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NORLUND SUMMABILITY OF FOURIER SERIES

MAsAKO Izuml AND SHIN-ICHI Izumi

The Norlund summability was first applied to the theory
of Fourier series by E, Hille and J. D. Tamarkin. Many
other mathematicians have since worked in this field. Recently
T. Singh has proved a nice theorem concerning the Néorlund
summability of Fourier series. In Part I, we shall give a
generalization,

Absolute Norlund summability was defined by L. McFadden
and he proved a theorem concerning the absolute Norlund
summability of the Fourier series of functions of the Lipschitz
class which was generalized by S. N. Lal. We shall give
another generalization of McFadden’s theorem in Part II,

PART 1.

1. Let X2 ,a, be a given series and (s,) be the sequence of its
partial sums. Let (p,) be a sequence of real numbers and P, =
Do+ 0, + +++ + p,. We suppose that P, = 0 for all n. The series
S a, is called to be summable (N, p,) to s when lim, . ¢, exists and
is equal to s, where

1
P,

n 1 n
> PuciSe = > DiSutc
k=0 P, =0

t, is called the nth (N, p,) mean or nth Norlund mean.
In the special case in which p, = (n + ;;f - 1) = A2« > 0), the
Norlund mean reduces to the (C, @) mean. Another special case that

2. = 1/(n + 1), is called the Harmonic mean.
The condition for the regularity of summability (N, p,), is

P./P,—0 and 3[p|=0(P,)) as m—co

If (»,) is a positive sequence, then the second condition is satisfied.
It is also easy to see that, if (p,) is an increasing sequence, then a
(C, 1) summable sequence is summable (N, p,).
We shall define p(¢) on the interval (0, <) such that p(n) = p,
for n =0,1,2,.-- and that p(¢) is continuous on (0, «) and is linear
t
in each interval (k,k + 1)k =0,1,2,--.). We put P(t) = S p(u)du,
0
then, P(n) = (1/2)p, + D, + +++ + Doy + (1/2)p, = P, as n— o when
P,— c and p,/P,—0.
T. Singh [4] has proved the following theorems:
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THEOREM S1. If (p,) is a positive sequence such that p,| and
P, — o and further if

(1) 2() = [ p.w) | du = o(w(1/0)/PA/t) as t—0,

then the Fourier series of f is summable (N, p,) to f(x) at the point
x, where p,(u) = f(@ + u) + flx — u) — 2f(x).

THEOREM S2. If (p,) satisfies the conditions of Theorem Sl and
(2) w(t) = ||| 9.0 du = o(p(L/t)/ P(L/1) as t—0,

then the conjugate Fourier series of f is summable (N, p,) to

____1_ SI "l"x(u’) du
7w Jo 2 tan u/2

at the point x when the last integral exists, where

Vo(u) = fl@ +u) — fle —u).

We shall prove that we can replace the condition p,] by the
more general one

(3) Snulp’(u)ldu=O(P%) as M — oo .
If (p,) is monotone, then the condition (3) is equivalent to
(4) np, = O(P,) ,
since
[ upedu = fup@ie - |"pwdu = npm) — P, + 0W) .
If (p,) is decreasing, then (4) is satisfied automatically. In general,
condition (3) implies (4).
If the condition (4) is satisfied, then (1) implies
(5) o(t) = o(t) as t— 0.
2. Our first theorem is as follows.
THEOREM 1. If (p,) is a positive sequence such that P, — oo,

(3) holds, and condition (1) is satisfied, them the Fourier series of f
is summable (N, p,) to f(x) at the point x.
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Proof. We write @, (u) = p(w) and by ¢,(x) we denote the nth
Norlund mean of the Fourier series of f at the point z, then

t(@) — f(2) = — § PO_(S: pisin (k + 1/2)t)dt

2z P, Jo sin t/2 \i=o
__1 S 2®) 1, t)dt
2P, Jo2sin t/2
S U L o PR
"~ 2rP, <S +§1/n>" 2n(I+J)‘
By (5),
A o) (< .
1] < PJO t (3, Pacsit)at
1/n
= anl " lo)] dt = o)) .
We write

| L(8) | = ‘ki:op,, sin (n — k + 1/2)t1

[1/¢] n”
=2pt |k_2[1m] P sin(n — k + 1/2)t‘
= L.(¢) + L),

then we have, by Abel’s lemma,

t (2
Therefore
_ 18” Pl 1, (#)dt
/] an 1» sin t/2 () l
A S le®) | 7/ S L2@) | 7
< AT L(t)de LAV dE
_P,,{lln t (Bt + iyn ¢t @) }
A
= J1 2] »
Pn( + J2)
where

