A FAMILY OF FUNCTORS DEFINED ON GENERALIZED PRIMARY GROUPS

RAY MINES

Let G denote an abelian group; G is called a generalized p-primary group if qG = G for all primes $q \neq p$. Let α be an ordinal, and let $\delta: G \to E_{\alpha}$ satisfy the following four conditions: (1) E_{α} is p^{α} Ext-injective, (2) $p^{\alpha}E_{\alpha} = 0$, (3) $\delta(G)$ is p^{α} -pure in E_{α} , (4) ker $\delta = p^{\alpha}G$. Define $p^{\alpha*}G$ to be that subgroup of E_{α} such that $p^{\alpha}(E_{\alpha}/\delta(G)) = p^{\alpha*}G/\delta(G)$. If α is a limit ordinal, let $L_{\alpha}(G) = \lim_{\beta < \alpha} G/p^{\beta}G$. Let

 $U(G) = \operatorname{Ext} \left(Z(p^{\infty}), G \right)$ and $U_{\alpha}(G) = U(G)/p^{\alpha}U(G)$.

Then we have the following p^{α} -pure containments: $G/p^{\alpha}G \cong \delta(G) \subseteq U_{\alpha}(G) \subseteq p^{\alpha*}(G) \subseteq L_{\alpha}U_{\alpha}(G)$, whenever α is a countable limit of lesser hereditary ordinals. We have $p^{\alpha*}G = U_{\alpha}(G)$ for all groups G if and only if p^{α} Ext is hereditary. From this we obtain a new proof of the fact that p^{α} Ext is hereditary ordinals. We also obtain an example of a cotorsion group G such that $G/p^{\alpha}G$ is not equal to $L_{\alpha}(G)$, thus refuting a conjecture of Harrison. A group G is called generally complete if $L_{\alpha}(G)/\delta(G)$ is reduced for all limit ordinals α . A generalized p-primary group G is generally complete if and only if it is cotorsion.

A result of Kulikov [7] will be studied and generalized, and an application to the study of cotorsion groups will be given.

Troughout this paper the word "group" will mean "abelian group". The notation of [2] will be followed. The letter p will indicate a prime.

The elements of the group $\operatorname{Ext}(A, B)$ are equivalence classes of extensions $E: 0 \to B \to E \to A \to 0$. However, no distinction will be made between equivalence classes and an element of the equivalence class. Thus, it will be said that E is an element of $\operatorname{Ext}(A, B)$. Also, B will be considered as a subgroup of E. The arrow \to will denote a monomorphism, and the arrow \to will denote an epimorphism. The element $\operatorname{Ext}(f, g)E$, for $E \in \operatorname{Ext}(A, B)$, $f: B \to B'$, and $g: A' \to A$, will be denoted by gEf. All other notation will be that used in Chapter III of [8].

Recall that a subgroup H of a group G is said to be p^{α} -pure in G if the extension $H \rightarrow G \rightarrow G/H$ is an element of $p^{\alpha} \text{Ext}(G/H, H)$; G/H is said to be a p^{α} -pure quotient of the group G. A group G is said to be p^{α} -projective if $p^{\alpha} \text{Ext}(G, A) = 0$ for all groups A; G is called p^{α} -injective if $p^{\alpha} \text{Ext}(A, G) = 0$ for all groups G.

The functor $p^{\alpha} \operatorname{Ext}(\cdot, \cdot)$ is said to be hereditary (or shorter, α is called a hereditary ordinal) if every p^{α} -pure subgroup of a p^{α} -projective is p^{α} -projective, or, equivalently, if every p^{α} -pure quotient of a p^{α} -injective is p^{α} -injective. In §3 a new proof will be given to show that $p^{\alpha} \operatorname{Ext}$ is hereditary if α , is a countable limit of lesser hereditary ordinals.

We shall use the notation $\lambda(G)$ to denote the length of G; i.e., the least ordinal α satisfying $p^{\alpha+1}G = p^{\alpha}G$.

1. The functor p^{α} . In [9] it is shown that for all ordinals α there exists an exact sequence

$$Z \rightarrow G_{\alpha} \longrightarrow H\alpha$$
,

such that for all group G the following hold.

