L_p SPACES OVER FINITELY ADDITIVE MEASURES

CHARLES FEFFERMAN

For a space (S, Σ, μ) , μ a positive finitely additive set function on a field Σ of subsets of the set $S, L_p(S, \Sigma, \mu)$ is usually not complete. However, if we consider the completion $\dot{L}_p(S, \Sigma, \mu)$ of L_p , we may ask which of the properties of L_p known for the countably additive case, are true in general.

In this paper it is shown that for every (S, Σ, μ) there is a (countably additive) measure space (S', Σ', μ') and a natural injection j from S into S' which induces isometric isomorphisms j_* from $L_p(S, \Sigma, \mu)$ onto $L_p(S', \Sigma', \mu')$. j_* also preserves order, and other structures on L_p .

This result shows, roughly, that any theorem valid for L_p over a measure space, applies also to L_p over a finitely additive measure. Thus L_p and L_q are dual $(1 , <math>L_1$ is weakly complete, and so forth.

Let S be a set, Σ a field of subsets of S, and μ a finitely additive extended real-valued set function on Σ . We call (S, Σ, μ) a triple. If μ is positive or bounded, we call (S, Σ, μ) a positive or bounded triple, respectively.

Let f be a μ -simple function on S. We define the L_p -norm of f, as usual, to be $\left(\int_{s}|f(s)|^p\,v(\mu,ds)\right)^{1/p}(1\leq p<+\infty);$ and we define the TM-length of f to be arctan $\inf_{\alpha>0}[\alpha+v(\mu,\{s\in S\mid |f(s)|\geq \alpha\})].$

DEFINITION. Let (S, Σ, μ) be a triple. The space $\dot{T}M(S, \Sigma, \mu)$ is defined to be the completion of the space of μ -simple functions under the TM-metric. Define multiplication of elements of $\dot{T}M(S, \Sigma, \mu)$, and an order relation on $\dot{T}M(S, \Sigma, \mu)$ by using Cauchy sequences of simple functions in the obvious way.

Let $\dot{L}_p(S, \Sigma, \mu)$ be the set of limits in $\dot{T}M(S, \Sigma, \mu)$ sequences of μ -simple functions which are Cauchy in the L_p -norm. There is an obvious norm induced on $\dot{L}_p(S, \Sigma, \mu)$ by the μ -simple functions on S.

 $\dot{L}_p(S, \Sigma, \mu)$ is canonically isomorphic to the completion of $L_p(S, \Sigma, \mu)$, and thus to S. Leader's space $V_p(S, \Sigma, \mu)$. See [3], which includes equivalents of Theorems 2, 3, and 5.

The purpose of this paper is to prove rhe following.

THEOREM 1. Let (S, Σ, μ) be a positive triple. There is a positive measure space (S', Σ', μ') and an order-preserving multiplication-preserving isometric isomorphism i from $\dot{T}M(S, \Sigma, \mu)$ onto $TM(S', \Sigma', \mu')$ such that:

- (1) If $f \in TM(S, \Sigma, \mu)$ is a characteristic function (simple function), then $i(f) \in TM(S', \Sigma', \mu')$ is a characteristic function (simple function).
- (2) i takes $\dot{L}_p(S,\Sigma,\mu)$ onto $L_p(S',\Sigma',\mu')$ preserving the L_p -norm, $1 \leq p < +\infty$.

(3) If
$$f \in \dot{L}_1(S, \Sigma, \mu)$$
, then $\int_S f(s)\mu(ds) = \int_S if(s)\mu'(ds)$.

This leads us to the principle: Let P be any statement about $\dot{T}M(S, \Sigma, \mu)$ which can be formulated in terms of the following concepts:

- (1) Multiplication, addition, scalar multiplication, order and length in $TM(S, \Sigma, \mu)$.
- (2) The notion $f \in \dot{L}_p(S, \Sigma, \mu)$, and the norm on $\dot{L}_p(S, \Sigma, \mu)$, $1 \leq p < +\infty$.
- (3) The function $f \to \int_S f(s)\mu(ds)$, defined on $\dot{L}_1(S, \Sigma, \mu)$. If P is true whenever (S, Σ, μ) is a positive measure space, then P is

If P is true whenever (S, Σ, μ) is a positive measure space, then P is true for any positive triple (S, Σ, μ) . Consequences of this principle are listed below.

