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A FAMILY OF FUNCTORS DEFINED ON
GENERALIZED PRIMARY GROUPS

RAY MINES

Let G denote an abelian group; G is called a generalized
p-primary group if qG = G for all primes q Φ p. Let a be an
ordinal, and let δ: G-*Ea satisfy the following four conditions:
(1) Ea is pa Ext-injective, (2) paEa = 0, (3) δίG) is pa-pure in
Eaj (4) ker δ = paG. Define pa*G to be that subgroup of Ea

such that pa(Ealδ(G)) = pa*G/δ(G). If a is a limit ordinal, let
La(G) = \imβ<a GIpPG. Let

U(G) = Ext (Z(p-), G) and tf«(G) = U(G)lp«U{G).

Then we have the following pα-pure containments: GlpaG =
5(G) g ί/«(G) £ pa*(G) S LaUa(G), whenever α- is a countable
limit of lesser hereditary ordinals. We have p«*G = Ϊ7«(G)
for all groups G if and only if pa Ext is hereditary. From this
we obtain a new proof of the fact that pa Ext is hereditary
when a is a countable limit of lesser hereditary ordinals.
We also obtain an example of a cotorsion group G such that
G/paG is not equal to La(G), thus refuting a conjecture of
Harrison. A group G is called generally complete if La(G)lδ(G)
is reduced for all limit ordinals a. A generalized p-primary
group G is generally complete if and only if it is cotorsion.

A result of Kulikov [7] will be studied and generalized, and an
application to the study of cotorsion groups will be given.

Troughout this paper the word "group" will mean "abelian
group". The notation of [2] will be followed. The letter p will
indicate a prime.

The elements of the group Ext (Ai B) are equivalence classes of
extensions E:0—+B~>E—*A—>0. However, no distinction will be
made between equivalence classes and an element of the equivalence
class. Thus, it will be said that E is an element of Ext (A, B). Also,
B will be considered as a subgroup of E. The arrow >-> will denote
a monomorphism, and the arrow -» will denote an epimorphism. The
element Ext(/, g)E, for Ee Ext (A, JS), /: B->B', and g: A'~> A, will
be denoted by gEf. All other notation will be that used in Chapter
III of [8].

Recall that a subgroup H of a group G is said to be pa-pure in
G if the extension H^G~^>G/H is an element of p°Έxt(G/H,H);
G/H is said to be a pa-puve quotient of the group G. A group G is
said to be pα-projective if pa Ext (G, A) — 0 for all groups A; G is
called pMnjective if pa Ext {A, G) = 0 for all groups G.
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The functor pαExt( , •) is said to be hereditary (or shorter, a is
called a hereditary ordinal) if every pα-pure subgroup of a pα-projective
is 2>*-projective, or, equivalently, if every pα-pure quotient of a pa-
injective is pMnjective. In § 3 a new proof will be given to show
that pa Ext is hereditary if α, is a countable limit of lesser hereditary
ordinals.

We shall use the notation λ(G) to denote the length of G; i.e.,
the least ordinal a satisfying pa+1G = paG.

1* The functor pa. In [9] it is shown that for all ordinals a
there exists an exact sequence

Z >—> Ga —» Ha ,

such that for all group G the following hold.

(1) p*G >—>G-^-+Ext (ifα,G)---^> Ext (Gα,G)
is exact, and Im(δ) is pα-pure in Ext(ifa, G). Here we have identified
G with Horn (Z, G) in the usual way;

(2) Ha is a pα-projective p-group, so pa Ext (Ha, G) = 0, and
Ext (Ha, G) is pα-injective;

(3) The sequences for a and a + n are connected by

Z >-̂ H

Γ

z>—

> Ga+n —
1

^G α ~

-»Ha

i
(4) If a is a limit ordinal, then

Ha — φ Σ Sis ί
/9<α

( 5 ) paHa+1 is cyclic of order p and Ha = Ha+1/paHa+1

( 6 ) p«Ha = 0.
Let pα*G denote ε - 1 ^ Ext (Ga,G)); then G/pβG = Ίmδ is a pα-

subgroup of pa*G.