(1) $p^{\alpha}G \longrightarrow G \xrightarrow{\delta} \operatorname{Ext} (H_{\alpha}, G) \xrightarrow{\varepsilon} \operatorname{Ext} (G_{\alpha}, G)$

is exact, and Im (δ) is p^{α} -pure in Ext (H_{α}, G). Here we have identified G with Hom (Z, G) in the usual way;

(2) H_{α} is a p^{α} -projective *p*-group, so $p^{\alpha} \operatorname{Ext} (H_{\alpha}, G) = 0$, and $\operatorname{Ext} (H_{\alpha}, G)$ is p^{α} -injective;

(3) The sequences for α and $\alpha + n$ are connected by

(4) If α is a limit ordinal, then

$$H_{lpha}=igoplus_{eta ;$$

(5) $p^{\alpha}H_{\alpha+1}$ is cyclic of order p and $H_{\alpha} = H_{\alpha+1}/p^{\alpha}H_{\alpha+1}$;

 $(6) \quad p^{\alpha}H_{\alpha}=0.$

Let $p^{\alpha^*}G$ denote $\varepsilon^{-1}(p^{\alpha} \operatorname{Ext} (G_{\alpha}, G))$; then $G/p^{\alpha}G = \operatorname{Im} \delta$ is a p^{α} -pure subgroup of $p^{\alpha^*}G$.

THEOREM 1.1. Let E be p^{α} -injective such that $p^{\alpha}E = 0$, that there exists a homomorphism $\gamma: G \to E$ with kernel $p^{\alpha}G$, and that Im γ a p^{α} -pure subgroup of E. Let G^{*} denote the subgroup of E satisfying $G^{*}/\gamma(G) = p^{\alpha}(E/\gamma(G))$. Then there exists an isomorphism $g: p^{\alpha}G \to G^{*}$, such that $g\delta = \gamma$.

Proof. For convenience in the remainder of this paper we will denote $\text{Ext}(H_{\alpha}, G)$ and $\text{Ext}(G_{\alpha}, G)$ by $E_{\alpha}(G)$ and $F_{\alpha}(G)$, respectively, or simply by E_{α} and F_{α} if no confusion can result. For this proof

let $E/\gamma(G) = F$. Replace Im γ and Im δ by $G/p^{\alpha}G$. Then the following sequences are exact:

$$G/p^{\alpha}G \longrightarrow E_{\alpha} \longrightarrow F_{\alpha}$$
,
 $G/p^{\alpha}G \longrightarrow E \longrightarrow F$.

Before continuing with the proof we prove the following:

LEMMA 1.2. If f, g are homomorphisms from E_{α} to E (or E to E_{α}) such that $f \mid G/p^{\alpha}G = g \mid G/p^{\alpha}G$, then $f \mid p^{\alpha^*}G = g \mid p^{\alpha^*}G$ ($f \mid G^* = g \mid G^*$).

Proof. Assume $f, g: E_{\alpha} \to E$, the proof for $f, g: E \to E_{\alpha}$ being the same. Let h = f - g; then $h(G/p^{\alpha}G) = 0$. Therefore, h can be lifted to a homomorphism h^{*} of F_{α} into E. Since $p^{\alpha}E = 0$, we have $h^{*} | p^{\alpha}F = 0$. Thus, $h | p^{\alpha^{*}}G = 0$; so $f | p^{\alpha^{*}}G = g | p^{\alpha^{*}}G$.

We now continue the proof of Theorem 1.1. Since E is p^{n} -injective, there exists a homomorphism $g': E_{\alpha} \to E$ such that the following diagram commutes.

 \overline{g} arises in the usual way. Let $g = g' | p^{\alpha^*}G$. Since $\overline{g}(p^{\alpha}F_{\alpha}) \subseteq p^{\alpha}F$, it follows that $g(p^{\alpha^*}G) \subseteq G^*$. Similarly, there exists a homomorphism $f': E \to E_{\alpha}$ such that

$$\begin{array}{ccc} G/p^{\alpha}G \rightarrowtail E \longrightarrow F \\ & & & & \\ & & & f' \\ G/p^{\alpha}G \rightarrowtail E_{\alpha} \longrightarrow F_{\alpha} \end{array}$$

commutes. Let $f = f' | G^*$; then clearly $f(G^*) \subseteq p^{\alpha^*}G$. Consider $f' \circ g' \colon E_{\alpha} \to E_{\alpha}$. By Lemma 1.2

$$f \circ g = f' \circ g' \mid p^{\alpha^*}G = 1_{E_{\alpha}} \mid p^{\alpha^*}G = 1p^{\alpha^*}G$$
 .

Similarly, $g \circ f = g' \circ f' |_{G^*} = 1_{G^*}$. Thus, g is an isomorphism of $p^{\alpha^*}G \to G^*$, and clearly $g\delta = \gamma$.

It follows that, if E is a p^{α} -injective having the following properties:

(1) There exists a homomorphism $\gamma: G \to E$ with ker $\gamma = p^{\alpha}G$ and Im γp^{α} -pure in E;

 $(2) \quad p^{\alpha}E=0,$

then $p^{\alpha^*}G$ can be taken as the subgroup of E with the property that

 $p^{\alpha^*}G/\gamma(G) = p^{\alpha}(E/\gamma(G)).$

Let $U(G) = \text{Ext}(Z(p^{\infty}), G)$ and $U_{\alpha}(G) = U(G)/p^{\alpha}U(G)$. In [11] it is shown that for all ordinals α , $U_{\alpha}(G)$ is contained in $p^{\alpha}G$ and $\delta(G) \subseteq U_{\alpha}(G)$. In [11] Nunke has shown that α is a hereditary ordinal if and only if $U_{\alpha}(G) = p^{\alpha}(G)$ for all groups G.

