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AN INVARIANT SUBSPACE THEOREM OF J. FELDMAN

T. A. GlLLESPIE

Theorem. Let t be a quasi-nilpotent bounded linear opera-
tor on a complex normed space X of dimension greater than
one. Suppose further that there is a sequence \pn(t)} of poly-
nomials in t and a nonzero compact operator s on X such that
Pn(t)—> s (in norm) as n—> oo. Then t has a proper closed in-
variant subspace.

In [3], Feldman proves this theorem in the case when X is a
Hubert space. By adapting the proof given by Bonsall [2, Theorem
(20.1)] of the Bernstein-Robinson invariant subspace theorem [1], the
result can be shown to hold when X is a normed space, the necessary
changes in the proof given in [2] being suggested by [3]. For the
sake of completeness, the proof below repeats the relevant arguments
in [2], We need the following notation and simple results.

(i) If E is a nonempty subset of X and xe X, the distance from
x to E, d(x, E), is defined by

d(x, E) = mί{\\x -y\\:yeE} .

(ii) Given a sequence {En} of linear subspaces of X, define
lim inf En = {x e X: 3 a sequence {xn} with xn e En and xn —* x}. It is
clear that lim inf En is a closed linear subspace of X and

lim inf En = {x e X: d{x, En) —> 0 as n —> oo} .

(iii) Given a finite dimensional subspace E of X and xe X, 3 ue E
such that || x — u\\ = d(x, E). We call such a u a nearest point of
E to x. Also, if F is a finite dimensional subspace of X such that
FZDE, F ΦE, 3 veF such that || v || = 1 = <Z(v, # ) .

Proof of theorem. Let β e X, | | β | | = 1. Clearly we may assume
t h a t X has infinite dimension, and that e, te, t2e, are linearly in-
dependent. Let En be the linear span of {e, te, •••, t%~ιe\, and choose
en e En such that

He. || - 1 = d(en, En^) .

Since En is the linear span of {En_u V^e), for each integer n there is a
unique aneC, an Φ 0, such that

<1) en - aj^e e En_λ .

Since tEn_ιdEni (1) gives
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(2) tren - ant*
+r-ιe e En+r_,

for n ^ 1, r 7> 1. Also, replacing n by n + r in (1),

(3) ew+r - ί W + ' ^ e G En+r_, ,

and hence, by (2) and (3),

(4) trp — ®"Λ p p 777

for ^ ^ 1, r ^ 1. We note that, since d(βn, JS -̂i) = 1, it follows from
(4) that

d(tren, En+r^) = , r ^ 1) .

We show that there is a subsequence {ai(w)/a/(n)+1} of {ajan+1} such
that ajM/aj{n)+ί -^ 0 as % ^ o o . (This corresponds to the lemma in
[3]). Suppose not. Then

lim inf = λ> 0 ,

and so there exists nQ such that

> λ/2 if n^n0 .

Since

^ Π

F "t —

a-

0Cn+r

Taking n = nQ, this gives

and so

/r ^ λ/2 > 0

contradicting the quasi-nilpotence of t. Therefore we can find a sub-
sequence {j(n)} such that

aη

-i±a±- - ^ 0 as n •

i.e. such that
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(5) d(tei{%), Ej{n)) -+ 0 as n -> oo .

Define linear mappings tn:En-+ En (n ^ 1) by

*» I E»-i = * i En-i f tn(en) = ^ ,

where w# is a nearest point of En to ίβΛ. We show that

(6) || tx - tnx || ^ d(ίβ., # J || £ || (xe En, n ^ 1) .

Let a? 6 En. Then a? = y + λe% for some λ e C, j/e 23«_i.

|| ίa? - tnx || - || Xten - Xun \\ = | λ | d(ίβ,, ^ . ) ,

and also

| | g | | ^ d(aj, j&^) = d(Xen, En^) = | λ | d(βw, £?._,) = | λ | .

Therefore

II ίa? - tnx || ^ dίte., £7J || x\\ (xe En, n ^ 1) .

From (5) and (6) we see that, if {xn} is a bounded sequence with
xneEjM, then

(7) || txn - tjin)xn || —> 0 as n -> oo .

From (7) it follows that if {Hnjc} is a sequence of subspaces with
H%k(Z.Ej{nk) and iϊWfc invariant for tjinic), then liminf ίίWyfc is invariant
for t.

We prove next, by induction on k, that for each integer k there
is a constant 4̂̂  such that

(8) || tkx - t\x || ^ Afcd(ίen, jSn) || x \\ (xe En, n ^ 1) .

The case when k — 1 is given by (6), ( ^ = 1). Suppose that (8) holds
for some k. Then, for x e En,

| | ί j ;a? | |^ | | ί*aj | | + Akd(teΛ, En) \\ x \\
en, En))\\x\\

= Bk\\x\\ , say .

