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SOME RING EXTENSIONS WITH MATRIX
REPRESENTATIONS

C. W. KOHLS AND L. J. LARDY

A new type of ring extension introduced by J. Szendrei,
which may be viewed as a generalization of the splitting
Everett extension, will be discussed. The examples of this
type of extension given by Szendrei are generalizations of
the complex field extension of the real field, and of the
quaternion extension of the complex field. Our investigation
produces a larger class of examples.

In [4], J. Szendrei considered a very general type of ring ex-
tension. One of the four special cases that he lists is the type that
will be studied further in this paper. We shall formulate the defi-
nition of the extension in terms of bimultiplications (cf. [2] or [3]).
A bimultiplication σ of a ring A is a pair of mappings a—>σa,
a-+aσ of A into itself satisfying the rules

σ(a + b) — σa + σb, (a + b)σ = aσ + bσ, σ(ab) = (σa)b, (ab)σ = a(bσ) ,

and a(σb) — (aσ)b, for all a, be A. A pair of bimultiplications σ and
τ is said to be permutable if σ(aτ) — (σa)τ and τ(aσ) = (τa)σ for all
aeA, and a set of bimultiplications is permutable if every pair in
the set is permutable. The sum σ + τ and the product στ of two
bimultiplications are defined by the equations (σ + τ)a — σa + τa,
a(σ + τ) = aσ + aτ, (στ)a = σ(τa), and a{στ) — (aσ)τ for all aeA.
Under these operations the set of all bimultiplications of A is a ring,
denoted by MA. For each element c of A, a bimultiplication vc is
obtained by setting vca = ca and avc = ac for all aeA. Clearly
the mapping v\ A—>MA1 defined by c—>vc1 is a ring homomorphism.
Bimultiplications in the range of v are called inner bimultiplications.

Let A and B be rings. We define the ring A*B to be the direct
sum of A and B as additive groups, with multiplication given by

(1.1) (α, b)(c, d) = (ac + {6, d}, σad + bσc + bd) ,

where σ is a homomorphism from A onto a ring of permutable
bimultiplications of B, and {•, •} is a bilinear function from B x B
into A satisfying the equations

(1.2) bσ{C}d] = σ{b>c)d ,

(1.3) {6, cd} - {be, d} ,

(1.4) {b, σac} = {bσai c} ,
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(1.5) {σab, c} = a[b, c}, and {&, cσa} = {6, c]a ,

for all aeA and all b, c,deB. The mapping a —>(α, 0) is a mono-
morphism of A into the ring A*B. In case the bilinear function
{•, •} is identically zero, the extension reduces to a splitting Everett
extension [2]. However, in contrast to the Everett extension, the
ring A*B need not contain an ideal isomorphic with B.

Note that if B has an identity, then (1.4) is redundant: By
(1.3), {c, d] = {1, cd}, so {&, σac) = {1, b(σae)} and {bσai c] = {1, (bσa)c).

But b(σac) — (bσa)c, since σa is a bimultiplication, so (1.4) is satisfied.
Let p be a fixed element in the center of A. The ring whose

additive group coincides with that of A and whose multiplication is
defined by the mapping {a,b)—>pab will be denoted by Ap. We shall
not introduce a new symbol for the product in Ap; products can be
written out in terms of the given multiplication in A. Our discussion
is concerned with extensions of the form A*AP.

We denote the inverse of an automorphism φ by φf, and the
identity automorphism by /.

2* The main results* We begin this section with some ele-
mentary results concerning the particular types of functions σ and
{•, •} that will be used later.

PROPOSITION 1. Let A be a ring and let φ and ψ be any maps
from A to A such that φ(a) — ψ(a) is in the annihilator of Ap for
all aeA. Define σ on A by

(2.1) σab = φ(a)b, bσa = bf(a) for all a,beA.

Then a maps onto a set of permutable ^multiplications of Ap, and
is a homomorphism if both φ and ψ are homomorphisms.