The remaining part of this section will be spent in proving the following theorem.

THEOREM 1.3. Let α be an ordinal such that for all $\gamma < \alpha$ there exists a hereditary β with $\gamma < \beta < \alpha$. Then $p^{\alpha^*}G \subseteq \lim_{\beta < \alpha} U_{\beta}(G)$.

The proof of this theorem follows from a series of lemmas. We first observe that $\{U_{\beta}(G), \pi^{\beta}_{\gamma}\}$ is an inverse system, where for $\beta > \gamma \ \pi^{\beta}_{\tau}: U_{\beta}(G) \to U_{\gamma}(G)$ is the natural projection with kernel $p^{\beta}U_{\gamma}(G)$.

LEMMA 1.4. Let β and γ be ordinals with $\gamma < \beta$. Then there exists a homomorphism π_{γ}^{β} : $p^{\beta^*}G \rightarrow p^{\gamma^*}G$ agreeing with the natural projection of $G/p^{\beta}G$ onto $G/p^{\gamma}G$ when restricted to $G/p^{\beta}G$. Moreover if $\alpha < \beta < \gamma$, then $\pi_{\gamma}^{\beta}\pi_{\beta}^{\alpha} = \pi_{\gamma}^{\alpha}$.

Proof. The extensions

$$G/p^{\beta}G \longrightarrow E_{\beta} \longrightarrow F_{\beta}$$

and

$$G/p^{\gamma}G \longrightarrow E_{\gamma} \longrightarrow F_{\gamma}$$

are p^{β} -pure and p^{γ} -pure, respectively. Since $\beta > \gamma$, the top extension is also p^{γ} -pure. As E_{γ} is p^{γ} -injective, there exists a map μ_{γ}^{β} of E_{β} into E_{γ} such that the following diagram commutes:

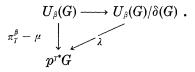
where π is the canonical projection. The homomorphism λ_{γ}^{β} arises in the usual way. Define π_{γ}^{β} by $\pi_{\gamma}^{\beta} = \mu_{\gamma}^{\beta} | p^{\beta^*}G$.

As in the proof of Theorem 1.1, $\operatorname{Im} \pi_{\tau}^{\beta}$ is contained in $p^{\tau}G$, and, as in Lemma 1.2, the homomorphism is unique. If $\alpha < \beta < \gamma$, then let $\mu_{\tau}^{\alpha} = \mu_{\tau}^{\beta} \mu_{\beta}^{\alpha}$.

352

LEMMA 1.5. Let β and γ be ordinals with $\beta < \gamma$. Let π denote the canonical projection of $G/p^{\beta}G$ onto $G/p^{\gamma}G$. If π_{τ}^{β} is a homomorphism of $U_{\beta}(G)$ into $p^{\tau^{*}}(G)$ agreeing with π on $G/p^{\beta}G$, then π_{τ}^{β} is the canonical projection of $U_{\beta}(G)$ onto $U_{\tau}(G)$.

Proof. Let μ denote the natural projection of $U_r(G)$ onto $U_\beta(G)$. Consider the homomorphism $\pi_r^\beta - \mu$. On the group $G/p^\beta G$ the homomorphism $\pi_r^\beta - \mu = 0$. Thus, there exists a homomorphism λ : $U_\beta(G)/\delta(G)$ into $p^{r^*}(G)$ such that the following diagram commutes:



Since $p^{r}(p^{r^*}G) = 0$ and $U_{\beta}(G)/\delta(G)$ is divisible, λ must be the zero homomorphism. Thus $\pi_{7}^{\beta} - \mu = 0$.

LEMMA 1.6. If $\gamma < \beta$ and β is a hereditary ordinal, then the homomorphism $\pi_{\gamma}^{\beta}: p^{\beta^*}G \to p^{\gamma^*}G$ defined in Lemma 1.4 is the natural projection of $U_{\beta}(G)$ onto $U_{\gamma}(G)$.

Proof. If β is a hereditary ordinal, then $p^{\beta^*}G = U_{\beta}(G)$. Lemma 1.5 completes the proof.

Let α be a limit ordinal. Then the group H_{α} is $\Sigma_{\beta < \alpha} H_{\beta}$. This shows that the group $E_{\alpha} = \prod_{\beta < \alpha} E_{\beta}$, since

$$E_{lpha} = \operatorname{Ext} \left(H_{lpha}, G
ight) = \operatorname{Ext} \left(\Sigma H_{eta}, G
ight) = \varPi \operatorname{Ext} \left(H_{eta}, G
ight) = \varPi E_{eta}$$
 .

