 ? •••,%) be t h e characteristic function of a j -

dimensional sphere of radius τ / 2 about the origin. Let a1(t)f •••,

aό(t) be an orthonormal set on [α, 6]. Let

F3 (x) =

Then for AT = 1, 2, ~-,FMMeIM and FM+t(x) $ IM_lm This follows
by noting that by use of (2.4) and (3.2) we obtain for s ^ 0

IM+2(M, s) = ( ^ T Λ N m ί n

2

so that by Theorem 3, FM+2{x) e IM while

IM+t{M -1,8) = IM+2(M + 1, s)

/ 2(2τrs) ( ί ί + 3 ) / 2

so that lims^1+ IM]

+2(M — 1, s) = -co and hence
Similarly for M = 1, 2, , one can show that

FM(x)eB(M,0)ΠW(M,0) and Fκ(x) $ B(M + 1, 0) \J W(M + 1, 0) .

For Λf = 3, 4, it follows that FM(x) e B(M - 2, 0) Γ) W(M - 2, 0)
while ίVίa?) g B(M - 3, 0) U W(M - 3, 0). Finally letting g(uu u2) = 1
and writing F(x) in form (3.1) one obtains F(x) e B(0, 0) Π W(0, 0)
and F(x)$B(l,0) U TΓ(1, 0).

4* Products of functions of (xtά). In this section we consider
the set of linear functionals, x{t^, , x(tn), and obtain conditions
under which products of the form
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(4.1) F(x) = g\x{m Qn[x(tn)]

are M Ilstow and limiting M Feynman integrable on C[a, b]. F{x)
as given by (4.1) is an ^-dimensional functional but here we wish to
obtain simpler conditions for M Ilstow integrability than those given in
Theorem 3. In Theorem 7.1 of [2], R. H. Cameron showed that each
g" being continuous and Qi and g'l both being absolutely integrable
on R was sufficient to insure Ilstow integrability. Here we will only
require each of the g'fi to have a derivative essentially of bounded vari-
ation on any bounded interval, and satisfy certain growth conditions.

In Theorem 4 we will find it necessary to express certain Lebesque-
Lebesque Stieltjes iterated integrals as Laplace Stieltjes transforms.
We shall now develop the required notation and lemmas to achieve
this objective.

LEMMA 4.1. Assume f(u) is absolutely continuous on [c, d] and
has a derivative f'(u) which is essentially of bounded variation on
[c, d]. Let φ(u) = essA-0+ Iΐτnf'(u + h) and assume Var (φ, [c, d]) < oo.
Let a e [c, d] and let g{u) = {f{u) — f{a)}j(u — a) for u e [c, d\u Φ a
and let g(a) = ψ(a). Then g(u) is of bounded variation on [c, d] and

Proof. This lemma follows from the observation that for all

u e [c, d] we have g(u) = \ φ[(u — a)t + a]dt.
Jo

LEMMA 4.2. Assume fι(u), •• ,fn(u) are of bounded variation
on [c, d]. Let 1 ^ k ^ n and assume that gt(u) and g2(u) are such
that for all u e [c, d] we have \fi(u) \ ^ gx{u) for i = 1, 2, , k, while
\fi(u) I ^ g2(u) for i = k + 1, , n. Let Kγ = max t t e [ c,d ] g,(u) and
K2 = maxw e [ c,d ] g2(u). Then

4, [c, dή £ K^KΓ^K^ Var(/<f [c, d]) +

K2±Yaτ(fίf[cfd])].
fc + l J

Notation. Let m be a positive odd integer. For i = 1,2, ,m,
let kι be a positive constant and let φi(s) = {s2)l(ki). Let uQ = 0,
^i(^) = ΣJ*=i Φi(Ui - ^<-i), and 'f 2(%) = ^ + ^2(^2) + ΣIU ̂ i(̂ < - ^»-i).
For σ ^ 0 and i = 1, 2, let S, (<7) = {u | α/r̂ u) < αj. Note that S, ((7) is
an open m-dimensional ellipsoid with its center at the origin.