Since tk

nEnaEn, (6) gives

| | ί ί*a;-ί* + 1 a?| | £ d(ten, En) \\ t*x \\

£Bkd(ten,En)\\x\\.

Therefore

| | tk+1x - tk

n

+1x | | ^ || tk+1x - tt*x | | + || tt\x - tk

n

+ιx \\

^ | | ί | | | | t * a ; - ί * a ? | | + \\ttk

nx - tk+1x\
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Hence, by induction, (8) is proved.
It follows immediately from (8) that, given a polynomial pit) in

t, there is a constant M such that

II P(t)x - p ( t n ) x II ^ M d ( t e n , E n ) \\x\\ ( x e E n , n ^ l ) .

Hence we can find positive constants {Mr}r^ such that

(9) || pr(t)x - pr(tn)x !| ^ Mrd(ten, En) \\ x \\

for x e En, n^l, r ^ 1.
Since st = ts and s Φ 0, we may assume that s-^O) = (0), for

otherwise s-\0) is a proper closed invariant subspace for t. Therefore
se Φ 0, and we can choose a with 0 < a < 1 and a \\ s || < || se | |.
Choose sequences {-Ej}/^ of subspaces of Ej{n) such that

where dim Eι

n~i and !£* is invariant for tj{n). Since d(e, E%) — \\e\\ — 1
and d(β, J&ί(n)) = 0, for each n there is a greatest i, iΛ say, such that
d(e, E*») > a. Put Fn = Efr, Gn - Ei*+\ Then

d(β, Fn) > a , die, Gn) ^ a (n ^ 1) ,

and so

(10) e £ lim inf Fnjc

for any subsequence {wA}. Let yn, zn be nearest points of Gn to e, se
respectively, and let vΛ e Gn with || vw || = 1 = d(vn, Fn). We can write

where xn, x'neFn and βn, β'neC. We have

Similarly

\β'*\^ 2\\se\\ «

Also, for n ^ 1,

(11) || sτ/w || ^ || se || — 1| syn — se\\ ^ || se \\ — || s || || i/w — e\

By the compactness of s and t h e boundedness of {|| yn ||}, {| /3W |]
we can find a subsequence {wj such t h a t

βn —> /3 , /3' —> /3' , s]/Λ, —> 2/ as A: —̂  oo .
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We show that y e lim inf Gnjc. Let ε > 0. 3 n0 such that

ll«-i>.o(*)ll<^rτr

By (5), 3 k0 such that

^ if k^k0.

Since || ». || ^ 2 | |β | | (n ̂  1), by (9)

\\Pno(t)ynk - P . 0 ( ^ ( ^ ) ) ^ J I ^ Mnod(tejink), Ei(nk)) 2\\e\

for fc ;> 1. Therefore k Ξ> &0 implies that

4-

Since synjc -+y, 3 k,^k0 such t h a t || synk -y\\<e if k ̂  k,. Thus if

k ^ fclf

II y - P»0(tnnk))y«k II ̂  II v - synk \\ + \\ sy%k - pno(tj{nk))ynk ||
< ε + e - 2ε .

But Pno(t3 (nk))ynkeGnk since Gnk is invariant for tj{nk), and so

d(y, Gnk) S\\y~ pφί{%k))ynk | | < 2e if A; ̂  fcx .

Therefore d(^/, G%k) —> 0 as fc—> oo, and ?/ e lim inf G v

Now by (11) y Φ 0, and so lim inf G%A; will be a proper closed in-

variant subspace for t unless lim inf Gnk = X. Thus we may suppose

that lim inf Gnjc — X, and hence that e, see lim inf Gnje, i.e.

d(e,Gnk) = \\e-ynk\\->0 as Λ -> oo

and

d(se, GΛΛ) = || se - znjc\\ -> 0 as A: -> oo .

Therefore

^Λ + β**17** " ^ β a n d ^ + β«kv»k ~*se a s * -* °°

Hence

/SiAa?njfe - / S * ^ -^ /3'e - βse as A: -> oo ,
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and so

β'e - βse e lim inf Fn]c .

If β = 0 then xnje -+ e and β e Mm inf FnjB, contradicting (10). So β Φ 0.
If /3'e -βse = Q then (/3'//S)e - se ̂  0 and so /3' ̂  0. Then s Φ ψ\β)^
since s is compact and X has infinite dimension (^ being the identity-
operator on X). Therefore

and {s — {βfIβ)^}~\0) is a proper closed invariant subspace for t.
Finally, if β'e - βse Φ 0 then Mm inf Fnje Φ (0), and so, by (10),
Mm inf Fn]c is a proper closed invariant subspace for t.
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