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BOUNDARY VALUE PROBLEMS FOR ELLIPTIC
CONVOLUTION EQUATIONS OF WIENER-HOPF
TYPE IN A BOUNDED REGION

Bui AN ToN

Let A be an elliptic convolution operator of order o on
a bounded open set G of R*,a > 0. Let A; be the principal
part of A in a local coordinates system and A {xi, &) be its
symbol with a Wiener-Hopf type of factorization with respect
to &,: Aj(w, &) = Af(x?, ©)A7 (27, &) for x5 =0, AJ is analytic
in Im &, > 0, is homogeneous of order k in &,k is a positive
integer, k<a, A7 is analytic in Im £,<0, Let B,;r=1,---,k
be a system of convolution operators on JG, of orders «,;
0 < a, < a and let B,; be the principal part of B, in a local
coordinates system., The A}L, E,j are assumed to satisfy a
Shapiro-Lopatinskii type of condition for each 7.

Visik and Eskin have shown that the operator U from H:1(G)
into

H%(G, 3G) = H*G)x x [ H~**(3G); a<s,
=1

defined by: Uu = {Au, Byu, ---, Byu} is of Fredholm type. In
this paper, we show the smoothness in the interior of the
solutions of Uu = (f, g1, -, gx). We prove that if A}, B,; satisfy
a strengthened form of the Shapiro-Lopatinskii condition, then
the operator Uhu = {(4 + 2*)u, Biu, ---, Byu} is one-to-one and
onto. The nonlinear problem:

Usu = {f(wy Sou, ) Sa—lu), g1, ** gk}

has a solution in H¥G). f(x,&,, +-+,,—,) is continuous in all
the variables and has at most a linear growth in ({o, - - -,{x~1).
If the set 2 ={u:uc HY(G),Bu=0o0n 0G,r=1, .-+, k} is
dense in L*G), then the completeness in L*G) of the gener-
aliled eigenfunctions of the operator A; associated with Uu =
{f,0, -+, 0} is established.

Boundary-value problems for elliptic convolution operators have
been considered recently by Visik-Eskin [4].

In §I, we give the notation and terminology which are those of
Visik-Eskin and state the assumptions. The main results are given
without proofs in § 2. The proofs are carried out in § 3.

1. Let s be an arbitrary real number and H*(R") be the Sobolev
Slobodetskii space of (generalized) functions f such that:

17l =+ ey i fe ras
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F(%) is the Fourier transform of f.

By H*(R%:), we denote the space consisting of functions defined
on R = {x:x, > 0} and which are the restrictions to R? of functions
in H*(R"). Let If be an extension of f to R*. Then:

AN = 1 lmsany = inf [[1f]], .

The infimum is taken over all the extensions If of f.

Let 6(x,) be the function equal to 1 if =, > 0 and to 0if z, < 0.
Every function f in L*R") may be written as f=60f+ (1 — 9)f.
Hence L*(R") has the following orthogonal decomposition:

IR = Hf + Hy .

We denote by H,, the space of functions f. with f, in IfI(,+ and
such that f. belongs to H*(R*). H, is the subspace of H*(R") con-

sisting of functions with supports in cl (R?2). IZ*, I?s, I?I;f denote
respectively the spaces which are the Fourier images of H;, H,, ﬁ:.

Let f(¢) be a smooth decreasing function (i.e. f(&) < M|é&, |
for large |&,| and € > 0). The operator /I* is defined as:

Hﬁﬂa=u%f@za)+i@m*vp.VExvu@n—noﬂdm,
S’ = (511 ctcy En—l)

For any f, then the above relation is understood as the result of
the closure of the operator /I* defined on the set of smooth and
decreasing functions.

II+ is a bounded mapping from I;T: into fOI: if 0<s< % and a
mapping from H, into Hf if § <s. II- is defined similarly.
Set: &_ =&, — 1| &|; (- — 1)° is analytic in Im&, < 0. Then:

F1F = || T+E- — D TAE) |l

where If is any extension of f to R" (Cf. [4], p. 93, relation (8.1))

Let G be a bounded open set of R with a smooth boundary oG.
We denote by H*(G) the restriction to G of functions in H*(R") with
the norm: || f||, = inf || g||xs(z,; 9 = f on G; s = 0.

By H:(G), we denote the space of functions f defined on all of
R*, equal to 0 on R"/cl (G) and coinciding in ¢l (G) with functions in
H:(G).