LEMMA 4.3. For i = 1, 3, « ,m, assume g^Ui) is bounded and
Lebesque integrable on every bounded interval of JBX. For i — 2, 4, ,
m — 1, assume h^u^, ui9 ui+1) is Borel measurable in its three vari-
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ables and is right continuous and of bounded variation with respect
to Ui on every bounded interval [ — 2d, 2d] for any u{_u Uι_x e [ — d, d].
For notational purposes we will denote the function hi(ui+1, uif ui+1)
by hiiUi). Also assume that Var (h^s), ~2d ^ s ^ 2d) is bounded on
Ui-i, ui+1 e[ — d, d]. Then for j — 1, 2, Aά(σ) exists and is of bounded
variation on 0 ^ σ ^ v for any v > 0 where Aj(σ) is the iterated
Lebesque-Lebesque Stieltjes integral

I gJuJduΛ dU2h2(u2)\ dufc(u4)
J _ oo J _ oo J—oo

u2

which for notational purposes we shall write as

S (m) Γ(m—1)/2 (ro + l)/2

• Π 92k-i(^2k-i) Π d h2k(u2k)dum du.du, .
Further if f(σ) is continuous on [0, v] then

v f(m) f /(m + l)/2

/((7)dAί((T) = . . - \/(-fy(tt))( Π ffn-iί^t
0 JO^ψjiuXσ J \ fe = l(4.2)

x ( Π dU2kh2k{u,2k) )dumdum_2 du^du, .

Jw- addition if f(σ) is continuous on [0, oo) ^ew ίfcβ existence (as a
finite number) and absolute convergence of the right side of the
following equation implies the existence of the left and equality.

S C foo (TO) Poo / ( m + l)/2

f(σ)dAJ(σ)=\ ••• /(ti(M))( Π fti-
0 J-oo J_e« \ fc=l

^ " ' /(w-l)/2 \

x ( Π dU2kh2k(u2k) )dum

Proof. As Sj(σ) is an open set in Rm one can show that

jlUzh2(u2)\ jiUih4(u4) . . . J^χ^ίσjί^i,^, , ̂ «)ώ«m^1fe«_1(^w_1)

is bounded and Borel measurable in its (m + l)/2 variables uu u3j , u m .
Hence ^(cr) exists for 0 ^ σ ^ v. By breaking up the <//s and Λ/s
appropriately one can write ^-(0") as the difference of two monotonic
increasing functions and so A5{σ) is of bounded variation on every
bounded interval. Equation (4.2) follows from the general limiting
sum type of argument. As v —• oo f Sj(σ) —> Rm and so by dominated
convergence in each variable we obtain (4.3).

In the following lemma and theorem we will use the notation
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developed by Cameron in Theorem 7.1 of [2].

LEMMA 4.4. Assume h(u) is absolutely continuous on every
bounded interval of Rγ and φ(u) = essΛ-0+ \\mh\u + h) is of bounded
variation on every bounded interval of Rx. Also assume that for some

A > 0, B ^ 0 and 0 ^ 7 < 2 we have \ h(u) | ^ AeΈW and Γ | dφ(s) \ ^

AeBvr for all ueR, and V > 0. Then for 0 ^ i < j < k, λ > 0 and
u(>k e Rλ we have

h(uά)Ei

jEiduj = 7

(4.4) = X-^ΓUHuj)] +

x

where the integral in the last term of (4.4) exists both as a Riemann
Stieltjes integral and as a Lebesque Stieltjes integral and where

Proof. The first equality follows directly by noting that

while the second equality follows from integration by parts which is
justified by the above growth conditions.

THEOREM 4. Let a = t0 < tx < < tn = b. For i = 1,2, , n — 1

assume gi(u) is absolutely continuous on every bounded subinterval
of Rx and φi(u) = ess;ι̂ 0+ lim g\{w + h) is of bounded variation on
every bounded subinterval of Rlm Furthermore assume for some
0 ^ 7 < 2 and B > 0

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

for i = 1, 2, • •

1 9i(u) ^ B

\ 1 9i(s) \ds SB
J —oo

Γ 1 dφAa) \ ̂  Be^
J-r

Γ 1 dgi(s) S BeBrr

J-v

\φi{u)\^Be^

•, n — 1, u e Rx and V > 0.