The homomorphism $\delta: G \to E_{\beta}$ can be defined in terms of $\delta_{\beta}: G \to E_{\beta}$ by $\delta(x)_{\beta} = \delta_{\beta}(x)$. Then the homomorphism μ_{β}^{α} used in the proof of Lemma 1.4 can be taken as the natural coordinate projection. So the intersection over all $\beta < \alpha$ of Ker π_{β}^{α} is zero.

THEOREM 1.7. If α is a limit ordinal, then the set $\{p^{\beta^*}G, \pi^{\beta}_{\sigma}\}_{\beta < \alpha}$ is an inverse system, and there is an isomorphic copy of $p^{\alpha^*}G$ in $\lim_{\beta < \alpha} p^{\beta^*}G$.

Proof. Lemma 1.4 shows that $\{p^{\beta^*}G, \pi^{\beta}\}$ is an inverse system. The homomorphisms $\pi^{\alpha}_{\beta}: p^{\alpha^*}G \to p^{\beta^*}G$ gives a family of maps of the group $p^{\alpha^*}G$ into this inverse system satisfying $\pi^{\beta}_{\beta}\pi^{\alpha}_{\beta} = \pi^{\alpha}_{\gamma}$. Thus, there is a homomorphism $\mu: p^{\alpha^*}G \to \lim_{\beta < \alpha} p^{\beta^*}G$. The ker $\mu = \bigcap_{\beta < \alpha} \ker \pi^{\alpha}_{\beta} = 0$. Thus, μ is a monomorphism.

We are now in a position to prove Theorem 1.3.

RAY MINES

Proof of Theorem 1.3. We will show that for all $\gamma < \alpha$ the image of π_{τ}^{α} is contained in $U_{\tau}(G)$. Let $\gamma < \alpha$; then there exists a hereditary ordinal β such that $\gamma < \beta < \alpha$. Since $p^{\beta^*}G = U_{\beta}(G)$, it follows that the image of π_{β}^{α} is contained in $U_{\beta}(G)$. Lemma 1.4 and 1.5 show that π_{τ}^{α} maps $p^{\alpha^*}G$ into $U_{\tau}(G)$. Since $\{U_{\beta}(G), \pi_{\tau}^{\beta}\}$ is an inverse family and $\pi_{\tau}^{\alpha}\pi_{\beta}^{\alpha}$, it follows that there exists a homomorphism

$$\mu: p^{\alpha*}G \longrightarrow \lim_{\beta < \alpha} U_{\beta}(G) .$$

As in the proof of Theorem 1.7, ker $\mu = 0$. Thus μ is a monomorphism.

COROLLARY 1.8. The group $G/p^{\alpha}G$ is a p^{α} -pure subgroup of the group $\lim_{\beta<\alpha} U_{\beta}(G)$.

Proof. Since $\Pi_{\beta < \alpha} U_{\beta}(G) \subseteq E_{\alpha}$, it follows that $\lim_{\beta < \alpha} U_{\beta}(G) \subseteq E_{\alpha}$. The group $G/p^{\alpha}G$ is a p^{α} -pure subgroup of E_{α} , and

$$G/p^{lpha}G \subseteq p^{lpha*}G \subseteq \lim_{eta < lpha} U_{eta}(G)$$
 .

2. The functor L_{α} . Let G be a group and α a limit ordinal. Then the family $\{p^{\beta}G\}_{\beta<\alpha}$ forms a neighborhood system at zero for the group G. This topology will be called the natural topology. If the length of $G = \lambda(G) = \alpha$, then the topology is a Hausdorff topology. If $\alpha \neq \lambda(G)$, then $\{p^{\beta}G\}_{\beta<\alpha}$ leads to a topology on $G/p^{\alpha}G$, given by $\{p^{\beta}G/p^{\alpha}G\}_{\beta<\alpha}$. This topology is a Hausdorff topology on $G/p^{\alpha}G$. The family, $\{p^{\beta}G\}_{\beta<\alpha}$, leads to a uniformity on G, respectively $G/p^{\alpha}G$. Therefore, we can consider the completion of G, $(G/p^{\alpha}G)$ with respect to this uniformity. Let $L_{\alpha}(G)$ denote the completion of G if $\lambda(G) = \alpha$, or completion of $G/p^{\alpha}G$ if $\lambda(G) > \alpha$.

In [12], Zelinsky showed that $L_{\alpha}(G) = \lim_{\beta < \alpha} G/p^{\beta}G$. We remark that notation $L_{\alpha}(G)$ is consistent with the notation used by Harrison in [4]. Let $\pi_{\beta}: L_{\alpha}(G) \to G/p^{\beta}G$ be the natural projection of $\lim_{\alpha} G/p^{\beta}G$ onto $G/p^{\beta}G$. A base for the topology on $L_{\alpha}G$ is given by $\{\ker \pi_{\beta}\}_{\beta < \alpha}$. We shall call this topology the induced topology. We shall now study the functor L_{α} on the following class of groups introduced by Kulikov in [6] and [7].