H:(0G) is defined as the completion of C=(0G) with respect to:

1F1l = {S 1 9sf I 52 0
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where || @;f||gszn—1, is taken in local coordinates and the ¢; are those
functions of a finite partition of unity corresponding a covering of
¢l G, whose supports intersect the boundary G. We may show that
different partitions of unity give rise to equivalent norms (cf. [3]).

DEFINITION 1. A(¢) is in 0, if and only if:
(i) A is homogeneous in & of order a.
(ii) A is continuous for & # 0.

DEFINITION 2. A, (¢,¢&,) is in 0f if and only if:

(i) A, is in 0,.

(ii) A.(&,¢&,) has an analytic continuation with respect to &, in
Imé&, > 0 for each &

Similar definition for 0.

DEFINITION 3. A(8) is in E, if and only if:

(i) A() is in 0,.

(i) A(¢) satisfies the ellipticity condition, i.e. A()s0 for £=£0.

(iii) A(¢) has for & = 0, continuous first order derivatives,
bounded if |&| =1, & = 0.

DEFINITION 4. A.(§) is in Ct if and only if:
(i) A, is in 0f and A,(&) = 0 for & # 0; k is a positive integer.
(ii) For any integer p > 0, there is an expansion:

A = S e@)E + Rupnald) 6)

where &, = &, + 7| &|; all the terms are in 0; and:
I Rk,p+1—-k($,, Sn) l é C [ S’ Ip+l(l Sl I + l En l)k_p_l .
DEFINITION 5. A(£) is in D, if and only if:

(i) A is in 0.
(ii) For each s = «; there is a decomposition:

£2A(8) = A_(8) + Rireri(d)
where A_(3) is in 07,,, | Rype,—i(5)| < C & (& + | &)
DEFINITION 6. A(¢) is in D,, if and only if:
(i) A(@) is in D,.
(ii) ﬁ:(s) and R,.. _.(¢) are continuously differentiable for & == 0.
(i) [A_@) | = ClE" Y Rysa, @) | S CLE (S + & DN

DEFINITION 7. Let A be a linear, bounded operator from H into
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H:=*(R"). Then any bounded, linear operator T from H, , into H*~(R")
(or from H; into H*—**'(R")) is called a right (left) smoothing operator
with respect to A.

T is a smoothing operator with respect to 4 if 7 is both a left
and right smoothing operator.

Let A(¢) be in E, for « >0 and %, be in Hf,s>=0. Then we
define: Au, = F~'(A(§)i.(3)) where the inverse Fourier transform is
understood in the sense of the theory of distributions. Au. is well-
defined.

Let A(x, £) be in E, for x in cl G and A(z, &) be infinitely differen-
tiable with respect to & and to &. We extend A(x, &) with respect
to x, to all of R" by setting A(x, &) =0 for |&|=p —¢,& > 0. The
homogeneity with respect to & is preserved. We expand A(w, &) into
a Fourier series:

Az, &) = 3 ¥ilw) exp (Gken/p)L(&) ;. k= (ky, oo, k)
and:

Ly = ep||

exp (—ikan/p)A(x, &)da

vo(x) € C7(R") with +(x) =1 for (x| < p — & o) =0 for [z]| = p.
For u, in H3(G), we define:

PtAu, = P+<k=z_,m’y'/‘0(.’lf) exp (z'lcmr/p)Lk*uQ .

P+ is the restriction operator of functions defined on R" to G, L,u.
is defined as before since its symbol L,(&) is independent of z and
[ D3 <@+ |k)~™|&|* for large positive M.

DEFINITION 8. A(w, &) is in D¢ if and only if:

(i) A(z, &) is infinitely differentiable with respect to « and & = 0.

(ii) Az, &) is in 0, for « in R".

(i) aq(@)=(3"/02"")A(x, 0, —1)=(—1) exp (—ima)(6/6Z"%)A(x, 0, 1)
¢in R,0 = | k| < +oo.

DEFINITION 9. A(z, &) is in D, if and only if:

(1) |DrA@, 8| < Cy(l +[E)50=|p| < +oo.

(ii) For each x in R" and for any s = —«, there is a decomposi-
tion: (5. — 9)'A(x, &) = A_(z, &) + R(x, &)
A_(z,8) and R(x, &) are infinitely differentiable with respect to «
A _(z, &) is analytic in Im &, < 0 and:
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| D2A_(2,8)| < Cy(1 + [£)75 | DDA, )| < (1 + |£])7+
| D2R(@, §)| < Cy(L + | &)L + | £
| DIDR, &) | S el + &)L +[§)7;  0=]pl< +oo.