I gn(s) I ds ^ B .
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Let F(x) be given as in (4.1). Then there exists a function ψ(X),
analytic for Re λ > 0, continuous for Re λ ^ 0, and which for real
λ > 0 satisfies

ψ(\) = \ F(X-?x)dx .
JC[a,b~\

Furthermore F(x) is M Ilstow and limiting M Feynman integrable
for all values of the parameter for M ^ 1 and F(x) eB(l, λ) for all
λ > 0.

Proof. By using techniques similar to those used by Cameron in
proving Theorem 7.1 of [2] (in particular using (4.4) in place of (7.8)
of [2]) we obtain for λ > 0

exp (- Xul ) du
V 2(6 ) /

F(\x)dx Γ ^ exp (
Jσ[α,5] v ; J — y/2π(b -a) V 2(6 - α)

2
U Q (n-l)

x Π

x e x p i " V S r;-rH

 + h τt-τι
(4.10) x ( ή dσ.H!(pi, σit pi+ί))dpq+ιdρq dp,

y Γ- '2^» f- gn(ρ1+1)alH(Tt - Γ/)

v /Λ ^(^(Γ, - Γ/)'^,+,j+1

x 9 ' 7 " " T 1 . * ΓJΊ ΓTΛ t

x ( Π dσH*(pi, σ{, pi+1))dρq+1dρq - . dp,dρ2dw

where Qj(w — 1) is the class of all finite sets of integers vu v2, , vq+1

satisfying

Qλ{n - 1) = {»!, •• , ^ = 1, vi+ι ^ ^ + 2, i = 1, 2, , g, y?+1 =

^ = 0, vi+1 ^vi + 2,i = l,2, ,q, vq+ι = »}

(4.11) ^ ( . O i , σ i, ft+1)
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and where in the sum over Q3(n - 1), ft Ξ 0, and the integrals in the
two sums exist both as iterated Riemann-Riemann Stieltjes integrals
and as iterated Lebesque-Lebesque Stieltjes integrals.

Now define φ\(σi9 pi+1) by the equation

k(4.12)
x Π

Then as g'k = φk a.e. we see that

η

J
— Π

Thus for any <Z > 0 and ft, pi+ι e [ — d, d] we apply Lemma 4.1 and
4.2 and obtain

(4.13) ^ Var ($(s, ft+1), - 2 d ^ s ^ 2d)

Hence we see that HI is of bounded variation as a function of σ{ on
every bounded interval and as 0 ^ 7 < 2 the integrals on the right
side of (4.10) converge absolutely for λ > 0.

Next we apply Lemma 4.3 to the right side of (4.10) and obtain
by use of (4.3)

(4.14) ( F(\~lχ)dx =
Jc[α,δ]

where f(u) = f^u) + f2(u) + fd(u) and

f^u) = f 9n(s)glln(0J s)ds
jv^u) \/2π(b — a)

2π(T! - 2Y.,)1"

x {j[dσ.H!(pu σu pi+1)]

Σ \ iJnK

' Qπ

x Π dσH!(pi, σi9 ft+i) j
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{s I s2 < 2u(b - a)}

u -", pg+ί, σlt , σq]

χ
t - τ;

= tfw, Pz, ' ,P,+i, ou , σg w2

2Λ
1

2h τt-τ;

In order to show that F(a?) is Λf Ilstow integrable for M = 1 we
need to obtain bounds on the variation of f(u) for % ^ 0. First we
note that for j — 1, 2, and 3, / 3 (%) is left continuous (by definition
of V3 (u)) and of bounded variation on every bounded subinterval of
[0, oo). Now for j = 1, 2 and 3, let /,-(%) denote what we obtain be
r e p l a c i n g g*n, h*, gv., a n d dσ.H!{pi9 σ,, p i + ι ) b y | fif§Jw |, \h*\, \ gu. \ a n d
I do.Hfipi, σif pi+1) I respectively in f5(u). Then clearly fά(u) \ and for
ϋ ^ nι < u2 < oo we have

Var (/,., [ulf u2]) ^ Var (/„ [ulf u2]) = fά(%z) -

Thus we see that it will suffice to obtain bounds on f3 (u). First note
that for all u ^ 0

fan) ^ τ/2τr(6 — α)
27r(6 - α)]- 1 / 2

Next we see that F2(w) S V2(u) and F8(%) S t^s(^) where

V2(u) =

V3(u) =

, σq]

