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ON A PROBLEM OF ILYEFF

ZALMAN RUBINSTEIN

Let P(z) be a polynomial whose zeros zlt z2, , zn (n ^ 2)
lie in \z\ S 1. It is shown that Pf(z) always has a zero in
I z - z11 ^ 1 if I *! I = 1 or if | z, \ < 1 and n = 3,4.

In his book Research Problems in Function Theory [2] W. K.
Hayman mentions the following problem due to L. Ilyeff (Problem
4.5, p. 25): Let P(z) be a polynomial whose zeros z19 z29 , zn (n >̂ 2)
lie in | 2 | ^ 1. Is it true that P'(z) always has a zero in | z — z1 | ^ 1?

In this note we answer this question in the affirmative if | z1 j — 1
for arbitrary n and if | zx \ < 1 for n = 3, 4. The case w = 2 is trivial.

We also show that the disk | z — zλ \ < 1 always contains a zero
of P'(z) regardless of the location of the zeros if | POO | < n and if
the polynomial P(z) is normalized to be a monic polynomial.

2* The boundary case*

THEOREM 1. Let P(z) be a polynomial whose zeros zl9z2,
 m',zn

(n^>2) lie in \ z \ ^ 1 such that 1^1 = 1. Then the disk z — zλ \ ^ 1

always contains a zero of P'(z). Furthermore the disk z — zx \ < 1

always contains a zero of P'(z) except when P(z) = c(zn — eiθ).

Proof. Without loss of generality we may assume that zx — 1,
zk Φ 1 for k = 2, 3, , n and P'(l) = 1. We shall show that the
polynomial P\z + 1) has at least one zero in the closed unit disk. If
this is not so then the following representation of P'(z + 1) is possible
[1] for I z | < 1.

(1) P\z + 1) = (1 - zf(z))n~ι

where f(z) is analytic in the unit disk and less than one in modulus.
From (1) by differentiation we obtain

(2) P"(l) = (1 - n)/(0) .

The polynomial Q(z) defined by the relation P(z) = (z — l)Q(z) satisfies
Q(l) - P'(l) = 1 and 2Q'(1) - P"(l). Hence applying (2) we obtain

3 .
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from which we deduce that | Q'(l) | < (n — l)/2. On the other hand
since | zk | ^ 1, Re 1/(1 - zk) ^ 1/2 and thus Re Q'(l) ^ (n - l)/2. This
contradiction proves the theorem.

To prove the second part of the theorem we observe that | f(z) | g 1
even if Pr(z + 1) Φ 0 for | z \ < 1, so that in this case we also obtain
a contradiction unless all the zk lie on the unit circumference and f(z)
is a constant of absolute value one. This implies that P(z) has all
its zeros on the unit circumference such that P'(z) has an (n — 1)
fold zero on the circle | z — 11 = 1.

3* Third and fourth degree polynomials*

THEOREM 2. Let P(z) be a polynomial of degree three or four
whose zeros lie in the closed unit disk. Then any circle of radius
one about a zero of P(z) contains a zero of P'{z).

Proof. We may assume that P{z) — (z — x)Q{z), where 0 < x < 1
and the zeros zk, k = 1, 2, , n of Q(z) lie in | z | ^ 1. We shall
prove that the polynomial f(z) = Pf(z + x) has a zero in | z \ < 1.

Consider the following polynomials

kl

k

and

By a result due to Szegδ [4] every zero 7 of h(z) has the form 7 =
— aβ, where β is a zero of g(z) and a is a point belonging to a circular
region containing all the zeros of f(z). The zeros of g(z) have the
form β = - 1 + + # T such that β Φ 0. For w = 2, 3 | β \ ̂  v^T. If
f(z)Φθ in I z I < 1 we may choose a such that | a \ ̂  1. Thus
I 71 ^ l/2". Since ft(s) = Q(z + x) and f(z) = P'(z + x) it follows that
all the zeros of Q(z) satisfy | z | ^ 1 and | z — x | ^ T/^" and no zero
of Pf{z) lies in |z - x\ < 1.

Consider now the polynomial R(z) = P(z — 1 + x) = (z — l)ζ>i(2),
where Q^z) = Q(z - 1 + x). No zero of R'(z) lies in | z - 11 < 1. By
Theorem 1 we shall obtain a contradiction if we can show that all
the zeros of Qλ(z) lie in | z | < 1. Indeed the zeros of Qλ(z) satisfy the
inequalities | z — 1 + x | ^ 1 and | z — 11 ^ τ/"2". A straightforward
calculation shows that if z — u + iv these inequalities imply
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u2 + v2 £ 3 -(χ + ±λ < 1
V x 1

for 0 < x < 1. This completes the proof.

4* A particular class of polynomials*

THEOREM 3. Let P(z) = zn + α^s— 1 + + α0. If Pfo) = 0

'( î) I < w, ίfeew P'(#) ftas a zero in \ z — z1 | < 1.

Proo/. Write P(z) = (z - zt)Q(z) and set f(z) = P'(2; + ^) and
/*(«) = 2—7(1/2;). We have /(ew) - f*(ei0) and

/*(«) =

If Q(̂ i) ^ 0 the polynomial nf*(z) — Qizjfiz) is of degree not exceed-
ing (n — 2) and since Qfa) = P'(Zi) it follows by Rouche's theorem
that f*(z) has at most (π - 2) zeros in | z | < 1. Therefore f(z) has
at least one zero in | z \ < 1. This means that P'(z) has at least one
zero in | z — x \ < 1. If Qfo) = 0 then P'(^i) = 0 and the same is
true. From Theorem 3 we can deduce that Ilyeff's conjecture is true
if all the coefficients of Q(z) are less than one in modulus. This includes
in particular the case where the theorem of Enstrom-Kakeya [3] is
applicable, i.e. when the coefficients of Q(z) form a monotonically
decreasing sequence of positive numbers.
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