THEOREM 1.1. Let E be pa-injective such that paE = 0, that
there exists a homomorphism y: G—+ E with kernel paG, and that
Imy a pa-pure subgroup of E. Let G* denote the subgroup of E
satisfying G*/y(G) = pa(E/y(G)). Then there exists an isomorphism
g: pa*G-+G*, such that gδ = 7.

Proof. For convenience in the remainder of this paper we will j
denote Ext (Ha, G) and Ext (G«, G) by Ea(G) and Fa(G), respectively,
or simply by Ea and Fa if no confusion can result. For this proof
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let 22/7(6?) = F. Replace Im 7 and Im δ by G/paG. Then the following
sequences are exact:

G/paG >—> Ea—»Fa,

G/paG >—> E — » F .

Before continuing with the proof we prove the following:

LEMMA 1.2. If f, g are homomorphisms from Ea to E (or E to Ea)
such that f\ G/paG = g \ G/paG, then f\pa*G = g \ pa*G (f\ G* = g\ G*).

Proof. Assume /, g: Ea-+E, the proof for /, g: E~+Ea being
the same. Let h = / — g; then h(G/paG) = 0. Therefore, h can be
lifted to a homomorphism h* of Fa into E. Since paE = 0, we have

h* i pαj^ = o. Thus, h I pα*G = 0; so / |pβ*G = # | pα*G.

We now continue the proof of Theorem 1.1. Since E is pn-
injective, there exists a homomorphism g': Ea-+E such that the
following diagram commutes.

G/p"G>—>Ea—»Fa

1 9i i5

G/p*G >—> E — » ί1

^ arises in the usual way. Let g = g'\ pa*G. Since g(paFa) £ paF,
it follows that g(pa*G) Q G*. Similarly, there exists a homomorphism
f'\E-»Ea such that

Λ I7

>—> Ea —» Fα

commutes. Let / = / ' | G * ; then clearly / ( G * ) g f U Consider
/ ' o ^ : ^ — # α . By Lemma 1.2

fog = Γog'\p« G - l * β I r * G - lpa*G .

Similarly, g o f = g' o f \ Qm = lGΦ. Thus, # is an isomorphism of
ί>α*G-^G*, and clearly #<5 = 7.

It follows that, if E is a pMnjective having the following
properties:

( 1 ) There exists a homomorphism 7: G —> E with ker 7 =p*G and
Im7 2>α-pure in E;

(2) p " # = 0 ,
then p**G can be taken as the subgroup of E with the property that
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= pa(El7(G)).
Let U(G) = Ext (Z(p~), G) and Ua{G) = U(G)/paU(G). In [l l] it

is shown that for all ordinals α, Ua(G) is contained in pa*G and
S(G) £ Ua(G). In [11] Nurike has shown that a: is a hereditary
ordinal if and only if Ua(G) = pa*(G) for all groups G.

The remaining part of this section will be spent in proving the
following theorem.

THEOREM 1.3. Let a be an ordinal such that for all 7 < a there
exists a hereditary β with y < β < a. Then pa*G £ limi3<α Uβ(G).

The proof of this theorem follows from a series of lemmas. We
first observe that {Uβ(G),πβ

r} is an inverse system, where for
β > 7 πβ: Uβ(G)—*Ur(G) is the natural projection with kernel pβUr(G).

LEMMA 1.4. Let β and 7 be ordinals with 7 < β. Then there
exists a homomorphism πβ

r: p
β*G —•> pr*G agreeing with the natural

projection of G/pβG onto G/prG when restricted to G/pβG. Moreover
if a < β < 7, then πβ

rπ
a

β — π".

Proof. The extensions

G/pβG >—>Eβ—»Fβ

and

G/prG >—> Er > Fγ

are p^-pure and pλ-pure, respectively. Since β > 7, the top extension
is also pr~pure. As 2£r is pr-injective, there exists a map μβ

r of iϊ^
into Er such that the following diagram commutes:

G/pβG >Eβ

V'
G/prG >Er >Fr

where π is the canonical projection. The homomorphism λ£ arises in
the usual way. Define πβ by πβ — μβ \ pβ*G.