DEFINITION 2.1. A group G is a generalized *p*-primary group (g.p. group), if G is divisible by all primes other than p.

The following theorem is due to Kulikov [7].

THEOREM 2.2. Let G be a g.p. group. Let α be an ordinal less than or equal to the length of G, satisfying the following condition:

(*) There exists a countable increasing sequence of ordinals whose limit is α .

Then if δ is the natural map of G into $\lim_{\beta < \alpha} G/p^{\beta}G$, with kernel equal to $p^{\alpha}G$:

- (1) $\delta(G) + p^{\beta}L_{\alpha}(G) = L_{\alpha}(G)$, for all $\beta < \alpha$;
- (2) $L_{\alpha}(G)/\delta(G)$ is divisible;
- (3) $\delta(G) \cap p^{\beta}L_{\alpha}(G) = p^{\beta}\delta(G)$ for all $\beta < \alpha$;
- $(4) \quad G/p^{\beta}G = L_{\alpha}(G)/p^{\beta}L_{\alpha}(G), \text{ for all } \beta < \alpha.$

Notice that condition (1) states that $\delta(G)$ is dense in $L_{\alpha}(G)$ in the natural topology; and condition (4) shows that $L_{\alpha}(G)$ is complete in the natural topology, since

$$L_lpha(L_lpha(G)) = arprojlim_{eta < lpha} \ L_lpha(G)/p^eta L_lpha(G) = arprojlim_{eta} G/p^eta G = L_lpha(G) \ .$$

We will show that conditions (1), (2), and (4) are equivalent and that when they happen, the natural topology and the induced topology on $L_{\alpha}(G)$ are the same. However, we first shall prove the following.

THEOREM 2.3. If G is a g.p. group and α is a limit ordinal, then $G/p^{\alpha}G$ is p^{α} -pure in $L_{\alpha}(G)$.

Proof. Since $G/p^{\beta}G$ is contained in E_{β} , it follows that

$$L_{lpha}(G)\subseteq \varPi_{\,_{eta .$$

The embedding $\delta: G \to L_{\alpha}(G)$ is the map, $\delta: G \to E_{\alpha}$, with its range cut down to $L_{\alpha}(G)$. Since $G/p^{\alpha}G$ is a p^{α} -pure in E_{α} , the theorem follows.

Notice that this theorem generalized condition (3) of Kulikov's theorem.

THEOREM 2.4. If G is a g.p. group and α is a limit ordinal less than or equal to the length of G, then the following are equivalent:

(1) $\delta(G)$ is dense in $L_{\alpha}(G)$ in the natural topology; i.e., $\delta(G) + p^{\beta}L_{\alpha}(G) = L_{\alpha}(G)$ for all $\beta < \alpha$.

(2) $L_{\alpha}(G)/\delta(G)$ is divisible.

(3) $p^{\beta}L_{\alpha}(G) = \ker \pi_{\beta}$ for $\beta < \alpha$, where π_{β} is the natural projection, $L_{\alpha}(G)$, onto $G/p^{\beta}G$; i.e., the natural topology and the induced topology are the same.

Proof. First we shall show that (1) implies (3). Note that $\pi_{\beta}L_{\alpha}(G) \subseteq G/p^{\beta}G$; it follows that $p^{\beta}L_{\alpha}G \subseteq \ker \pi_{\beta}$. If $x \in \ker \pi_{\beta}$, then x = y + z, with $y \in \delta(G)$ and $z \in p^{\beta}L_{\alpha}G$. Then $z \in \ker \pi_{\beta}$. Thus, $y \in \delta(G) \cap \ker \pi_{\beta} = p^{\beta}G$. It follows that $x \in p^{\beta}G + p^{\beta}L_{\alpha}G = p^{\beta}L_{\alpha}G$. Thus, $\ker \pi_{\beta} = p^{\beta}L_{\alpha}(G)$.

We will now show (3) implies (1). A neighborhood system for $L_{\alpha}(G)$ in the product topology is given by $\{\ker \pi_{\alpha} \mid \beta < \alpha\}$. If condition (3) holds, then $\{p^{\beta}L_{\alpha}G \mid \beta < \alpha\}$ is a neighborhood system for $L_{\alpha}G$. The group $\delta(G)$ is dense in $L_{\alpha}(G)$ in the product topology. If condition (3) holds, then $\delta(G)$ is dense in $L_{\alpha}(G)$ in the natural topology.