Proof. Since p lies in the center of A, the fact that σ maps onto
a set of permutable ^multiplications of Ap follows directly from the
assumption that φ(a) — ψ(a) is in the annihilator of Ap together with
the associative and distributive laws for A. These same laws ensure
that G is a homomorphism if both φ and ψ are homomorphisms.

Note that, in general, the bimultiplications of Ap defined by
(2.1) are not inner bimultiplication. For example, if p = 0 then
there is only one inner bimultiplications. Indeed, when φ and ψ are
homomorphisms, we in effect make Ap into an A-bimodule and let
the actions of A on Ap determine the range of σ.

PROPOSITION 2. Let A be a ring with identity and let ψ and f
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be automorphisms of A. Suppose that for a given extension A*AP,
a is defined by (2.1). Then, for some qeA,

(2.2) {a, b} = φ\a)qψf(b) for all a, b e A .

Conversely, suppose that for a given extension A*AP, {•, •} is defined
by (2.2), where q is not a zero-divisor. Then σ is given by (2.1).

Proof. By (1.5), φ'{a){l, l}ψ'(b) = {eτφ,(β)l, lσff{h)) = {αl, 16} = {α, 6}.
The result follows with q = {1,1}.

For the converse, using (1.5) again,

Φ'(σab)qψ'(l) = {σab, 1} = a{b, 1} = aφ'(b)qf'(l) .

Thus, since q is not a zero-divisor, φ'{σab) = aφ'(b) and σab = φ(a)b.
The proof of the other equation is similar.

For the remaining discussion we assume that q is in the center
of A. We now give conditions relating φ, ψ, p, and q such that
equations (2.1) and (2.2) determine an extension A*AP. Under these
conditions, we then represent the extension as a subring of the ring
of 2 x 2 matrices over A.

THEOREM. Let φ and ψ be automorphisms of a ring A, and let
q be a fixed element in the center of A. Define a and {•, •} by
(2.1) and (2.2) respectively. Assume that

(2.3) φ(a) — ψ(a) is in the annihilator of Ap for all ae A ,

(2.4) φ' = ψ' on {paiaeA} ,

(2.5) φ(q) = ψ(q) ,

and

(2.6) φ'ψ = f'φ .

Then with multiplication defined by (1.1), one obtains a ring extension
A*AP, and it is isomorphic with a subring of the ring of 2 x 2
matrices over A. The isomorphism is given by

<M)H ..,,„, „,,,.., , ..n - a,beA.

Conversely, if A*AP is a ring extension and A has an element that
is not a zero-divisor, then (2.3) holds. If q is not a zero-divisor,
then (2.4), (2.5), and (2.6) also hold.

Proof. Since φ and ψ are automorphisms and (2.3) holds, it
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follows from Proposition 1 that a is a homomorphism from A onto a
ring of permutable bimultiplications of Ap. Clearly {•, •} is bilinear;
so a ring extension A*AP will be obtained if equations (1.2)—(1.5)
are satisfied. Equation (1.2) can be verified using (2.5) and (2.6).
Equation (1.3) follows from (2.4) and the definition of multiplication
in Άp. Equation (1.4) follows immediately from (2.6). Finally, (1.5)
is a direct consequence of (2.1) and (2.2).

The isomorphism follows from a straightforward albeit cumber-
some calculation using (2.3)—(2.6) and the definition of multiplication
in Ap.

For the necessity, condition (2.3) is a consequence, under the
stated hypothesis, of the fact that (aσb)c = a(σbc) for all α, b,ceA.
If q is not a zero-divisor, then, since q is in the center of A, (2.4)
follows from (1.3), (2.6) follows from (1.4), and (2.5) follows from
(1.2) and (2.6) combined.

COROLLARY 1. // q is not a zero-divisor, then (2.1) and (2.2)
determine an extension A*AP if and only if (2.3)-(2.6) hold.