As in the proof of Theorem 1.1, Imττ^ is contained in pr*G, and,
as in Lemma 1.2, the homomorphism is unique. If a < β < 7, then
l e t μ*r = μβμ«β.
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LEMMA 1.5. Let β and 7 be ordinals with β < 7. Let π denote
the canonical projection of G/pβG onto G/prG. If πβ

r is a homo-
morphism of Uβ(G) into pr*(G) agreeing with π on GfpβG, then πβ

γ is
the canonical projection of Uβ(G) onto Ur(G).

Proof. Let μ denote the natural projection of Ur(G) onto Uβ(G).
Consider the homomorphism πβ

r — μ. On the group G/pβG the homo-
morphism πβ — μ = 0. Thus, there exists a homomorphism λ: Uβ(G)/δ(G)
into pr*(G) such that the following diagram commutes:

Uβ(G) > Uβ(G)/δ(G) .

pr*G

Since pr(pr*G) = 0 and Uβ(G)/δ(G) is divisible, λ must be the zero
homomorphism. Thus πβ — μ = 0.

LEMMA 1.6. If 7 < β and β is a hereditary ordinal, then the
homomorphism πβ

r: p
β*G-+pr*G defined in Lemma 1.4 is the natural

projection of Uβ(G) onto Ur(G).

Proof. If β is a hereditary ordinal, then pβ*G = Uβ(G). Lemma
1.5 completes the proof.

Let a be a limit ordinal. Then the group Ha is Σβ<aHβ. This
shows that the group Ea = Πβ<aEβ, since

Ea = Ext (Hay G) = Ext (ΣHβ, G) = Π Ext (Hβy G) = Π Eβ .

The homomorphism δ:G—+Eβ can be defined in terms of δβ:G-+Eβ

by δ(x)β = δβ(x). Then the homomorphism μa

β used in the proof of
Lemma 1.4 can be taken as the natural coordinate projection. So
the intersection over all β < a of Ker πa

β is zero.

THEOREM 1.7. If a is a limit ordinal, then the set {pβ*G, πβ}β<a

is an inverse system, and there is an isomorphic copy of pa*G in
lim^<α p

β*G.

Proof. Lemma 1.4 shows that {pβ*G, πβ} is an inverse system.

The homomorphisms πa

β\ pa*G—»pβ*G gives a family of maps of the

group pa*G into this inverse system satisfying πβ

γπ
a

β = π". Thus,

there is a homomorphism μ: pa*G —> limi5<α pβ*G. The kerμ — Πjs<α

kerπ£ = 0. Thus, μ is a monomorphism.

We are now in a position to prove Theorem 1.3.
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Proof of Theorem 1.3. We will show that for all 7 < a the
image of π" is contained in Ur{G). Let 7 < oc) then there exists a
hereditary ordinal β such that 7 < β < a. Since pβ*G = Uβ(G), it
follows that the image of πa

β is contained in Uβ(G). Lemma 1.4 and 1.5
show that TΓ" maps pa*G into Ur(G). Since {Uβ(G),πβ

r} is an inverse
family and πa

rπ% it follows that there exists a homomorphism

μ:p«*G >lunβ<aUβ(G) .

As in the proof of Theorem 1.7, ker μ = 0. Thus μ is a monomorphism.

COROLLARY 1.8. The group G/paG is a pa-pure subgroup of the
group l i m ^ Uβ(G).

Proof. Since Πβ<a Uβ(G) S #«, it follows that l i m ^ Uβ(G) S # β .

The group G/paG is a pα-pure subgroup of 2?α, and

G/paG £ pa*G C lim,<β 17,(G) .

2* The functor La. Let G be a group and a a limit ordinal.
Then the family {pβG}β<a forms a neighborhood system at zero for the
group G. This topology will be - called the natural topology. If the
length of G = λ(G) = a, then the topology is a Hausdorff topology.
If OLΦ\(G), then {pβG}β<a leads to a topology on G/paGf given by
{pβG/paG}β<a. This topology is a Hausdorff topology on G/paG. The
family, {?>̂ G}is<β, leads to a uniformity on <?, respectively G/paG.
Therefore, we can consider the completion of G, (G/paG) with respect
to this uniformity. Let La(G) denote the completion of G if λ(G) = α,
or completion of G/paG if λ(G) > α.