Let B,;r =1, ---,k be a system of convolution operators on oG.
We introduce the definition of a regular elliptic convolution boundary
value problem on G:

DEerFINITION 10. Let G be a bounded open set of R* and ¢; be a
finite partition of unity corresponding to a covering N; of clG. Let
+r; be the infinitely differentiable functions with compact supports in
N; and such that: ¢;4; = @;

(1) Let: PTA =3; P*p;Av; + 30 Prp;A(L — )
be an elliptic convolution operator of order a on G with the following
properties:

(a) The operator ¢;A+; transformed in local coordinates, is the
sum of a convolution operator A; and a smoothing operator. The
symbol A4,;(x?, &) is homogeneous of order « in &a > 0

(b) A, &) e E, and for af = 0 admits the factorization:

Ay, &) = Aj (2, §)A7 (7, §)
where er, E; belong to 0, O;A—k respectively and % is a positive integer.
(¢) A;(@, &) is in DN D, for xe N; N3G + 0.
(2) Let v denote a passage to the boundary oG and:
P+Br=ZP+¢J‘Br'\[fJ'+ZIP+¢iB1‘(1—"p\j); ’l"=1,°",k

be a system of convolution operators on 0G with the following pro-
perties:

(a) The operator ¢;B,y; taken in local coordinates, is the sum
of a convolution operator B,; with symbol B,;, homogeneous of order
«, in & and a smoothing operator. 0 Z a, < a — %.

(b) B, &) eDi n D, for ze N; N3G = 0.

The boundary-value problem: {P+*Aw,,YP*Bu., ---,YP*B,u.} is
said to be uniformly regular on G if:

Det ((b,,(x7, &'))) = 0 for all a'e N;NoG = 0
and:
I+ B, (@, £)e (Af (@, 6) = ib, (a7, £)E3" + Ru(a, §)
ord b, (&) =a, + k — s, ros=1, 00, k.

Assumption (1); Let {P*A,YP*B,, ---,YP*B,} be a uniformly
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regular elliptic convolution boundary-value problem on G in the sense
of Definition 10.

We assume there exists a ray arg» = # such that:

(i) If: Ajaf, &, N) = A2, &) + A= = Af (a7, &, N A7(x7, &, \); then:
A2, &,2\) is in Cj.

(ii) Det ((b,,(x7, &', \))) = 0 for all z/ with N; NdG # 0 and
argh =0, | N >X >0

I+B, (@, )& (A (@9, &, M) ™ = ib,,(a7, &, M(ED)™ + R,u(#, &,))
=&, + (N +1ED);  rs=1,--k.

2. In this section, we shall state the results of the paper. First,
we have an interior regularity theorem:

THEOREM 2.1. Let {P*A,vP*B,, ---,7P*B,} be a uniformly reg-
uwlar elliptic convolution boundary-value problem on G in the sense
of Definition 10. Let w, be an element of H(G) and Uu, =
{fs 91, =+ 9} with {f, 9, --+, 9.} in HG,0G) and a =0. Suppose
that f is in H%Q),s = a then u, is in H%(G) N H(G).

If fis in C=(cl Q), then: u, is in C2(G).

With an additional hypothesis, we show that the operator associated
with the problem is one-to-one and onto:

THEOREM 2.2. Let {P*A,YP*B,;r =1, .--,k} be a uniform uni-
formly regular elliptic convolution boundary value problem on G in
the sense of Definition 10. Suppose that Assumption (1) is satisfied.
Then for every (f, 9., -++, 9:) in H*~*(G, 0G), there exists a unique
solution u, in H(G) of:

PHA + u, = f on G, YyP*Bau, =g, on oG, r=1, -+, k

s=za and s,a,a, are all assumed to be mnonnegative integers.
Moreover, there exists a positive constant M independent of N, u,
f» 9, such that:

k
sl + IN s I = M{Hf!ls_a FANTS Mo + 25 119 ey
+ Mg, |}
for all u. im HY(G),argx = 6; | M| =\, > 0.