PARS S ﬁ’—iﬁlpamdt < [“’—f)—P(l/t)]

T
in 1n

o) o) p/t)
+SWTP(1/t)dt+S 2@ 200 4

1n tz

= o(P) + o) 2 at + o)’ LM ar

1n i/n

= o(P,)
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and

II/\

R |<p<t)| P gy 4 o) () 4,
i/n t t

+S t)}dts 19w | du)
{S ‘@(t) { 120 | pajtydt + p, [ a(t) ]l,n}
+ S @;f) dt + [ 2¢) S |p(u)|du]

Il/\

7L

= AJ. + o(mp,) + onp,) + O( |1 () du)
+ o |[ulww ) du) + o |"u ) du)
= o(P,) .

Thus we get J = o(1) and then we have proved the theorem.

3. THEOREM 2. If (p.) is a positive Sequence satisfying the
conditions in Theorem 1 and

w(t) = | |9.0) | du = o(p(L/t)/ PL/9) as t—0,

then the comjugate Fourier series of f is summable (N, p,) to

1 jim S _b) gy
T n-e Jun 2 tan t/2

when the last limit exists.

Proof. Let +,(t) = 4(t) and %,(x) be the wmth (N, p,) mean of
the conjugate Fourier series of f, then

2oy (1" a(t)
a(®) ( §1ln2tant/2dt

= 5epr). s gt~ eos (b + o))

.

Applying the method of proof of Theorem 1 to above integrals, we
obtain the theorem.
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Part I1.

4. Let (t,) be the sequence of Norlund means of the series
Sa,. If 3 |t, —t.,| < o, then the series >, a, is called to be
summable | N, p, | or absolutely summable (N, p,).

L. McFadden [6] proved the following theorem.

THEOREM M. Let (p,) be a monnegative, decreasing and convex
sequence tending to zero such that 3, Pn* < . If feLipa(0<a<1)
and

(6) S

= na+1/2P <

then the Fourier series of f is | N, p,| summable.
This was generalized in the following form by S. L. Lal [3]:
THEOREM L. Let (p,) be a monnegative, decreasing and convex

sequence tending to zero such that X, Pin* < . If the continuity
modulus w(t) = w(t; f) of f satisfies the conditions.

(7) 52U < o<a<y
and

=1 n1/2P

then the Fourier series of f is |N, p,| summable.
We shall prove the following theorem:

THEOREM 3. Let 2=2p>1, 1/p+1/g=1 and let (p,) be a
positive, decreasing and convex sequence tending to zero. If

(9) i;lp:m”-z < oo
and

& w(l/n)
(10) 'nz=ll n'pP, <

where w(0) is the continwity modulus of f, and further if

TP SNSRI
i mP(@(1/m))*~* (nw(1/n))P—*
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(or more specially, if u*w(w)| as ul for a positive 6 < 1), then
the Fourier series of f is | N, p,| summable.

If (p,) decreases monotonically then (9) is equivalent to

&) = 2 p.cosnx and &(x) = 2 P, sin nx

belong to L~.
From (9) we have

$., = $ ksl

é <kz”:1p,1:kp—2> (kzil k(z—p)qlp)llq g A,nllp
and then
S w(l/n) _ - _o(l/n) s olmn) _
b ﬂgl a1 ptle.ptie = Anz—:L n'*P, <

Therefore, under the condition (9), the condition (10) is stronger
than (11). If p decreases from 2, then (9) becomes weaker but (10)
becomes stronger.

In the case p = 1, we have the following.

THEOREM 4. Let (p,) be a decreasing and convex sequence tending
to zero, such that

12) P o

n=1 N
and

e 1 A
13 < £
(13) 2P =P,

If f has the continuity modulus w(d) such that

& w(l/n) -
(14) S <

then the Fourier series of f is summable | N, p, |.

It is known ([7], Chap. V, §1) that if (p,) is a decreasing and
convex sequence tending to zero, then &(x) is integrable and that if
(p.) is decreasing and satisfies the condition (12), then é&,(x) is inte-
grable. We have also
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P, = 3ip. = 3 i/l < An
and then we have 3 w(l/n)/n < «, i.e., (11) holds also in this case.

5. For the proof of Theorem 3, we use the following lemmas.

LEmMmA 1. ([5]) If (p.) is a positive and decreasing sequence,
then

b
3 Pt
k=a

= AP(1JY)

Jfor any a and b > a and for any integer n.