In [12], Zelinsky showed that La(G) = \imβ<a G/pβG. We remark

that notation La(G) is consistent with the notation used by Harrison
in [4]. Let πβ: La{G) —»G/pβG be the natural projection of lim G/pβG
onto GjpβG. A base for the topology on LaG is given by {ker πβ}β<a.
We shall call this topology the induced topology. We shall now
study the functor La on the following class of groups introduced by
Kulikov in [6] and [7].

DEFINITION 2.1. A group G is a generalized p-primary group
(g.p. group), if G is divisible by all primes other than p.

The following theorem is due to Kulikov [7].

THEOREM 2.2. Let G be a g.p. group. Let a be an ordinal less
than or equal to the length of G, satisfying the following condition:
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( * ) There exists a countable increasing sequence of ordinals whose
limit is a.

Then if δ is the natural map of G into Umβ<a G/pβG, with

kernel equal to paG:
(1) δ(G) + PβLa(G) = La(G), for all β < a;
( 2 ) La(G)/δ(G) is divisible;
( 3 ) δ(G) ΓΊ PβLa(G) = pβδ(G) for all β < a;
( 4) G/pβG - La(G)/pβLa(G), for all β < a.

Notice that condition (1) states that δ(G) is dense in La(G) in
the natural topology; and condition (4) shows that La(G) is complete
in the natural topology, since

La(La(G)) = Hm,<β La{GWLa{G) = Km G/pβG = La{G) .

We will show that conditions (1), (2), and (4) are equivalent and
that when they happen, the natural topology and the induced topology
on La(G) are the same. However, we first shall prove the following.

THEOREM 2.3. If G is a g.p. group and a is a limit ordinal,
then G/paG is pa-pure in La(G).

Proof. Since G/pβG is contained in Eβ, it follows that

La(G) s Πβ<a GjpβG s ΠEβ - Ea .

The embedding <5: G—>La(G) is the map, δ: G~*Eai with its range cut
down to La(G). Since G/paG is a pa-pme in Eai the theorem follows.

Notice that this theorem generalized condition (3) of Kulikov's
theorem.

THEOREM 2.4. If G is a g.p. group and a is a limit ordinal less
than or equal to the length of G, then the following are equivalent:

(1) δ(G) is dense in La(G) in the natural topology; i.e.,
8(G) + PβLa(G) - La(G) for all β < a.

(2) La(G)lδ(G) is divisible.
(3) pβLa(G) = ker πβ for β < a, where πβ is the natural pro-

jection, La(G), onto G/pβG; i.e., the natural topology and the induced
topology are the same.

Proof. First we shall show that (1) implies (3). Note that
πβLa(G)^G/pβG; it follows that pβLaG Qkerπβ. If ^Gkerπ^, then
x — y + z, with y e δ(G) and z e pβLaG. Then z e ker πβ. Thus,
y e δ(G) Π ker πβ = p?G. It follows that x e pβG + pβLaG = pβLaG.
Thus, ker 7^ = pβLa{G).
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We will now show (3) implies (1), A neighborhood system for
La(G) in the product topology is given by {ker πa | β < a}. If condition
(3) holds, then {pβLaG\β < a} is a neighborhood system for LaG. The
group δ(G) is dense in La(G) in the product topology. If condition (3)
holds, then δ(G) is dense in La(G) in the natural topology.

In order to show (1) is equivalent to (2), we first observe that,
since G is generalized primary, all groups in question are divisible
by all primes other than p. Thus, it only has to be shown that
δ(G) is dense in La(G) if and only if La(G)/d(G) is a ^-divisible. The
proof of this fact follows from a series of lemmas.

LEMMA 2.5. If β<a and πβ is the map defined in (3) of Theorem
2.4, then LaG = d(G) + ker πβ.

Proof. If x G LaG, then there exists y e G such that y + pβG —
πβ(x). Then δ(y) — x e k e r ^ .

LEMMA 2.6. Let G, LaG, πβ be as above. If xe ker πβ and the
image of x in La(G)/δ(G) is in pB(LaG/δ(G)), then x£pβLa(G).