Now, we have a global regularity theorem for the solutions of
Uu+ = (fs Giy * ¢y gk)'
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THEOREM 2.3. Suppose the hypotheses of Theorem 2.2 are sat-
isfied. Let u, be a solution in HUG) of Uuy = (f,91, -+, 9. If
(f, g, *++, 9:) 18 10 H*(G, 0G), s = «, then: u, € H{(G). More generally
iof f1s im C=(cl @), g, are in C=(0G); then u, is in C=(GQ).

We shall now consider problems related to the spectral theory of
the operator associated with Uu, = (f,0, ---, 0).

COROLLARY 2.1. (i) Suppose the hypotheses of Theorem 2.2
are satisfied. Let

Q= {u,:u, e HY(G),YP*Bu, =0 on 0G;r =1, .-+, k}

Suppose that 2 is dense in L*(G). Let A, be the operator on LYG)
with D(A,) = 2; A;u, = PTAu, on G.

Then: (A, + N\I)™" exists, is defined on all of L¥G) and is a
compact operator. The spectrum of A, is discrete.

(ii) Suppose further that Assumption (1) is satisfied by rays
argh=0,;r=1,---, N and that the plane is divided by those rays
into angles less than 2arm/n. Then the generalized eigenfunctions of
A, are complete in LY G).

COROLLARY 2.2. Suppose that the hypotheses of Theorem 2.2 are
satisfied. Let S,;r =0, ---,a — 1 be bounded linear operators from
H:(G) into LXG). Let f(z,&, +--,l.1) be a function measurable in
x on G, continuous in all the other variables and such that:

@ GG | < ML+ S 161

Then for (g, +++,9:) n Ili H*~"2(0G) and [N =N >0,
arg A = 0 there exists a solution u, in H%(G) of:

PHA + MNuy = f(®, Suy, + -+, Secsthy) on G;
YP*Bu, =g, on 0G;r =1, -+, k

3. Proof of Theorem 2.1. (1) First, we show the existence
of a left regularizer of U.

From Theorem 2.9 of [4], the operator U has a right regularizer
S, i.e. US=1+ R, where S is a bounded linear mapping from
H~(@G, 3G) into H:(G) and R is a bounded linear mapping from
H~%@G, 0G) in H**'~%(G, 0G).

Let R, be the operator from H:(G) into itself defined by the
ralation: Ru, = SUu, — u,.

We show that: || Ru, |,., < C|lu, ||, for all u. in H(G).
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Consider:
URu, = USUu, — Uu, = Uu, + RUu, — Uu, = RUu, .

From Theorem 2.9 of [4], we have:

1R o = M{)| Rt [+ 1| P* AR [osrea

&
+ Zi [|"P*B,Ru, 'K-a,+(1/2)} .

But RUu, = URu, and R is a bounded mapping from H*~*(G, 0G)
into H**'-%(G, 0G). Therefore:

k
1 Rats s S {1 Raee |+ (| P Ay flma + 31 7P Bt [omamaim -

Since we assume that in all the local coordinates system, the
principal parts of A, B, have symbols belonging to D;,; )} . respec-
tively with 0 < a, < a; we have:

| PrAu |liwa = Cllusll, and || YP* Bty [[icaymyp = Cll % ],

(Cf. [4], Th. 1.4; p. 104).

Hence: || Ry ||+ < M ||uy ]|, for all w, in HY(G).

(2) (a) We show that: || R(pu,) ||ex. < M || puy ||, for all u, in
H:(G) and ¢ in C(G).

Let {(x) be an infinitely differentiable function with compact
support in G and such that: 0 <{(x) <1;{(x) =1 on G, {(x) =0
outside of G, with clG,cG,ceclG, CG.

Let u, be an element of H:(G). Then u. is in H*(G) and there

exists a sequence @, of elements in C*=(cl G) such that:
@, — U, in H(G).

One can check easily that: {p, — (u, in H:(G); s = 0. Consider {p,
It is an element of H**(G), so from the first part we get:

| BiCpn) llos = M| Cpn s

M is independent of n. Hence R,({®,) — v in H**/(G). Since {p, — Cu,
in H°(G) and R, is a bounded linear mapping from H:(G) into itself,
we obtain: v = R,(Cuy).

Therefore: || R,(Cu,) |, < C || Luy ||, for all u. in HL(G).

(b) We shall deduce the smoothness in the interior of the solu-
tions of Uu, = (f, g, -+, g,) from the above argument.