THEOREM 2. Let (S, Σ, μ) be a positive triple. The dual of $\dot{L}_{r}(S, \Sigma, \mu)$ is canonically isomorphic to $\dot{L}_{q}(S, \Sigma, \mu)$ by the duality

$$\langle f,g \rangle = \int_S (f \cdot g)(s) \mu(ds) \; (f \in \dot{L}_p, \, g \in \dot{L}_q) \; ,$$

wherever 1 , <math>1/p + 1/q = 1.

Corollary 1. $\dot{L}_p(S, \Sigma, \mu)$ is reflexive, 1 .

Corollary 2. $\dot{L}_p(S, \Sigma, \mu)$ is weakly complete, 1 .

COROLLARY 3. A bounded subset of $\dot{L}_p(S, \Sigma, \mu)$ is weakly sequentially compact.

Theorem 3. $\dot{L}_{\scriptscriptstyle 1}(S, \Sigma, \mu)$ is weakly complete.

THEOREM 4. Let (S, Σ, μ) and (S', Σ', μ') be positive triples, let L_0 be the space of all complex-valued μ -integrable simple functions on S, and let T be a linear map from L_0 to $\dot{T}M(S', \Sigma', \mu')$.

If for a given pair (p,q), T has an extension to a bounded linear mapping of $\dot{L}_p(S,\Sigma,\mu)$ into $\dot{L}_q(S',\Sigma',\mu')$, let $|T|_{p,q}$ denote the norm of this extension; if no such extension exists, let $|T|_{p,q} = +\infty$. Then $\log |T|_{1/a,1/b}$ is a convex function of (a,b) in the rectangle $0 < a,b \le 1$.

Theorem 4 generalizes the Riesz Convexity Theorem.

THEOREM 5. Assume that (S, Σ, μ) is a bounded triple. Let (f_n)

be a sequence in $\dot{L}_p(S, \Sigma, \mu)$ converging weakly to $f \in \dot{L}_p(S, \Sigma, \mu)$. Then (f_n) converges strongly to f if and only if (f_n) converges to f in $\dot{T}M(S, \Sigma, \mu)$.

COROLLARY 1. Let (S, Σ, μ) be a bounded triple. If (f_n) is a sequence in $L_p(S, \Sigma, \mu)$, converging wealy to $f \in L_p(S, \Sigma, \mu)$, then f is the strong limit of (f_n) if and only if (f_n) converges in measure to f.

Theorems 2, 3, and 5 are obvious from the above principle. The usual proof (see [2]) of the Riesz Convexity Theorem uses countable additivity only through use of the result that L_q is dual to L_p . Since we know Theorem 2, the proof of the Riesz Convexity Theorem may be easily adapted to the finitely additive case.

So in order to establish Theorems 2 through 5, we need only prove Theorem 1.

2. Proof of Theorem 1. Let B_0 be the set of characteristic functions of sets of Σ , and let B be the closure of B_0 in $TM(S, \Sigma, \mu)$. B is a closed subset of $\dot{T}M(S, \Sigma, \mu)$ and so is a complete metric space. The function $\bigcup_0: B_0 \times B_0 \to B$ defined by $\bigcup_0 (x_E, x_F) = x_{E \cup F} \in B_0 \subseteq B$ is easily seen to be uniformly continuous on $B_0 \times B_0$ and therefore \bigcup_{i} extends to a uniformly continuous $\bigcup : B \times B \to B$. If $F, G \in B$ abbreviate $\bigcup (F,G)$ by $F \cup G$. Similarly, the function $N_0: B_0 \to B$ defined by $N_0(x_E) = x_{S-E} \in B_0 \subseteq B$ is uniformly continuous on B_0 and therefore N_0 extends to a uniformly continuous $N: B \rightarrow B$. If $F \in B$, abbreviate N(F) by $\sim F$. Define $F \cap G$ to be $\sim (\sim F \cup \sim G)$, $F, G \in B$. Observe that $\bigcap : B \times B \to B$ is a composite of uniformly continuous functions and so is uniformly continuous. Define a function μ_1 , on B as follows: For $F \in B$, there is a sequence $\{x_{E_n}\}E_n \in \Sigma$, converging to F in $\dot{T}M(S, \Sigma, \mu)$. Let $\mu_1(F) = \lim_{n \to \infty} \mu(E_n)$. It is easily verified that μ_1 is well-defined and continuous, from B to the positive reals and $+\infty$, the latter given its usual topology.

LEMMA 1. $(B, \bigcup, \bigcap, \sim)$ is a Boolean algebra, and μ_1 is positive and finitely additive on B. If $F \in B$ and $\mu_1(F) = 0$, then $F = \emptyset$, the null element of the Boolean algebra.