Proof. The proof is by induction on β. If β = 1, then πt(x) = 0,
and x maps into p(LaG/δ(G)). Thus, there exists a yeLa(G) such that
x + δ(G) = py + δ(G), and so x — py e δ(G). Since π^x — py) — 0,
x — pyekerπ1 Π δ(G) = pδ(G). T h u s , t h e r e e x i s t s a zeG s u c h t h a t
x - py = pδ{z), or x = p(?/ + S(z)) e pLaG.

If /3 > 7, then let π\ be the natural projection of G/pβG -> G/prG.
If β = y + 1, then 0 = /r£ π>(#) = πr(x). So #eker ; r r , and x maps
into pr(LaG/δ(G)). Hence, xeprLa(G). We must show #e;p r + 1(G).
Since a ; G ^ [ L α ( φ ( G ) ] , there exists a y'eLa(G) such that

2/' + δ(G) € pr(La(G)/δ(G)) and α; + δ(G) - py' + δ(G)

thus, a; — pyf eδ(G). Since xeprLa(G), we see that

x-py'e pLaG n

so a; = p(τ/' + «) for some z e δ(G). Let y = y' + z. Then x = py
and y+ δ(G) = y'+ δ(G)epr(La(G)/δ(G)). By Lemma 2.5, Lα(G) =
3(G) + ker 7rr. So there exists 2/" eker τrr, ^ eδ(G), such that y =
y" + g. Then y"+ δ(G) = y + δ(G)epr(La(G)lδ(G)). Thus, y" e prLa(G)
by the induction hypothesis. It follows that py" epβLaG S ker π^.
Thus, pg = α? — py" € ker TΓ̂ , SO pg e δ(G) ker TΓ̂  = pβδ(G), and we see
that xepβLa(G).

Let /S be a limit ordinal. Then

πr(x) - π?πβ(x) = 0, and x + δ(G) e pβ(La(G)lδ(G)) S Pr(La(G)/δ(G)) .
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So by the induction hypothesis we see that x e prLa(G) for all 7 < β,
and thus x e Γ\β<r p

rLa(G) = pβLa(G).
We can now show the equivalence of conditions (1) and (2) of

Theorem 2.4. Since La(G) = δ(G) + ker r̂ , we see that every element
of pβ(La(G)/δ(G)) is the image of an element of ker πβ. Lemma 2.6
then assures us that every element of pβ(La(G)/δ(G)) is the image of
an element in pβLa(G) under the homomorphism

pβLa(G) > (δ(G) + pβLa(G))/δ(G) .

Since (δ(G) + pβLa(G))/δ(G) £ pβ(La(G)/δ(G)), it then follows that

(δ(G) + pβLa(G))/δ(G) = pβ(La(G)lδ(G)) .

If La{G)jδ{G) is p-divisible, then pβ(La(G)/δ(G)) = La(G)/δ(G); and so
La(G) = δ(G) + PβLa(G). Conversely, if La(G) = δ(G) + pβLa(G), then
pβ(La(G)/δ(G)) = La(G)/δ(G). This completes the proof.

3* Some applications* The following definition is due to
Harrison [4].

DEFINITION 3.1. A g.p. group is called fully complete if LaG =
GjpaG for all limit ordinals a less than or equal to the length of G.

Harrison [4] conjectured that a g.p. group is cotorsion if and
only if G is fully complete. Using Theorems 1.3 and 2.4, we can find
an example of a g.p. cotorsion group G which is not fully complete.

Let Ω be the first uncountable ordinal. Nunke [11] has shown
that p°Ext is not hereditary. Therefore, by Proposition 4.1, [11] and
Theorem 13 we have that UΩ(G)^p°*G £ LΩUΩ(G), for some group G.
The group UΩ(G) is a g.p. cotorsion group and is not fully complete.

Let Z >*GΩ-» HΩ define p°. Let MΩ be the torsion subgroup of
GΩ. Nunke [11] has shown that MΩ is not pQ Ext-projective. In
showing that a is hereditary if and only if Ua{G) — pa*(G) for all
groups G, Nunke actually showed that Ua(G) = pa\G) if and only if
p" Ext (Ma, G) = 0, for G fixed.

LEMMA 3.2. p° Ext (Ma, Tor (MΩ, MΩ)) Φ 0.