Let . be a solution in HYG) of Uw, = (f, 9, --+,9,) where
(f, 9., -, 9, is in H G, 0G) and f is in H'(G).

Consider:
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PrAQu,) = 3 Pr;A(Cpul) + X Pro;A(l — 5)(Cu)

Transforming @,;A({¥;u,) in local coordinates and applying Lemma
4.D.1 of [4], (p. 145), we get:

P; ALY u) = Cp;A;(vus) + Tiyuy) + CT iV u.y)

where T; are smoothing operators with respect to A;, i.e. with
respect to a bounded linear mapping from H:(B.) into H*~%(B,).

On the other hand, since the kernel of A has a point singularity
and ¢;(1 — +,) = 0, the operator @;A(1 — 4;)u, has an infinitely
differentiable kernel and hence may be estimated in any norm (Cf.
[4], p. 125).

So:

P+A(lu,) = CAuy + Touy

where T, is a smoothing operator with respect to a bounded linear
mapping from H:(G) into H**(G).
Doing in a similar fashion for B,({u,), we obtain:

YP*B.((u,) = {Buy + Tou, ; r=1 .k

where T, are smoothing operators with respect to a bounded, linear
mapping from H:(G) into H*—*—2(6G).

Combining the results and taking into account the fact that (
has compact support in G, whose closure is in G, we get:

Uuy) = CF + Touy, YTouisr =1, <+, k) o

We have: SU(Lu,) = Cu, + R(Cuy).

Consider U({u.). Since ., is in H%(G) and the T, are all smoothing
operators, U({u,) is in HYG, 0G). Therefore SU({u,) is in HZYG).

From the first part of the proof, we get: R,(Cu.,) e H**(G). Hence
Lu, is in HYG).

(¢) We prove by induction for the general case.

Suppose that Cu, is in H7(G),s — 1 = a. We show that it is
true for s.

Let » be an infinitely differentiable function with compact support
in G and such that: 0 < 7(x) < 1;79(x) =1 on G;, 7(x) = 0 outside of
G, with

G, =G, SclG,EG, Sl G, =G,
and clG,=G. Consider U({npu.). We have:
P*ACu.) = ZJ‘. Prp; A(Cnyus) + Ej) Prp;A(1 — 4;)(Cnu.) .
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We express ¢,A({nv;) in local coordinates and applying Lemma
4.D.1 of [4], we obtain:

P; ANy uy) = n9;A(Cvuy) + To(Cuy)
= p;A(Viuy) + nTi(uy) + TH(Cu,) .
So:

Prop;A(Cnyrjuy) = EnAu, + nTu, + T(Cuy)

where T¢, Ti are smoothing operators with respect to a bounded linear
mapping from H:(G) into H*~%(G).
Since (u, € HY(G), Ty Cu.) lies in H*~*(G) and:

[ 9Tews ||ma = M || Téwy || ga-aiy = M || %y || gs-16, -

So, P*A({pu,) is in H~%G).

We do in a similar fashion for vP*B,({nu.).

An argument as above shows that U({pu,) is in H*~*(G, 0G).
Therefore SU({nu,) belongs to H:(G). Moreover, since {u, is in
HYG), R({yw.) lies in H%(G). Hence {nu, belongs to H:(G).

(d) If fis in C=(G), then by repeated use of the Scbolev
imbedding theorem, we get: u, € C5(G).

Proof of Theorem 2.3 using Theorem 2.2. Let u be a solution
in HY(G) of: Uu = (f, 9., -+-, 9:,) where (f,g, +-+,9,) iS an element
of H" (@, 0G) for s = a.

From Theorem 2.2, there exists a unique element v in H:(G),
solution of:

U = (f, 91 20+, 0)

where
UM\ = (PHA + ), YP*Bw, ---,YP*B,v) .

Consider:

U@ — %) = (—2*u, 0, ---,0) .

Since A is in H*(G), it follows from Theorem 2,2 that the unique
solution w = v — u of UMN)w = (—1*u, 0, --+,0) is in H?*(G). There-
fore v = v — w belongs to HF"**)(G).

If min (s, 2a) = s, then we are through. If 2a <s, then since

% is in H*(G), w is in H3*(G), so u HP»=*(G).
Repeating this boot-strap argument, we get finally u in H:(G).