, p
q+1,

, σq] \ \ ft

, I £ 2ύ}

and % = [2u(b - a)f. Thus for [ft, , pq+1, σl9 . , σ j e V2(u) we
have ^v:,+4+ift + βu4ΐn+1Pi+ι£ [-2%, 2%] for i = 1, 2, ., g, so that by
Lemmas 4.1 and 4.2 and equation (4.13) we see that

Var (HI(pi, s, ft+1), -2ίέ ^ s ^ 2ίl)

^-1 exp

Hence by replacing V2(n) by V2(u) in /2(u) we obtain
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Π (v<+ι - * -
U QΛn-l)

i i 3

J-i J i [2(T^+1 T,)]1'2 \ ' * ̂

h ft (Tt- Tj)l

2τr(Γ/ - Γ,^)1'

3[2ττ(ί1 - α)J1/2

since q S (n/2), while by (2.6) of [4] and (7.38) of [2],

g+1 lt)\
2π(Γ/ - T,.,)

t - α)]"1'2 Σ ( ^ ) ? Π (υ<+i - v* - I)2

V2τr

tλ - α)]- 1 / 23- χ exp {(n - l)π~113}

< 2n~1S-1[2π(t1 - a)]-112 .

Thus 0 ^ 7 < 2 implies [°°e~λudf2(u) < oo for λ > 0.
Jo

Similarly we can show that for u > 0
n exp (%J5(3[2w(δ - a ) ] * ) ^ - 1 ^ - ^ ^ - a)]*

and hence for λ > 0, [°e-iudf3(u) < oo. Thus for λ > 0
Jo

[ I
JC[a,b]

and

so that JP(X) G JB(1, λ) for λ > 0 and in particular, F(x) is M Ilstow
integrable for M ^ 1.

Next for λ a R e λ ^ O let

(4.15) ^(λ) - λ ' 2 Γ . ( } . Γ g^ud gn(un)E! Erιdun dux .
J J

Then by (7.5) of [2] we have f{\) = ί F(λ- έα;)^ for all λ > 0.
JC[α,δ]

Clearly ^(λ) is analytic for Re λ > 0 and continuous for Re λ Ξ> 0.
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Hence I F(\r^x)dx has an analytic extension throughout the right

half plane continuous up to the imaginary axis. But for almost all

p > 0, [ F(p~h)dx = ρ^[~e~psdf(s). Thus as ί V ' * | df(s) \ < oo for
J(7[α,δ] Jo x Coo Jo

all p > 0 we know that p* \ e~psdf(s) is analytic in the right half
Jo c 1

plane and equal to the analytic extension of I F(p~~^x)dx there.
! (-co Jc[α,&]

Thus X2 \ e~λsdf(s) approaches a limiting value on the imaginary axis
Jo

when we approach from the right hand plane and so the limiting M
Feynman integral of F exists for M ^ 1 which concludes proof of
theorem.

If we restrict the bounds on Var ψu Var gi9 and φι we obtain the
following corollary which proves useful in a later section.

COROLLARY TO THEOREM 4. Assume the hypotheses of Theorem 4
are satisfied where conditions (4.7)-(4.9) are replaced by

Γ
J-v

V

r V],

dgi(s) I <: B[l + V*], and | φf(u) \ ^ B[l + \u\d]

for i = 1, 2, , n — 1, u e Ru V > 0, and d > 0. Then the con-
clusions of Theorem 4 hold and in addition we have Nλ(F) ^ Bn and

N[(l, F) ^ Bn[2π{b - a)f

_L_ 2n~ιBn{l + Sd)nd , [2(6 - α)1^ / 2

ΓΓ dn + 2 1\
' spπfo - a)Y12 \ L λ J L 2 \)

2n+1Bn(l + 3d)n(1 , Γ2(6 - α ) Ί ^ + 1 ) / 2

Γ Γ dn + Z

3(2ττ) 1 / 2 V L J L
Γ2(6 - α ) Ί ^ + 1 ) / 2

Γ Γ dn + Z 1\
L λ J L 2 J/

REMARK. Let us point out at this time that the techniques used
in Theorem 4 allow us to strengthen Theorems 7.1 and 7.2 of [2].
For, clearly, if we put the same restrictions on gn as we put on
each gi9 i = 1, 2, , n — 1, then the conclusions of Theorem 4 hold
for M = 0. Also if condition (4.6) was relaxed so that

I Oi(s) I ds ^ BeBvr , for i = 1, 2, . . . , n ,

then one can show, using the techniques of Theorem 4, that Felo

and FeB(0, λ) for all λ > 0. However these same techniques do not

imply Fe W(M, 0) since in this case ψ(X) as defined by (4.15) is not
necessarily continuous up to Re λ = 0.