In order to show (1) is equivalent to (2), we first observe that, since G is generalized primary, all groups in question are divisible by all primes other than p. Thus, it only has to be shown that $\delta(G)$ is dense in $L_{\alpha}(G)$ if and only if $L_{\alpha}(G)/\delta(G)$ is a p-divisible. The proof of this fact follows from a series of lemmas.

LEMMA 2.5. If $\beta < \alpha$ and π_{β} is the map defined in (3) of Theorem 2.4, then $L_{\alpha}G = \delta(G) + \ker \pi_{\beta}$.

Proof. If $x \in L_{\alpha}G$, then there exists $y \in G$ such that $y + p^{\beta}G = \pi_{\beta}(x)$. Then $\delta(y) - x \in \ker \pi_{\beta}$.

LEMMA 2.6. Let G, $L_{\alpha}G$, π_{β} be as above. If $x \in \ker \pi_{\beta}$ and the image of x in $L_{\alpha}(G)/\delta(G)$ is in $p^{\beta}(L_{\alpha}G/\delta(G))$, then $x \in p^{\beta}L_{\alpha}(G)$.

Proof. The proof is by induction on β . If $\beta = 1$, then $\pi_1(x) = 0$, and x maps into $p(L_{\alpha}G/\delta(G))$. Thus, there exists a $y \in L_{\alpha}(G)$ such that $x + \delta(G) = py + \delta(G)$, and so $x - py \in \delta(G)$. Since $\pi_1(x - py) = 0$, $x - py \in \ker \pi_1 \cap \delta(G) = p\delta(G)$. Thus, there exists a $z \in G$ such that $x - py = p\delta(z)$, or $x = p(y + \delta(z)) \in pL_{\alpha}G$.

If $\beta > \gamma$, then let π_{τ}^{β} be the natural projection of $G/p^{\beta}G \to G/p^{\gamma}G$. If $\beta = \gamma + 1$, then $0 = \pi_{\tau}^{\beta} \pi_{\beta}(x) = \pi_{\tau}(x)$. So $x \in \ker \pi_{\tau}$, and x maps into $p^{\gamma}(L_{\alpha}G/\delta(G))$. Hence, $x \in p^{\gamma}L_{\alpha}(G)$. We must show $x \in p^{\gamma+1}(G)$. Since $x \in p^{\beta}[L_{\alpha}(G)/\delta(G)]$, there exists a $y' \in L_{\alpha}(G)$ such that

$$y' + \delta(G) \in p^{\gamma}(L_{\alpha}(G)/\delta(G))$$
 and $x + \delta(G) = py' + \delta(G)$;

thus, $x - py' \in \delta(G)$. Since $x \in p^{r}L_{\alpha}(G)$, we see that

$$x - py' \in pL_{\alpha}G \cap \delta(G) = p\delta(G);$$

so x = p(y' + z) for some $z \in \delta(G)$. Let y = y' + z. Then x = pyand $y + \delta(G) = y' + \delta(G) \in p^{r}(L_{\alpha}(G)/\delta(G))$. By Lemma 2.5, $L_{\alpha}(G) = \delta(G) + \ker \pi_{r}$. So there exists $y'' \in \ker \pi_{r}$, $g \in \delta(G)$, such that y = y'' + g. Then $y'' + \delta(G) = y + \delta(G) \in p^{r}(L_{\alpha}(G)/\delta(G))$. Thus, $y'' \in p^{r}L_{\alpha}(G)$ by the induction hypothesis. It follows that $py'' \in p^{\beta}L_{\alpha}G \subseteq \ker \pi_{\beta}$. Thus, $pg = x - py'' \in \ker \pi_{\beta}$, so $pg \in \delta(G) \ker \pi_{\beta} = p^{\beta}\delta(G)$, and we see that $x \in p^{\beta}L_{\alpha}(G)$.

Let β be a limit ordinal. Then

$$\pi_{\gamma}(x) - \pi^{\beta}_{\gamma}\pi_{\beta}(x) = 0 \;, \;\; ext{ and } \;\; x + \delta(G) \in p^{\beta}(L_{lpha}(G)/\delta(G)) \subseteq p^{\gamma}(L_{lpha}(G)/\delta(G)) \;.$$

So by the induction hypothesis we see that $x \in p^{\gamma}L_{\alpha}(G)$ for all $\gamma < \beta$, and thus $x \in \bigcap_{\beta < \gamma} p^{\gamma}L_{\alpha}(G) = p^{\beta}L_{\alpha}(G)$.

We can now show the equivalence of conditions (1) and (2) of Theorem 2.4. Since $L_{\alpha}(G) = \delta(G) + \ker \pi_{\beta}$, we see that every element of $p^{\beta}(L_{\alpha}(G)/\delta(G))$ is the image of an element of $\ker \pi_{\beta}$. Lemma 2.6 then assures us that every element of $p^{\beta}(L_{\alpha}(G)/\delta(G))$ is the image of an element in $p^{\beta}L_{\alpha}(G)$ under the homomorphism

$$p^{eta}L_{lpha}(G) \longrightarrow (\delta(G) + p^{eta}L_{lpha}(G))/\delta(G)$$
 .

