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AN INVARIANT SUBSPACE THEOREM OF ]J. FELDMAN

T. A. GILLESPIE

Theorem. Let ¢ be a quasi-nilpotent bounded linear opera-
tor on a complex normed space X of dimension greater than
one, Suppose further that there is a sequence {p,(t)} of poly-
nomials in ¢ and a nonzero compact operator s on X such that
Po(t)— s (in norm) as n — oo, Then t has a proper closed in-
variant subspace.

In [3], Feldman proves this theorem in the case when X is a
Hilbert space. By adapting the proof given by Bonsall [2, Theorem
(20.1)] of the Bernstein-Robinson invariant subspace theorem [1], the
result can be shown to hold when X is a normed space, the necessary
changes in the proof given in [2] being suggested by [3]. For the
sake of completeness, the proof below repeats the relevant arguments
in [2]. We need the following notation and simple results.

(i) If E is a nonempty subset of X and x ¢ X, the distance from
z to E, d(z, E), is defined by

d(z, E) = inf{||lx —y|l:yec E}.

(il) Given a sequence {FE,} of linear subspaces of X, define
lim inf E, = {x € X: 3 a sequence {z,} with x,e E, and 2, — x}. It is
clear that lim inf E, is a closed linear subspace of X and

lim inf £, = {x € X: d(z, E,)— 0 as n- o},

(iii) Given a finite dimensional subspace K of X andxc¢ X, 3uec K
such that ||z — || = d(z, E). We call such a u a nearest point of
E to . Also, if F is a finite dimensional subspace of X such that
FoOE, F+ E, 3veF such that ||v]|| =1 = d(v, E).

Proof of theorem. Let ec X, ||e]| = 1. Clearly we may assume
that X has infinite dimension, and that e, te, t%, --- are linearly in-
dependent. Let E, be the linear span of {e, te, ---, i" ¢}, and choose

e, € E, such that
e | =1 =dle, E,) .

Since E, is the linear span of {F,_,, t"~'e}, for each integer n there is a
unique «, cC, «a, = 0, such that

(1) e, — a,t"'ec E, .
Since tE,_,C E,, (1) gives
67
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(2) tre'n - antn—'-r_le € En+r—l
for n =1, » = 1. Also, replacing n by n + » in (1),

(3) Cntr — an+rtn+r_16 € E'n+r—1 ’

and hence, by (2) and (3),

(4) tren - G €nt+r € En+r—-1

nt+r

for n =1, »r = 1. We note that, since d(e,, E,_,) = 1, it follows from
(4) that

d(trem En+r—1) = —lgl‘l— (/n/y r g 1) .

| nt+r I

We show that there is a subsequence {&;,,/®;) 1.} of {a,/a,.,} such
that @;,)/®;m,— 0 as n— . (This corresponds to the lemma in
[3]). Suppose not. Then

lim inf |2

n—o0

=x>0,

n+1

and so there exists n, such that

’ L SN2 if n=m,.
an+1
Since
1l 2l el = diten, Bu) = |22,
an+r
ntr—1
r 47
el = 11 i,
g=n 1 &,y

Taking n = n,, this gives

el =2y (rzl,
and so

lim || £ [[" = \/2> 0,

contradicting the quasi-nilpotence of t. Therefore we can find a sub-
sequence {j(n)} such that

Qjiny+1

i.e. such that
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(5) d(tej(,,,), Ej(n)) - 0 as n— oo ,
Define linear mappings ¢,: £, — E, (n = 1) by
tn l En—-l = t]En——-l ’ tn(e’n) = u% ’

where u, is a nearest point of E, to te,. We show that

(6) [t — t,x|| < d(te,, E,)|[¢]] (veE,n=1).
Let xc E,. Then © =y + e, for some v eC, yc E,_,.

lte — ta |l = [[Me, — M, || = |\ d(te,, E,) ,
and also

”mH Z d(xy En—l) = d()"eny En—-l) = ‘>“ \ d(eny En—l) = |>"| .
Therefore
[te — tx|| < d(te,, E)[|¢l]  (weE,n=1).

From (5) and (6) we see that, if {x,} is a bounded sequence with
x, € Ej.,,, then

(7) Htxn - ti(n)an ._)0 as m-— oo,

From (7) it follows that if {H,} is a sequence of subspaces with
H, c E;., and H, invariant for ¢;,,, then liminf H, is invariant
for t¢.

We prove next, by induction on %, that for each integer & there
is a constant A, such that

®) Ithe — o || = Awd(te,, E)||z|]  (xeE,,nz1).

The case when k& = 1 is given by (6), (4, = 1). Suppose that (8) holds
for some k. Then, for xc E,,

It || = |t ]| + Aud(te,, E,) | x|

S+ Al e ]
:BkaH’ say .