5* Entire functions of integrals of θ(s,x(s)). Our first theorem
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deals with M Ilstow and limiting M Feynman integrability of
functionals of the form

(5.1) F*(a?) = Φ[\bf(s, x(s))ds]g(x(b)) .

THEOREM 5.1. Assume Φ(z) is an entire function satisfying
I Φ(z) I ̂  AeBlzl. For each se[a,b] assume θ(s,u) is absolutely con-
tinuous as a function of u on every bounded interval of Rlm Also,
for each s e [a,b], assume θ(s, u) = essA^0+ lim θu(s, u + h) is of bounded
variation as a function of u on every bounded interval of i?1#

Furthermore assume \ θ(s, V)\,\ \ g(w) \ dw, and \ \ θ(s, w) \ dw are
J_oo J_oo

bounded by B while \θ(s, V)\,

Γ I dwθ(s, w) I and Γ | dj(s, w) \
J-F J-F

are bounded by B(l + \V\d) for each s e [a, 6], Ve R^ and some
d 3 0 ^ d < 2 . Then for M— 1, 2, , the functional F*(x) as defined
by (5.1) is M Ilstow and limiting M Feynman integrable for all
values of the parameter and F\x) e B(M, X) for all λ > 0.

Proof. Since Φ(z) is an entire function such that | Φ{z) \ <̂  AeBlzl

we obtain, by use of Cauchy's inequality, that Φ(z) = Σ~ = o anz
n for

all z where aQ = 1 and for n > 0

(5.2) I a n\ ^ A ( ^

\ n

Thus on C[a, b] we have F*(x) = Σ"=o a>nFi,(x) where

F*(x) = g(x(b))\ \ θ(s, x(s))ds

for w = 0, 1, 2, . Now for n > 0 we have

Fi{x) = Γ .("}. \bFn(x; s)ds1 dsn

J a J α

where
n

TΓ ί/y Q^ — Tϊ1 (τm Q . . . Q \ — n(Ύ(1ΓIW I I Θ(QΓ n\JL>, b) — JO n\ιby &ι, , *>n) — y\JU\U)) Ĵ J[ U\€>i)

when sl9 •••,»» are distinct elements of (α, ί>) but Fn(x; s) = 0 when
§!, , sn are elements of [α, δ] but α, s lf , sn b are not distinct.

We note that for each n > 0 and each s e [α, b]n, Fn(x; s) satisfies
the hypotheses of the Corollary to Theorem 4. Hence for each s in
[α, b]n we have for λ > 0
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= Bn+1[2π(b - α ] ~ 4 + Kx(n) + K2(n)[min {sl9 • • • , « » } - α ] ~ 4

where

K^n) = 2n+2Bn+1(l + Sd)n+1S-\2π)-112

x ( l + Γ2(& ~ α)1^ (-+ 1 ) + 1 ] / 2

ΓΓ d(n + 1) + 3 1\

and

χ Λ 2(6 - α)1^^ + 1 ^ 2

Γ Γ d(n 1\ ̂

Moreover for each s, Fn(x; s) is M Ilstow and limiting M Feynman
integrable for each value of the parameter for Λf = 1, 2, - , and
Fn(x; s) e B(l, λ) for all λ > 0. By Corollary to Theorem 6.4 of [2]
(which can be generalized to apply here) we obtain

N'λ(l,F*)£ Γ . ( - \bH(s)ds1'^dsn
Ja Ja

< Bn+1(b - a)n[2π(b - α)H + (b - aYK^n) + 2n(b - ayκ,(n)

where the last inequality follows from (8.12) of [2]. Clearly
NX(F*) ^ Bn+1(b - a)n so that for λ > 0

Nil, Σ a.F*) £ Σ Nx(l, anF*)