Proof. The set

$$R = \{(F, G, H) \in B \times B \times B! ((F \cup G) \cup H) = (F \cup (G \cup H))\}$$

is closed in $B \times B \times B$ since \bigcup is continuous. On the other hand, it is clear from the definitions of \bigcup_0 and \bigcup that $B_0 \times B_0 \times B_0 \subseteq R$. Since B_0 is dense in $B, R = B \times B \times B$ and therefore $F \cup (G \cup H) = (F \cup G) \cup H$ when $F, G, H \in B$. The other laws of Boolean algebra are

verified similarly. The function

$$r(F,G) = [\arctan \mu_1(F \cup G)] - [\arctan (\mu_1(F - G) + \mu_1(G))]$$

taking $B \times B$ to the reals is obviously continuous. Moreover, r(F,G) = 0 when $F, G \in B_0$. Since B_0 is dense in B, r is identically zero. So μ_1 is finitely additive on B.

Finally, suppose that $\mu_i(F)=0$. This means that F is the limit in $\dot{T}M(S,\Sigma,\mu)$ of a sequence $\{x_{E_i}\}$, $E_i\in\Sigma$, with $\lim_{i\to\infty}\mu(E_i)=0$. But then $\{x_{E_i}\}$ converges to zero in measure, i.e. in $\dot{T}M(S,\Sigma,\mu)$. Therefore, F=0, which acts as \varnothing in (B,\bigcup,\bigcap,\sim) .

To simplify notation, identify a set $E \in \Sigma$ with its characteristic function $x_E \in B_o$.

LEMMA 2. Let $G_1, G_2, \dots \in B$, and suppose that $G_i \cap G_j = \emptyset$, $i \neq j$. Then there is a double sequence $\{E_i^n\}$, $E_i^n \in \Sigma$, such that

- (1) $\lim_{n\to\infty} E_i^n = G_i$ in B, for each i.
- (2) $E_i^n \cap E_j^n = \emptyset$ $(i \neq j)$.
- (3) If $m \ge n \ge j$, then $\mu_1(E_j^n \triangle E_j^m) < 1/n \cdot 2^n$ where \triangle denotes the symmetric difference.

Proof. Since $G_i \in B$, we can find a sequence $\{A_i^k\}$, $A_i^k \in \Sigma$, such that $\lim_{k \to \infty} A_i^k = G_i$ in B. Let $R_i^k = A_i^k - \bigcup_{j < i} A_j^k$. Obviously $R_i^k \cap R_j^k = \emptyset$ $(i \neq j)$. By continuity of - and \bigcup ,

$$\lim_{k o\infty}R_i^k=\lim_{k o\infty}A_i^k-igcup_{j< i}\lim_{k o\infty}A_j^k=G_i-igcup_{j< i}G_j=G_i$$
 .

Pick a subsequence $\{R_i^{k_n}\}$ of R_i^k inductively, as follows: For each n and j we can pick a k_{nj} so large that for $k, k' \geq k_{nj}$, $\mu_1(R_j^k \Delta R_j^{k'}) < 1/n \cdot 2^n$ (this follows from $\lim_{k \to \infty} R_j^k = G_j$.) For fixed n, take k_n to be any integer which is simultaneously greater than k_{n-1} , and greater than k_{nj} , $j \leq n$.

For $m \geq n \geq j$, $k_m \geq k_n$ and $j \leq n$ so that by definition of k_n and k_{nj} , $\mu_1(R_j^{k_m} \triangle R_j^{k_m}) < 1/n \cdot 2^n$. Therefore, letting $E_i^n = R_i^{k_n}$, we have verified conclusion (3). Since $\lim_{k \to \infty} R_i^k = G_i$, conclusion (1) follows from the fact that (E_i^n) is a subsequence of (R_i^k) . Since $R_i^k \cap R_j^k = \emptyset$ $(i \neq j)$ holds for all k, it holds for $k = k_n$. So $E_i^n \cap E_j^n = \emptyset$ $(i \neq j)$, verifying conclusion (2).

LEMMA 3. Let $G_1, G_2, \dots \in B$ and suppose that $G_i \cap G_j = \emptyset$ $(i \neq j)$. Assume $\sum_{i=1}^{\infty} \mu_1(G_i) < +\infty$. Then there is a $G \in B$ such that $G_i \subseteq G$ and $\mu_1(G) = \sum_{i=1}^{\infty} \mu_1(G_i)$.