Since $(\delta(G) + p^{\beta}L_{\alpha}(G))/\delta(G) \subseteq p^{\beta}(L_{\alpha}(G)/\delta(G))$, it then follows that

$$(\delta(G) \,+\, p^{eta}L_{lpha}(G))/\delta(G) \,=\, p^{eta}(L_{lpha}(G)/\delta(G))$$
 .

If $L_{\alpha}(G)/\delta(G)$ is *p*-divisible, then $p^{\beta}(L_{\alpha}(G)/\delta(G)) = L_{\alpha}(G)/\delta(G)$; and so $L_{\alpha}(G) = \delta(G) + p^{\beta}L_{\alpha}(G)$. Conversely, if $L_{\alpha}(G) = \delta(G) + p^{\beta}L_{\alpha}(G)$, then $p^{\beta}(L_{\alpha}(G)/\delta(G)) = L_{\alpha}(G)/\delta(G)$. This completes the proof.

3. Some applications. The following definition is due to Harrison [4].

DEFINITION 3.1. A g.p. group is called fully complete if $L_{\alpha}G = G/p^{\alpha}G$ for all limit ordinals α less than or equal to the length of G.

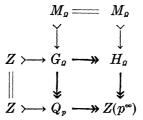
Harrison [4] conjectured that a g.p. group is cotorsion if and only if G is fully complete. Using Theorems 1.3 and 2.4, we can find an example of a g.p. cotorsion group G which is not fully complete.

Let Ω be the first uncountable ordinal. Nunke [11] has shown that p^{ρ} Ext is not hereditary. Therefore, by Proposition 4.1, [11] and Theorem 13 we have that $U_{\rho}(G) \subseteq p^{\rho}G \subseteq L_{\rho}U_{\rho}(G)$, for some group G. The group $U_{\rho}(G)$ is a g.p. cotorsion group and is not fully complete.

Let $Z \rightarrow G_{\rho} \rightarrow H_{\rho}$ define p^{ρ} . Let M_{ρ} be the torsion subgroup of G_{ρ} . Nunke [11] has shown that M_{ρ} is not p^{ρ} Ext-projective. In showing that α is hereditary if and only if $U_{\alpha}(G) = p^{\alpha^{*}}(G)$ for all groups G, Nunke actually showed that $U_{\alpha}(G) = p^{\alpha^{*}}(G)$ if and only if p^{α} Ext $(M_{\alpha}, G) = 0$, for G fixed.

LEMMA 3.2. p^{a} Ext $(M_{a}, \text{Tor} (M_{a}, M_{a})) \neq 0$.

Proof. In [11] it is shown that



is exact and the last column is p^{a} -pure. Here $Q_{p} = \{a/b \in Q \mid b = p^{n}$ for some $n\}$. From this we obtain

Here β is the zero map; for if $x \otimes n \in M_{\rho} \otimes Z$, then $\beta(x \otimes n) = x \otimes n$. However, $n \in p^{\circ}G_{\rho}$. Thus $x \otimes n = 0$ in $M_{\rho} \otimes G_{\rho}$. Thus γ is onto. By Theorem 3.9 of [9], the sequence

$$E: \operatorname{Tor} (M_{\varrho}, M_{\varrho}) \longrightarrow \operatorname{Tor} (H_{\varrho}, M_{\varrho}) \longrightarrow \operatorname{Tor} (Z(p^{\infty}), M_{\varrho}) = M_{\varrho}$$

is p^{a} -pure. Since M_{a} is not p^{a} -projective, M_{a} is not a summand of Tor (H_{a}, M_{a}) , Theorem [3.1] of [9]. Thus $E \neq 0$, and

$$p^{\varrho} \operatorname{Ext} \left(M_{\varrho}, \operatorname{Tor} \left(M_{\varrho}, M_{\varrho} \right)
ight)
eq 0$$
.

This shows that $p^{\rho^*}(\text{Tor }(M_{\rho}, M_{\rho})) \neq U_{\rho}(\text{Tor }(M_{\rho}, M_{\rho}))$. So, the group $U_{\rho}(\text{Tor }(M_{\rho}, M_{\rho}))$ serves as a counter example to Harrison's conjecture.

We are now in a position to examine condition (*) of Theorem 2.2. Let $G = U_{a}(\text{Tor}(M_{a}, M_{a}))$. Then $L_{a}G/G \neq 0$. Also, as $L_{a}G$ and G are cotorsion, $L_{a}G/G$ is reduced. Theorem 2.4 now tells us that conditions (1), (2), and (4) of Theorem 2.2 do not hold. It follows that if α is not a countable limit of lesser ordinals, then G need not be dense in $L_{a}G$ in the natural topology. Also, the induced topology on $L_{a}G$ need not be the natural topology on $L_{a}G$.