Proof. In [11] it is shown that

M o = MQ1Ω

I I
Go » Ha

I I
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is exact and t h e last column is p β -pure. Here Qp = {a/beQ\b = pn

for some n). From this we obtain

(Tor Mo, MO)

i
(Tor Ho, Ma) » Λί f l <g) ̂  - ^ M 0 <g> G β

M^ = Tor

Here /S is the zero map; for if x(g)ne MΩ 0 Z, then β(x ̂ n) — χ(^n.
However, w e pΩGβ. Thus a? 0 n = 0 in ΛfΛ ® G^. Thus 7 is onto.
By Theorem 3.9 of [9], the sequence

E: Tor (Mo, Mo) > Tor (HQ, MΩ) > Tor

is p^-pure. Since MΩ is not p°-projective, MΩ is not a summand of
Tor (HΩ, MΩ), Theorem [3.1] of [9]. Thus E Φ 0, and

pΩ Ext (Mo, Tor (Ms, Λffl)) Φ 0 .

This shows that p°*(Tor (ΛfΛ, ΛfΛ)) ̂  t/^Tor (MQ, MΩ)). So, the group
ί7fl(Tor (MΩ, MΩ)) serves as a counter example to Harrison's conjecture.

We are now in a position to examine condition (*) of Theorem
2.2. Let G = ?7fl(Tor (Mo, MΩ)). Then LΩG/G Φ 0. Also, as LΩG and
G are cotorsion, LΩG/G is reduced. Theorem 2.4 now tells us that
conditions (1), (2), and (4) of Theorem 2.2 do not hold. I t follows
that if a is not a countable limit of lesser ordinals, then G need not
be dense in LaG in the natural topology. Also, the induced topology
on LaG need not be the natural topology on LaG.

DEFINITION 3.3. A g.p. group G is called generally complete
provided La(G)/δ(G) is reduced for all limit ordinals a less than or
equal to the length of G.

Notice that if the length of G = λ(G) is less than Ω and if G is
generally complete, then G is fully complete.

THEOREM 3.4. A necessary and sufficient condition for a g.p.
group to be cotorsion is that it be generally complete.

Proof. Let G be g.p. cotorsion group. Then G/pβG is cotorsion
for all β. By Theorem 5.3 of [9], La(G) is cotorsion. It follows
that La(G)/δ(G) is cotorsion and so reduced. Therefore, G is generally
complete.

Let G be a g.p. generally complete group. Then G/pβG is generally
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complete for all β. We will show by transfinite induction on a that
G/paG is cotorsion for all a. If a = 0, there is nothing to prove.
Let a - β + 1 for some ordinal β. The sequence pβG/paG >-> G/paG -»
G/pβG is exact with ends cotorsion groups. Therefore, G/paG is
cotorsion. Let a be a limit ordinal. Then, since G is generally-
complete, L(G)/δ(G) is reduced. The group La(G) is cotorsion, since
by the induction hypothesis it is an inverse limit of cotorsion groups
by Theorem 5.3 of [9]. Therefore, δ(G) = G/paG is cotorsion.

This last theorem answers Question 3 posed by Fuchs in [3].
In [11] Nunke showed that pa Ext is hereditary, if a is a limit

ordinal less than Ω. In proving this he relied heavily upon Ulm's
theorem. We now give a proof of this theorem which does not use
Ulm's theorem.

THEOREM 3.5. If a is an ordinal which satisfies condition (*)
of theorem 2.4, then pa Ext is hereditary.

Proof. Since a satisfies condition (*) of Theorem 2.4 LaUa(G)/Ua(G)
is divisible. However, LaUa(G) and Ua(G) are cotorsion groups;
therefore, LaUa{G)jUa{G) must be reduced. Thus, LaUa(G) = Ua(G),
for all groups G.

Let β be a hereditary ordinal; then β + n is also hereditary
Proposition 4.2 of [11]. If a < i2, Proposition 4.1 of [11] and Theorem
1.3 give the desired result. If a ^> Ω, then a + o) + n is hereditary
if n is any integer, by Proposition 4.2 of [11]. This fact together
with Theorem 1.3 give the desired result.

We remark that for all other ordinals β pβ Ext is not hereditary.
A proof of this fact may be found in [11].

The author wishes to thank Professor Ronald J. Nunke for his
encouragement and valuable suggestions.
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