LEmMMA 2. ([6]) If (p.) s a positive and decreasing sequence
and &(t) = X0, pe*, then

[&(x + 2t) — é(@) | = A—t—P<—1—> for all @ in (¢, 7).
x t

LEMMA 3. ([2] end [1]) If Mt) is a positive increasing function
on (1, <) and felL? (1< p<2), then

52 (%)

n=2 7\,(27),) m=n

Al (17100 a0 )

where P2, = ai, + bl, a, and b, being the mth Fourier coefficients of
f and 1/p + 1/g = 1,

6. We shall now prove Theorem 3. By the definition, we have

n

o=t = = | P35 (Lt — Lot )D, (1)}t

T =\ P, P,
_1f &S Pak  Puio
= ﬂgoq)(t){kz:l ( 2 o cos kt}dt
_ .1'. 3 n—1 __P_k _ P, _ }
= nSoq’(t){Z‘o( 2 _P,,_I)COS (n — k)tidt
~1_1 S}(t){"z”’ (0.P, — p,P,) cos (1 — k)t}dt
T P,,P,,,__l 0 =, kL n nk k

where p_, = P_, = 0, and then
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Tty — tou| < 2 S:¢(t)<§0 D COS (B — k)t)dtl
+ 1_ S:ng’(t)(g,,p" cos (n — k)t)dtl
" + _E%: g:lngo(t)CZ;: P, cos (n — k)t)dt‘
+ Pi-l S:an(t)(g P, cos (n — k)t) dt
+ %S;ﬂ’(t)@: P, cos (n — k)t) dt'

following McFadden [6]. We shall begin to estimate I,.

1
P,

I =

{) S:¢(t)<§0 D, COS kt) cos nt dtj

+ l S:¢(t)<§0 D, sin kt> sin nt dt '}

= Pi_l {) S:ga(t)él(t) cos nt dtl

+ | S"cp(t)sz(t) sin nt dt ]}
0
= Nyl + In,2 .
Let

A, = S}p(t)&(t) cosntdt and E,=(3 |4, |«)”" ,

then

_s< _ 1A eV AL
R AR i Y P Y

n=2i PP

oo 2i4+11 1 1/p
< A
=253 5)
27—1 4n—1 1/p
> B(S )

i=1 p=2i—1 N

S E (1 >1/ E,
- 4%2_—_;1 T(mg;ln Pﬁr_l = Aﬂz;‘l nl/'IPn °

If we put M(n) = n'"P,, then \M(n){ = as n increases. By Lemma 3,
we get
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= Ajltm(g/t) (S | 4% Ipd%)

= 4w pmpl). | 48 i)

where

4(p-&) = @@ + (@ + 1) — @(o — & (x — ¢)
=& + e + 1) — p@ — )] + px — O[&i(x + t) — &(w — 1)]
= E1(x + t)dt@ + @(SC - t)AtEI ’

and then

= AS:W%WG |&(x + D) 4,07 dx) ”

=S+

By (9) and (10), we have

, Y w(t)dt « a)(l/u)
S = AS o g7 P(1/t) =4 Sl u”"P(u)

and, by Lemma 2 and (11),

dt
t‘““’P(l/t)

ot‘+‘/7’P(1/t) (S (x)( (1))‘”)/
(. 2 ae)

Ax
|

§A+§ o(lju)'’e 1 {S w(1l/v)? dv > pd’u,
A (

A< A+ S (S o) | £ + 2t) — &) |? dx) ”

A N AN
S w(l/u) ”q<s du S“w(l/v)” v) P

1 upw(]_/u)p/q

A+A<§l w(l/”)”dvr du )””

PP v wPw(l/u)*!

") )" < 4
L) )" <

1

1 P

I

§A+Aq

Thus we have proved that .7 = 32,|I,,| < . Similarly we can
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prove that 3>, | I, .| < o, and therefore >.7_, I, < co.
Secondly, we shall estimate the sum >}, J,. Since 35, p,cos(k—n)x
is a nonnegative function, we have

i J. £ i @(1/n) SII”Q;%; P, cos (k — n)t)dt

=1 =t P, . Jo

w=t P, | n kiatrt kK —m n
sa+3 20 p <5 UM | 4cy,
n=1 1 n=1

since 2, (sin kx/k) is uniformly bounded.
Thirdly,

S S P W) &
nz="1 K, = 'nZ:l P,P, , n k§=lo P

< Aki“ P, i D w(l/n)