Proof of Corollary 2.1. (1) Let A, be the linear operator from
D(A,) = 2 into L*G) with A,u = P+*Au if u e D(4,).
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With the hypotheses of the corollary, it follows from the theorem
that (4, + M)~ exists, is defined on all of L*G) and maps L*G)
into H%(G). Since G is bounded, the injection mapping from H%(G)
into L¥G) is compact. So (4, + A*I)™* is a compact mapping of L*G)
into itself and therefore the spectrum of A, is discrete, and the
eigenspaces are of finite dimension.

(2) We have the following estimate on the growth of (4,+\*I):

(A + 2D | = MfIN]" .

If Assumption (1) is valid for rays argn=6,;7=1,-.--, N and
the plane is divided by these rays into angles less than 2am/n, then
it follows from Theorem 3.2 of Agmon [1] (p. 128-129) that the
generalized eigenfunctions of A, are complete in L*G). Indeed in the
proof of the theorem, only the compactness of (4, + A*[)~! and an
estimate on the growth of the resolvent operator as in this paper
are needed.

Proof of Corollary 2.2. Taking into account Theorem 2.2, we
may prove without much modification Corollary 2.2 as in [2].

Proof of Theorem 2.2. The proof is long. It is technically sim-
pler than in the case when N = 0. First, we have the lemma:

LemmA 3.1, Let {P*A;vP*B,;r =1, -+, k} be a regular elliptic
convolution boundary-value problem on R" inm the semse of Definition
10, with constant symbols A(&), B,(€), homogeneous of orders a, a,
repectively. o, a,. are positive integers. Suppose that Assumption
(1) is satisfied. Then for every (f, 9., -+, g:) 10 H*~*(R*, R*),s = «,
there exists a unique solution u, in Hf of: P*(A + \)u,. = fon R*;
YyP+*Bu, =g, on R* Y r =1, ---, k Moreover:

el + I e i S M{LF L+ D= DL £
S PSRN PR

M is independent of N, ., f, 9,, Uy s the inverse Fourier transform
of (&) with:

Wo(8) = (A&, )T ON(A_E, M)
+ 3 DE M@ — T )
where:
AN = A@©) + = AL (5, MA_(E, V)
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D3 = 35 Val®s MET(ALle, M)
b, are the elements of the transpose of the inverse of the matrix
(0, (&, M), Uf s any extension of f to R and
Fu@ Ny = M+ BE) AL E W) T A W)™

Proof. Set A(&,\) = A(&) + . It is homogeneous of order «
in (§,\) and bflongs to E.. Since A(¢) is in E,; it has a factorization
of the form: A(&) = A,(§)A_(¢) with A, eC;, A_c0;,. The factori-
zation is unique up to a constant multiplier. The same proof as in

Theorem 1.2 of [4], p. 95 with &, replaced by & = &, + ¢(In| + |€'])
and &2 =§&, — i(|n]| + | &) gives:

AN = AEMNAEN) .

Moreover if A.eCj; then: A,(& \)eCy, (with respect to & ).
Similarly ;1_(5 , A e 05,

(1) First, we show that %.(5) e Hy so that /1+i.() = #.(&) (CE.
[4], p. 93, relation 10.1). %.(&) is analytic in Im &, > 0 for |n| = 0.
It suffices to show that:

@@, & + iy pazaz, < € .

C is independent of 7 > 0.
(i) We write:

ﬁ+(§) = ?7+(5) + ﬁ;—"(g) .
We have:

(17, &0+ oy razrae, < Ol €1+ 0]+ 7 19, & + io, 0 Pads,
< cflaw, ¢ + ir, M pagaz,
where:
&N = MHFEAE V) .
But [f(A)" is in H,, so H+f(A)" =g is in 1%, hence 17+eEI;*.

(ii) Since A.(&,N)eCt, (A&, \)"eCr,cD_, (Lemma 2.4 of
[4]. So:

D&, VeD_.,.
We have:
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E"DE N = PN + B
with:
Poe0z,_, .y and |B.|<CU&|+ IMD"(&] + M)

Therefore:

P&, MED™@, — T)
is in Iz‘, and:

P, ME)™(@, — ) = 0.
It remains to show that:
R(H)™@. — F)eH, .