DEFINITION 3.3. A g.p. group G is called generally complete provided $L_{\alpha}(G)/\delta(G)$ is reduced for all limit ordinals α less than or equal to the length of G.

Notice that if the length of $G = \lambda(G)$ is less than Ω and if G is generally complete, then G is fully complete.

THEOREM 3.4. A necessary and sufficient condition for a g.p. group to be cotorsion is that it be generally complete.

Proof. Let G be g.p. cotorsion group. Then $G/p^{\beta}G$ is cotorsion for all β . By Theorem 5.3 of [9], $L_{\alpha}(G)$ is cotorsion. It follows that $L_{\alpha}(G)/\delta(G)$ is cotorsion and so reduced. Therefore, G is generally complete.

Let G be a g.p. generally complete group. Then $G/p^{\beta}G$ is generally

complete for all β . We will show by transfinite induction on α that $G/p^{\alpha}G$ is cotorsion for all α . If $\alpha = 0$, there is nothing to prove. Let $\alpha = \beta + 1$ for some ordinal β . The sequence $p^{\beta}G/p^{\alpha}G \rightarrow G/p^{\alpha}G \rightarrow G/p^{\alpha}G \rightarrow G/p^{\alpha}G$ is cotorsion. Let α be a limit ordinal. Then, since G is generally complete, $L(G)/\delta(G)$ is reduced. The group $L_{\alpha}(G)$ is cotorsion, since by the induction hypothesis it is an inverse limit of cotorsion groups by Theorem 5.3 of [9]. Therefore, $\delta(G) = G/p^{\alpha}G$ is cotorsion.

This last theorem answers Question 3 posed by Fuchs in [3].

In [11] Nunke showed that p^{α} Ext is hereditary, if α is a limit ordinal less than Ω . In proving this he relied heavily upon Ulm's theorem. We now give a proof of this theorem which does not use Ulm's theorem.

THEOREM 3.5. If α is an ordinal which satisfies condition (*) of theorem 2.4, then p^{α} Ext is hereditary.

Proof. Since α satisfies condition (*) of Theorem 2.4 $L_{\alpha}U_{\alpha}(G)/U_{\alpha}(G)$ is divisible. However, $L_{\alpha}U_{\alpha}(G)$ and $U_{\alpha}(G)$ are cotorsion groups; therefore, $L_{\alpha}U_{\alpha}(G)/U_{\alpha}(G)$ must be reduced. Thus, $L_{\alpha}U_{\alpha}(G) = U_{\alpha}(G)$, for all groups G.

Let β be a hereditary ordinal; then $\beta + n$ is also hereditary Proposition 4.2 of [11]. If $\alpha < \Omega$, Proposition 4.1 of [11] and Theorem 1.3 give the desired result. If $\alpha \ge \Omega$, then $\alpha + \omega + n$ is hereditary if *n* is any integer, by Proposition 4.2 of [11]. This fact together with Theorem 1.3 give the desired result.

We remark that for all other ordinals βp^{β} Ext is not hereditary. A proof of this fact may be found in [11].

The author wishes to thank Professor Ronald J. Nunke for his encouragement and valuable suggestions.

BIBLIOGRAPHY

1. M. C. R. Butler and G. Horrocks, *Classes of extensions and resolutions*, Phil. Trans. Royal Soc., London (A) **254** (1961), 155-222.

2. L. Fuchs, Abelian groups, Budapest, 1958.

^{3.} _____, Recent results and problems on abelian groups, Topics in Abelian Groups, Chicago, 1963.

^{4.} D. K. Harrison, On the structure of Ext, Topics in Abelian Groups, Chicago, 1963. 5. J. M. Irwin, C. Walker, E. A. Walker, On p^{α} -pure sequences of abelian groups, Topics in Abelian Groups, Chicago, 1963, 69-119.

^{6.} L. Ya Kulikov, *Generalized primary groups I*, Trudy Mat. Obshestva I, (1952), 247-326 (Russian).

^{7.} _____, Generalized primary groups II, Trudy Mat. Obshestva II, (1953), 85-167 (Russian).

RAY MINES

8. S. Maclane, Homology, Berlin, 1963.

9. R.J. Nunke, Purity and subfunctors of the identity, Topics in Abelian Groups, Chicago, 1963.

10. ____, On the structure of Tor, Proceedings of the Colloquium on Abelian Groups, Budapest, 1964.

11. _____, Homology and direct sums of countable abelian groups, (to appear)

12. D. Zelinsky, Rings with ideal nuclei, Duke Math. J. 18 (1951), 431-442.

Received August 1966. This paper is part of the author's dissertation submitted to the Graduate School of the University of Washington.

360