k=1 k
Finally,
Ig D, cos (k — m)t + —?JL :Zj‘,l P,cos (n — k)t
=P L 3 (p, — Sin(n—k+1/2)t}
{ D) + kgﬂ (Pr — Pisr) Zsin )2
osin(n—k +1/2)¢ 1 }
g ey 2 Chik
and then
1 S o) [ : ‘
L, < 3 B
=P Tz \& P T e sin =k 1/2)¢)at
D T t) (S ]
T PP Slm 2 sin £/2 (2 Pesin(n — & + 1/2)t)dt

i G NI

=L+ L+ LY,

as in McFadden [6]. Now
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co

i LI S Z Dn — Da+1 Szl w(t) dt
= n=.1 in

n=l = P'n,-l-l t2
s BPam St 0l g g
= nz= P"+1 kzll Ytk E? —
<3 S Z Po=Pass g
k=1 1/(k+1) n= n+1
o [ w(t) p(1/?) o(1/n)p.,
< 2 g — e 4 A
- kz“x Sil(k+1) t*  P(/t) t+4= AZ . +
<A i _‘_"_(lﬁ’i + A< A ,
k=1 n
§ 155§ 7, 20 (L)
n=1 n=t P, P, , Jin
Lo b ST @) pfl
- n2=1 P,P,_, kzr.'l 81/(k+1) t P( t )dt t4
= [ o) S
< Pihad VA
= kz—l Sl/(k+1) t P( t ) nZ P.P,_ +4
§§1w(t)dt+A§i od )+A§A
and
Sreas P a4l oa.
n=1 n=1 Pn n—1 n=1 ’n,2

Collecting above estimations, we get >.v, |t, — t,_.| < c=.

7. We shall now prove Theorem 4. We start from (15). First,

I, = Pi-—l S:sv(t)(g.o P, cos (n — k)t>dtl
= Pi.l {} S:qﬂ(t)&(t) cos nt dt‘ + ‘ §:¢(t)52(t) cos nt dt !}
= %1 + In,z .
Hence
S Las3— |19t + m/2m)éu(t + m/2m) — ot — m/2m)e(¢ — /2m) e
= g‘; Pl S.__ [ &t + m/2n) || p(t + 7/2n) — p(t — w/2n) | dt
+3 ]p1 S:..'¢’(t‘”/2")|°|51(t+7r/2n) — &(t—7/2m) | dt
- 'jl =+ J; ’

where, since &, is integrable and | p(t + 7/2n) — @(t — 7/2n) | < Aw(1l/n),
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n=1

ngi-‘f’-lg”ﬂw

n—1

by the condition (14) and, since"

G@) = 50+ Dap, K@)

we get
A= i Pl S"/ o(x) | &(x + T/n) — &(x) | de + A
=3 3 0+ | 0@ K@+ am) - K@)de + A
~ 1 & 2 o 2
=S (S e+nsn+ 3 @+ Do)
n=1 n—1 v=0 v=n+1

x S o) | K@ + /n) — K.(v)] dz + A
=4+ A+ A.
It is well known that

| Ki(x)| = AY* and | K)(x)| =< A/’
and then

I 1Ko + mim) — K@) | do s Zav T < Avjm,

| K,(x + w/n) — K(x)| £ A/na?* in (z/v, 7).

Therefore,
=3 Pl S e+ (Sj + S;)w(x) | K. + 7/n) — Ky(a)|da
= Ag.l n;H {g(v + 1y°4p, 2 —lew<%> + 2:10 (v + 1)Lp, k%w(%)}
=4 g‘l % (%)Pk g“k nP,_,
ki:: <7]‘;'>{k(pk_'pk+1)+pk+1}§ nP._.
=g go(y) « AZ o(pF e + B
=A%)

D A2p, = pv — 2py+1 + Pu+2 and K, is the vth Fejér kernel.
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by the condition (11) and the relation ([6], p. 183)
k(p. — pii)/ P = Alk .
Further,

S 1
S <A 1) 4*p,
S = nz=‘1 ’}’L‘P,n__1 l/;—{—l(v"_ ) pzw([c)

<A i“ w _]7>Z (1 4+ 2)(Pus1 = Puts) + Dose

k=1 —k nPn_l
=1 1

Thus we have proved that >, I,, < «. The estimation of I,, is
similar to that of I,, and thus >, I, < co.
Now, >\, p. cos (k — m)x is a positive function and then

21 J, < 3, 2d/n) S i . cos (k — n)t)dt

n=1 P'n—l
=3 ————“’;,1/”) P.=43 ——‘”(i/"’ <

Convergence of >.»_, K, and >,_, L, is proved as in the proof of
Theorem 3. Thus we have established Theorem 4.
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