Since ttE, C E,, (6) gives

[ttae — t2P el < d(te., E,) || tiz||

Therefore
10 — o || < (|87 — ttio|| + ||ttt — t¥ie |

= el It — the ] + | ttho — iz
< (1t]l A + Bd(te,, E,) || o] .
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Hence, by induction, (8) is proved.
It follows immediately from (8) that, given a polynomial p(¢) in
t, there is a constant M such that

[[p()x — p(t)e|| = Md(te,, E,)||¢]] (vxeE,,n=1).
Hence we can find positive constants {M,},., such that

for xeE,, n=1, r=1.

Since st = ts and s =+ 0, we may assume that s*(0) = (0), for
otherwise s~'(0) is a proper closed invariant subspace for ¢. Therefore
se # 0, and we can choose a with 0 <a <1 and al s|| <||sell.
Choose sequences {F}i*» of subspaces of E;,, such that

(0)=ECE.C -+ CE" = Ej,,

where dim E; = ¢ and E} is invariant for ¢;,,. Since d(e, EY) = ||e]| =1
and d(e, Ei"™) = 0, for each n there is a greatest 17, 7, say, such that
d(e, Ei»y > a. Put F,= Ei», G, = E}»*', Then

de, F,) >a, de,G)=a (nzx=1l),
and so
(10) e¢liminf F,,

for any subsequence {n,}. Let y,, 2, be nearest points of G, to e, se
respectively, and let v, € G, with ||v, || =1 = d(v,, F,). We can write

Yo = Ty + B0,
2, = &, + B0, ,

where z,, x,¢ F, and B,, 8, C. We have

[Bal = d(Bava, Fo) = d(Yu, F,) = |0, |l
=y, —ell + llell = dle, G.) + llell = 2]e]| .

Similarly
|8, = 2]|se]| .
Also, for n = 1,
(11) sy ll = l[sell — |Isy. — sell = [[sell — ||s|l|[y. — ell
= [[sel| — [[slld(e, Gu) = [[se|| — al[s][>0.

By the compactness of s and the boundedness of {|| v, I}, {| 8.1}, {| 8.1},
we can find a subsequence {n,} such that

Bnk——)lgy B;Lk—_)lg,, Synk'_’y as k——’OO.
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We show that yeliminfG,,. Let ¢ > 0. 3 7, such that

€
s = 2, (D) [| < el

By (5), 3 k, such that

g .
d(t@j(nk)y Ej(%k)) < W if k = ko .

Since ||y, ]| < 2]je]l (n = 1), by (9)

H pno(t)ynk - pno(tj(nk))ynk H é Mnod(tej(nk)’ Ej(nk))'z ” € ||
for k = 1. Therefore k = k, implies that

[ 8Yn, = Dag(Cine)Vur || = 11 8Yny, — DO, |l
+ | Dag(VYny, — Paticn) Yy, ||
= s = 2@ [ Y, |l
+ 2M,, || el d(te;inyy, Ejny)

<% _.2|e|l +2M, |[¢]-—2" _ =¢
4e]| 0 4, | e|

Since sy,, — ¥y, 3 k, = k, such that |[sy,, —y|| <e if k= k,. Thus if
kzk,

1Y = DugCinp)¥ni | = 1Y — 8Yn, [l + |18Yn, — Dug(icny)Vny ||
<e+e=2¢,

But p.,(tj)¥a, € Gu, since G,, is invariant for ¢,,,, and so
d(y! Gnk) g H Yy — pno(tj('nk))ynk H < 2¢ if k Z kl .

Therefore d(y, G,,) — 0 as k— <, and y €liminf G,,.

Now by (11) y # 0, and so lim inf G,, will be a proper closed in-
variant subspace for ¢ unless lim inf G,, = X. Thus we may suppose
that liminf G,, = X, and hence that ¢, secliminf G, , i.e.

d(@, G'n,,) = H@ - ynkH —0 as k— o

and
d(se, G,,) = ||se — 2z, ||—0 as k— o,
Therefore
Tp, + BuVu,—e and 2, + B0, —se as k— oo,
Hence

Buy¥ny, — Buyon, — B'e — Bse as k— oo,
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and so

B'e — Bseelim inf F,

. -
If B =0 then #,, — ¢ and e c lim inf F,, contradicting (10). So 8 =+ 0.
If B¢ — Bse = 0 then (8’'/B)e = se # 0 and so 8’ = 0. Then s = (8'/8).#
since s is compact and X has infinite dimension (_# being the identity
operator on X). Therefore

O;tee(s - %’ >_1(0)

and {s — (8'/B)_#}%(0) is a proper closed invariant subspace for ¢.
Finally, if B¢ — Bse = 0 then lim inf F, = (0), and so, by (10),
lim inf F',, is a proper closed invariant subspace for t.
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