^ ([2ττ(6 - α)]"i

+ Σ (δ - aYan\K,(n) + 2nK2(n)]
0

where iΓ̂ O) = K2(0) = 1. By use of (5.2) the above series converge
for 0 <̂  d < 2 by the ratio test and thus the series X"=o anFl con-
verges in the B(l, λ) topology for each λ > 0 and since the series
also converges uniformly to F* it converges in the 5(1, λ) topology
to F* and so F*eB(l,X) for all λ > 0. In particular F* is M Ilstow
integrable for M = 1,2,

Next we will show that F* is limiting M Feynman integrable
for M = 1. First apply Corollary to Theorem 4 to the functionals
Fn(x; s) and obtain functions ^n(λ, s) which are analytic for Reλ > 0
and continuous for Reλ ^ 0 for each n > 0 and s e [α, b]n. In addition
for Re λ > 0 we have
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ί*oo (n + 1) C°° n

φ n ( X , s) = λ { % + 1 ) / 2 \ . . . i # ( w % + 1 ) Π Ufa, u J E ϊ E } E % + 1 d u n + 1 --- d u t
J_oo J_oo i = l

so that for s e [a, b]n and Re λ ^ 0, | ψn(λ, s) \ ^ | λ \^+^B

n+\ Hence
letting

we have

(5.3) I f *(λ) I ^ I λ

for Reλ ^ 0 and ^ = 1, 2, . Clearly ψi(X) is analytic for Reλ > 0
and continuous for R e λ ^ O for n = 1, 2, ••«. Similarly we apply
Corollary to Theorem 4 to F$ and obtain ^5(λ) with the same
properties.

Next we see that as the series X"=o anF*(x) converges uniformly
in x over C[a, b] we have for each real λ > 0

( ( F*(κrh)dx
.v J C [ α δ ] w = 0 J C [ α & ]

Σ

But by (5.2) and (5.3) the last member of (5.4) converges uniformly
in λ for any closed subset of Re λ :> 0 and hence the first member of
(5.4) has an analytic extension throughout Re λ > 0. New let f}
denote the M Ilstow integral of F% for M = 1. Then

= ( V " I df*{s) I
Jo

for each λ > 0 and for almost all p > 0

C[α,6]

Hence <?* I e~~psdff{s) has an analytic extension in the half plane
Jo

Rep > 0, continuous for Rep ^ 0, and so the limiting M Feynman
integral of F* exists for M = 1 which concludes proof of theorem.

Next we will show that for appropriate functions θ and σ, the
analytic Wiener and limiting M Feynman integrals of the functional

(5.5) F(t, ξ, x) = exp ^θ[t - s, x(s) + £]dslσ[α>(ί) + f]

satisfy a certain integral equation.
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THEOREM 5.2. Assume θ(t, ζ) is bounded and continuous on

[0, £0] 0 (— °°, °°) and satisfies for all t e [0, t0]

(5.6) Γ \θ(t,ξ)\dξ^B.
J-oo

Assume σ(ζ) is bounded and continuous on (— °°, °°) and satisfies

(5.7) (~ I σ(ξ) \dζ^B .
J-oo

T%0% £/z,e analytic Wiener integral

(5.8) G(ί, ζ, λ) - [β"w" F(ί , ί, ^)dx
JC[0,ί0]

exists for (t, ζ, λ) e if = (0, ί0) 0 (— oo ? oo) 0 {Re λ >̂ 0} and satisfies
in H the integral equation

(5.9)

2(t — s)

with boundary condition

(5.10) l imG(ί,f,λ) = σ(ξ)

holding for all (ξ, λ) e ( - oo, oo) 0 {Re λ > 0}.

Proof. The existence of G(ί, f, λ) for all points of H follows from
Theorem 8.2 of [2]. Moreover by (0.11) of [2] and the continuity of
the functions involved we have

(5.11) G(ί, ί, λ) = [ exp \[θ[t - s, λ-*a?(s) + f]ds]σ[λ-^(ί) + ζ]dx
Jc[o,t] LJo J

for λ > 0 and (t,ζ)eH1 = (0, ί 0)(g)(-oo, oo).
Next we note that by use of Theorem 7 on page 66 of [3]

(which can be proved for n = 1 under weakened conditions on σ* and
θ%) we have that if o*(f') and #*(£, £*) are bounded and continuous for
(ί, f ) G Jϊa - [0, ί0] 0 ( - - , oo) then

(5.12) G\t, £*) - ( expΓί
Jc[o,t] LJ

exists on H2 and on Hx satisfies

- s,
o
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G*(t,ζ*) = (2πty^_jj*(u) exp ( - {ξ* ~ wf )du

θ\s, u)G\s, u) exp - " n> )du
>° \ Δ\t — S) /

with boundary condition

(5.14) limG#(£,f#) - σ\ζ*) .