We take M large enough and the proof is trivial.
So:

B (6, M)A — Fule e He .
Therefore:
we e Hf .
(2) Consider:
Ny 17 = [HIHE- — ) @ (E) [lo = | IT*(E — ) T TL(E) ]]o -
It is majorized by:
| T4 = & AT EFAY )
+ ST — iy 1D, — F -
(i) Consider the first expression. It follows from [4] (footnote
of p. 113) that the expression is equal to:
1T+ = i) (A TF A
which is majorized by:
C 1l (AL (& M) EAE W) L
Since A.(&, ) is in 0f, we may write:
A& ) = (1E] + IMDMALE/MEN + IND, MAEL+ [ND)

Let ¢ = Min|A.(&,\)| for |&| +|x|=1. Then ¢>0 and is
independent of &, A. We obtain:
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1| (A @, M) THFEAE W), < et || THFE)

which is majorized by: ¢ | l’? (A_)"||,_. (Cf. Remark 2 of [4], p. 105).
We also have:

(A LFAD) o < C IV [ FA ]l -
Since:
A(5,M)e0, .
We have:
AN = (&1 + IMDA_EAE]+ D, MAEL + [MD) -
So as before, we get:
1P EEE M oo = CHIFE e < C L F 1l

and:

IV TP EAE M) o < C N £

Therefore:
| IT+E- — D (A&, W) ITHLFENAE, M)
+ UM ITH(ALE, M)A EAE, M)
is majorized by:
Cll fllia + INP I FIIFY -
(ii) Consider:
WI+(E- — 3 D,(& NFE N o + [N 1 TD,E N Fllo

From this first part, we know that D, ) eD_,_,. Let M be a
large positive integer. We have from the definition of D_,_, :

(LD &, N) = P&, N) + R(E,N)
with:
P&, N €0z ain;  [RAEN|SCUE| + N (&l + M)

We can show easily that: (61)~*P.(&, \) € I;To‘, so: I1+(¢2)~*P, = 0. From
[4] (footnote of p. 113), we get:

(& — i) IT+(EL)™P(E, M) =0 .

Hence:
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| 1T+(6- — 0y IT+D (&, MFAE, M) [l = [ TG — ) THE) ™R, . |,
= H H+(E— - i)s(éf—)—MerNr ”0
< Cll (- = CE)™ R, Fr llo -

Consider:
I = e res 1= | R, W7e, v fd,ae
= CS([ El 4 MNPt &) 4 [ NP2 F(, N [dE,dE
= C\(&7] + Dt e ) s
for M sufficiently large.
So:
| T+ — iy d1+D, Fo llo < CUIFo llicaymiim + M2 || £ |1}

and:
| I+D, F, lly = C [N =t || |l

(iii) Similarly, we have:
| I+(é- — oy I*D,g, ||, + [n|* || 1+D,g, |l
= Cll G emepmaey + N7 1 G ]2}

(iv) Since s, a, o, are positive integers, we have from [3] (rela-
tion 1.14, p. 63):

| o g + M52 Fo s < MJ|F, oy + IV [ F Lo}
with
Fo = M B (A, V) HAF @A W)
Since B,(£) is homogeneous of order «, in & with a, = 0; we get:
15 Ny = C AL ) HIFFEAE Wl -
Again as before, we write:
AEN) = (&1 INDAAEE] + IMMAE+ M)
So:

1, oy = C I THFEAE M) (s
= CllEFEAE M) s
< Cliflite -

Similarly, we obtain:
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I Felle = CINT= I £ 11T -

Combining all the results, we get the a priort estimate

(3) A direct verification shows that w, is a solution of the
problem, It remains to show that the solution is unique.

Let v, be a solution of the problem with v, e Hf. Then #.(8),

its Fourier transform has the same form as #.(¢) with Z}J (&) replaced
by 1,f(¢). l.f is an extension of f to R".

Set I,f = If — I,f. Then l,fe Hy, so Lf(¢) e H.
Now a verification as in the first part shows that:

L@ vy e By
hence:
ILFEAE ) = 0.
Taking into account the ellipticity of A(&, \), we get: . (€) = 7.(£).

Let:
A, = ; V¥o(@,) €xp (tha,m)/pL,w
Ay = 3% (@) exp (thar)/p Ly

where +(x), L, are as in §1.
We have the Lemma:

LEMMA 3.2. Let ¥() be in C(R™), y(x) = 0 outside of | v — x| =0
| ¥(x)| £ K where K is independent of 6. Suppose that Alx,&) 1is
iwn D). Then:

(A — Aduy [lie = CO [ us [|a + CO) [[ U+ [i-ia
C() =0 if s = a.

Proof. Cf. Lemma 4.7 of [4] (p. 119).