COROLLARY 2. Ifp = 0 and (2.5)-(2.6) hold, then one obtains a
ring extension A*AQ, with matrix representation

Γ a φ\b) I

COROLLARY 3. If <ρ = ψ, then one obtains a ring extension
A*AP, with matrix representation

Γ a φ'{h)

iQΦ'Φ) a + φ'(pb)
Moreover, A*AP is isomorphic with the extension A*Aφ,(P), where
(2.1) and (2.2) are defined with the identity automorphism and the
same q as in the extension A*AP.

Proof. The first statement follows immediately from the theorem.
To establish the isomorphism, observe that the product in A*Aφ.ip)

is given by

(a, b)(c, d) = (ac + qbd, ad + be + Φ'(p)bd) ,

while the product in A*AP is given by

(α, b)(c, d) = (ac + qφ'φd), φ(a)d + bφ(c) + pbd) .

The mapping A*Aφ,(p) —> A*AP defined by (a, b) —> (a, φ(b)) is then
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easily seen to be the desired isomorphism.

REMARK 1. In connection with Corollary 3 we note that if
φ — ψ and A is commutative, then A*AP is commutative. Also, if
the extension A*AP is commutative, then of course A must be
commutative; if in addition, A contains an element that is not a
zero-divisor, then we can deduce that φ = ψ as well.

REMARK 2. Let A be a field, and aeA*Ap. We may view a as
the 2 x 2 matrix associated with it by the theorem. Now if det a Φ 0,
then of course a is a unit in the ring of 2 x 2 matrices over A) a
routine verification shows that a is actually a unit in A*AP.

EXAMPLE 1. Let S be a square in the plane, let A be the ring
of all continuous real-valued functions on S, and let φ and ψ be the
automorphisms induced by the reflections of S in its diagonals. Then,
since the reflections commute and have period two, φ2 = ψ2 = / and
φψ = ψφ, so (2.6) is satisfied. If q — 1 and p = 0, then by Corollary
2, A*A0 is an extension. Let α e i be a nonzero function such that
φ(a) = -a and ψ(a) = a. Then (α, α)2 = (0, 0) in A*A0. Thus the
extension is not a ring of functions with pointwise operations.

EXAMPLE 2. Let A be the direct sum of two copies of the
complex field C, p = (0,1), g = (0, 0), φ(a, b) = (a, 6), and ψ = I. Then
(2.3)—(2.6) are satisfied, but p Φ 0 and φ Φ ψ. This extension is
isomorphic to a direct sum of two extensions of C by itself. In the
first extension we have conjugation for one automorphism and I for
the other, with p — q — 0; in the second extension we have / for
both automorphisms, with p = 1 and q = 0.

EXAMPLE 3. If φ = I, ψ2 = /, p = 0, and ψ(q) = q, then conditions
(2.5)—(2.6) are satisfied, and A*A0 is a "quaternion" extension iso-
morphic with the ring of matrices of the form

a b

qψ(b)

Szendrei's "quaternion" extensions are all of this form. However,
the extension of the four element field {0,1, θ, 1 + θ) obtained with
ψ(θ) — 1 + θ and g = l, is not a Szendrei "quaternion" extension.

As a special case, let A be the field obtained from a totally
ordered field F by adjoining the square root of a negative element
fe F, define ψ by ψ\F=I, ψ{VT) = ~V~f, and let q = - 1 . Then
aψ(a) > 0 for all nonzero α in 4, and one can show immediately,
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using Remark 2, that the extension is a division ring. Also, it is
easy to see that if aψ{a) > 0 for all nonzero a in A and ψ2 = I,
then ψ must be as defined.

EXAMPLE 4. If φ — ψ and A has an identity, then the extension of
Corollary 3 contains a root of the quadratic equation x2 — φ'{p)x — q = 0,
namely,

"0 1

q φ'{p

When φ = ψ = /, p = 0, and q = — 1 , we recover Szendrei's "complex"
extension.