Thus, if for λ > 0 we define θ%t, u) = θ(t, λ-*w), <7*(M) ΞΞ σ*(λ~^),
and ζ* = λ~ f̂ then #* and σ* are bounded and continuous and so
G\t, ί#) as defined by (5.12) exists on H2 and on H, satisfies (5.13)
and (5.14). But for λ > 0, θ*[t - s, x(s) + ί1] = θ[t - s, X~h(s) + ξ],
σ*[x(s) + ί#] = σ[\-iχ(t) + f], and G(ί, ί, λ) = G#(ί, λ* ξ). Hence substi-
tuting into (5.13) we see that for λ > 0 and (t, ζ) e Hu G(ί, ί, λ)
satisfies (5.9). Then by use of Corollary to Theorem 8.2 of [2] G(ί, ί, λ)
is bounded in any closed bounded subset of Reλ ^ 0 for all (t, ξ) e H1

and so by use of (5.6) and (5.7) we see that both sides of (5.9) are
analytic functions of λ for Re λ > 0, continuous for Re λ ^ 0 and as
(5.9) holds for all λ > 0 it must hold throughout H.

Boundary condition (5.10) is verified by noting that

/ Λ \1/2Γ ί

lim ί±Λ (t ~ s)-ll2ds
t̂ o+ \2π / Jo

(5 15)
x Γ θ(s, u ) G ( s , u , λ ) e x p / M e - u f \ d u = 0

J —°° \ u\L S)

and

—> 0 a s t —> 0 + .

THEOREM 5.3. Assume θ(t, ζ) satisfies the hypotheses of Theorem
5.1 where [α, b] — [0, t0]. Assume σ(ξ) satisfies the hypotheses of
Theorem 5.2. Then for M = 1,2, •••, the limiting M Feynman
integral

C-fM

(5.16) G(ί, ξ, q) = \ q F(t, ζ, x)dx
Jc[o,<]

where F(t, ξ, x) is defined by (5.5), exists for

(ί, ζ,q)eH= (0, ί0) 0 2 ? ! ® (Rx - {0})
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and satisfies in H the integral equation (1.2). Furthermore if we
assume Var(_co>00) σ(ξ) <Ξ B then

(5.17) limG(ί, ί,g) = σ(ζ) .

Proof. The existence of (5.16) for M = 1, 2, , and all (t, ξ, q) e H
follows from Theorem 5.1.. But by use of Theorem 2.2 we see that
G(t, ί, q) = G(t, ί, -qi) where G is defined by (5.8). Then substituting
into (5.9) establishes (1.2).

To establish (5.17) first note that

Km (-Zl±)ll2[\t - s)-1/2<feΓ θ(s, u)G(8, u, q) exp ( qι^ ~ u)" )du = 0
t-κ)+ V 2π I Jo J-oo \ 2(t — s) J

for all ξ, q e R19 q Φ 0. Also by contour integration and integration
by parts one obtains

2t

exv(-—)dz\dσ(u)
-(iff/ί)i/2(u-e) V 2 / J

+ (
2 \2π

^ ^ as ^ —> 0+ by dominated convergence.

Similarly

2πt
as

REMARK. In view of the remark at the end of § 4 we see that
the conclusions of Theorem 5.1 will hold for M = 0 under the ad-
ditional assumption that g' is of bounded variation on every bounded
interval and satisfies

rv

J-v
\dg'(w)\£B[l + \V\d].

Also the conclusion of Theorem 5.3 will hold for M — 0 under the
additional assumption that σf is of bounded variation on every bounded
interval and satisfies

Γ dσ'(w)\ £B[1 + \V\d].

The author wishes to express his gratitude to Professor Robert
Cameron for his encouragement and valuable advise .
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