Proof of Theorem 2.2 (continued).

(1) First, we establish the a priori estimate.

Let N; be a finite open covering of ¢l G with diam (N;) sufficiently
small; @; be a finite partition of unity corresponding to N; and +;
be the infinitely differentiable functions with compact supports in N;
and such that: ¢v; = ;.

Let: FF'=(f, g, -+, g:) be an element of H* %G, 0G); s = «.

By definition, we have:



ELLIPTIC BOUNDAYR PROBLEMS 411
UNu, = ;‘ Pro;,UN(¥us) + Tuy = F'.
We express ¢; U(\)y; in local coordinates. From Appendix 2 of
[4], we get:
P; UN)Pus = 3, 9; UM (Ysus) + Tius

where T; is a smoothing operator with respect to U,(\).
So:

p; UM uy) = @ F + Ty + o, (Ui(N) — U;(N))(¥juy) .

U(\) corresponds to the case when A4;, B,; have constant symbols.
From Lemma 4.D.1 of [4] (p. 145), we have:

P; UM (¥ 5%4) = UiN(pssus) + Thu,

where T is again a smoothing operator.
Hence:

Ui\ (pus) = @, F + @ (Ui(N) — U;(M)(vjus) + Tiug .
Applying Lemma 3.1, we obtain:

lpsus i + NP s 1 = Ml @i Nk + D= i f Il
125 = A [+ M | P Ay — As)rius) [
el s s+ 319360 ey
N ug [+ | VP @i(Bry = Bra) )
[N [y Pogy(Bs — B ) i} -

Using Lemma 3.2, we get:
lpsu|li + M @ [l = M{Ilm o + N Ut o + N[ @5 flli=a

N @ f I 4 0 @t [l + 0 TN [ @0 [T

k
S 1P ey + I [ 0y, 1}

(by using an inequality in [3] p. 63).
Summing with respect to j, we have:

(IR PN TR 7 T PN C TR N
F DS T+ 0 e+ 8 10 s

k
+ 310 emasima, + NP g, )
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Taking ¢ small and |\| large, we obtain by taking into account
an interpolation inequality of Visik-Agranovich [3] (p. 64, relation
1.21):

sl + D0 el = MJ1F e+ 1= 1Ll
+ 31190 s, + [V | g, 5]

(2) It follows from the a prior: estimate that if there exists
a solution, then it is unique.

It remains to show the existence of a solution.

We know from Lemma 3.1 that U)\) has a right inverse R;
Let R, be the operator R; expressed in the global coordinates system
of G.

Set:

RF = 5, Prp;Ri(4;F) .

We have:
UMRF = 3 UN@;Ri(4;F) = 3L UMb Bi(4F) -
Passing into local coordinates (using Appendix 2 of [4]) and applying
Lemma 4.D.1 of [4], we obtain:

UN@;iviBi(v, F) = @;U;(N (¥ Bi(v;F)) + T3F
= @; Ui\ (y;Bi(v;F)) + T;F
+ @ (U;(A) — Ui(N) (i Bi(y5 F'))

where T? is a smoothing operator.
Applying again Lemma 4.D.1 of [4], we have:

P; U0V B (v F) = @iy ; U{(MBi (¥ F) + T;RF
Therefore:
UMNRF = F + T'RF + X, ¢, TiF
where T’ is a smoothing operator with respect to U(\); i.e. with

respect to a bounded linear mapping from H:(G) into H*~%(G); and
T} is the operator T} defined by:

T;F = (Ui(\) — U;(\)( ;B (v F))

expressed in the global coordinates system of G.
So: UNRF = (I + R)F.
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Denote by:

| His—a = {I° s+[)“ls_a”'”0
Moca = - llicacye + NPTl
- zsegoe = Nl lllemn 4 [l {]lia

Since 7" is a smoothing operator, we get by taking into account the
first part of the proof:

I T"RE ||| zs~awo0 = C || F'lgs-1-a,00)

Using Lemma 3.2, we obtain:

@ ATUN) — U005 R4 F)) | o=ataro0r = 1| F 1] rs—i-aca 00
+ CE/M M F [ so-aca,00) »

So for small d, large |\ |, by using an interpolation inequality of
[3], we have:

| ZRE || gs-aig.000 < /2 ||| F'[|| as-aa,00) «
Hence: (I + € R)™* exists and UM\)™ = R(I + € R)™.
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