3* Some special cases* This section contains a discussion of ex-
tensions of the form A*AP when A is a field or an integral domain,
with the additional assumption that φ = ψ. Thus the representation
is that given by Corollary 3. In view of Corollary 3, we can assume
without loss of generality that φ = ψ = I.

PROPOSITION 3. Let A be a field. If x2 — px — q is irreducible
over Ay then A*AP is a field. If x2 — px — q has a root in A, and
p2 -f Aq — 0, then A*AP has a basis (as a 2-dimensional algebra over
A) consisting of the identity and a nilpotent element of index two.
If x2 — px — q has a root in A and p2 + Aq Φ 0, then A*AP is iso-
morphic with AφA.

Proof. The determinant of the element

Γ " * • 1
[_qb a + pbj

is a2 + pab — #δ2. If x2 — px — # is irreducible and the characteristic
of A is not two, then p2 + Aq is not a square and we can write

α2 + pα& - qb2 = (a + pb/2)2 - (p2 + Aq)b2/A

if the characteristic of A is two, we note that a2 + pab — qb2 is α2

when 6 = 0 and b2[(a/b)2 — p(a/b) — #] when 6 ^ 0 . In either case, it
follows quickly that the determinant is zero if and only if both a
and 6 are zero. Thus, by Remark 2, we see that A*AP is a field.

Now assume that x2 — px — q has a root in A and p2 + Aq = 0.

If the characteristic of A is not two, then \~~Vl ,Λ\$mA*Ap

and is nilpotent of index two. If the characteristic of A is two,

then p = 0, so there exists C G 4 such that c2 — q. Then c is in
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A*AP and is nilpotent of index two. Clearly the identity and the
indicated nilpotent elements are linearly independent, and thus form
a basis for A*AP.

Finally, assume that x2 — px — q has a root in A and p2 + Aq Φ 0.
If the characteristic of A is not two, then p2 + 4g is a square; let
d e A satisfy d\p2 + Aq) = 1. Then the element

(1 - pd)/2 d

qd (1 + pd)β

is a nontrivial idempotent. If the characteristic of A is two, let a
be a root of x2 — px — q in A, and set

[p-'a p-1

iqp-1 p-'a + 1

Then a2 is a nontrivial idempotent. The isomorphism follows quickly
since a{ and 1 — aif for i — 1, 2, are orthogonal idempotents.

REMARK 3. If the characteristic of A is not two, we can replace
the hypotheses by: p2 + Aq is not a square, p2 + Aq = 0, and p2 + Aq
is a nonzero square, respectively.

REMARK 4. Of course, in general, the various field extensions_,
obtained in part one will not be isomorphic.

REMARK 5. If A is the complex field and <j> = ψ, then A*AP is
not a field regardless of the choice of p and q. However, it is
possible to obtain the division ring of quaternions as an extension of
the complex field with φ Φ ψ, as indicated in Example 3.

REMARK 6. Since an extension A*Al9 where A is the complex
field, can contain nontrivial nilpotent elements, it follows that semi-
simplicity is not, in general, inherited by the extension. We note
that for commutative rings, semisimplicity is inherited by Everett
extensions [1, Th. 4],

PROPOSITION 4. Let A be an integral domain. Then A*AP is
an integral domain if and only if x2 — px — q is irreducible over the
quotient field of A.

Proof. Assume that x2 — px — q is irreducible over the quotient
field F of A. Let aeA*AP9 a Φ 0. View a as an element of F*FP.
Then, by Proposition 3, d e t α ^ O and or1 exists in F*FP. Since

r^e A*AP, if aβ — 0, then (detα)/3 = 0. But A is an integral
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domain, so β — 0. Thus, A*AP is an integral domain.
If x2 — px — q is not irreducible over F, then by Proposition 3,

F*FP contains either a nontrivial idempotent or a nontrivial nilpotent
element of index two. If β is such an element in F*FP, then for
suitable nonzero be A we have bβeA*Ap. Thus, bβ is a zero-divisor
in A*AP.
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