Proof. Pick a double sequence $\{E_i^n\}$ as in Lemma 2. Observe

that by (1) and (3) of Lemma 2, $\mu_1(E_j^n \Delta G_j) \leq 1/n \cdot 2^n$ $(j \leq n)$. Let $A^n = \bigcup_{j=1}^n E_j^n$. By (2) of Lemma 2, $A^n = \sum_{j=1}^n x_{E_j}$. So

$$egin{aligned} \mu_{1}(A^{n+1}arDelta A^{n}) &= \int_{S} \left| \left(\sum_{j=1}^{n+1} x_{E_{j}^{n+1}}(s) \right) - \left(\sum_{j=1}^{n} x_{E_{j}^{n}}(s) \right) \right| \mu_{1}(ds) \ &\leq \sum_{j=1}^{n} \int_{S} \left| x_{E_{j}^{n+1}}(s) - x_{E_{j}^{n}}(s) \right| \mu_{1}(ds) + \int_{S} x_{E_{n+1}^{n+1}}(s) \mu_{1}(ds) \ &= \sum_{j=1}^{n} \mu_{1}(E_{j}^{n+1} \varDelta E_{j}^{n}) + \mu_{1}(E_{n+1}^{n+1}) \leq \left(\sum_{j=1}^{n} \frac{1}{n \cdot 2^{n}} \right) + \mu_{1}(E_{n+1}^{n+1}) \ &\leq \sum_{j=1}^{n} \frac{1}{n \cdot 2^{n}} + \mu_{1}(G_{n+1}) + \frac{1}{(n+1) \cdot 2^{(n+1)}} < \frac{2}{2^{n}} \ &+ \mu_{1}(G_{n+1}) \ . \end{aligned}$$

Since the series $\sum_{n=1}^{\infty} (2/2^n + \mu_1(G_{n+1}))$ converges, $\{A^n\}$ is Cauchy in measure. Let $G = \lim_{n \to \infty} A^n$, $G \in B$. Now

$$\mu_{\scriptscriptstyle \rm I}(G_i-G)=\lim_{n o\infty}\mu_{\scriptscriptstyle \rm I}(E_i^n-A^n)=0$$
 ,

since $E_i^n \subseteq A^n$ for n > i. So by Lemma 1, $G - G_i = \emptyset$, and therefore $G_i \subseteq G$. It remains to show that $\mu_1(G) = \sum_{i=1}^{\infty} \mu_1(G_i)$. By virtue of $G_i \subseteq G$, we have $\sum_{i=1}^{n} \mu_1(G_i) = \mu_1(\bigcup_{i=1}^{n} G_i) \leq \mu_1(G)$. Since n is arbitrary, $\sum_{i=1}^{\infty} \mu_1(G_i) \leq \mu_1(G)$. On the other hand,

$$egin{aligned} \mu_{\scriptscriptstyle 1}(G) &= \lim_{n o \infty} \mu_{\scriptscriptstyle 1}(A^n) = \lim_{n o \infty} \sum_{j=1}^n \mu_{\scriptscriptstyle 1}(E^n_j) \ &\leq \lim_{n o \infty} \left(\sum_{j=1}^n \left(\mu_{\scriptscriptstyle 1}(G_j) \, + \, rac{1}{n \cdot 2^n}
ight)
ight) \ &= \lim_{n o \infty} \left(\sum_{j=1}^n \mu_{\scriptscriptstyle 1}(G) \, + \, rac{1}{2^n}
ight) = \sum_{j=1}^\infty \mu_{\scriptscriptstyle 1}(G_j) \; . \end{aligned}$$

By the Stone Representation Theorem, there is a set S' and a field Σ'_0 of subsets of S' such that Σ'_0 is isomorphic as a Boolean algebra with B. Let $j: B \to \Sigma'_0$ denote the isomorphism. j induces a positive finitely additive set function μ'_0 on Σ'_0 defined in the obvious way using j and μ_1 . Lemmas 1 through 3 carry over from (B, μ_1) to (S', Σ'_0, μ'_0) by virtue of the isomorphism. Σ'_0 need not be a sigma-field. However,

LEMMA 4. μ'_0 is countably additive on Σ'_0 .

Proof. Let $A_1, A_2, \dots \in \Sigma'_0$ be pairwise disjoint, and let $A = \bigcup_{i=1}^{\infty} A_i$, $A \in \Sigma'_0$. We must show that $\mu'_0(A) = \sum_{i=1}^{\infty} \mu'_0(A_i)$.

From the fact that μ'_0 is posititive and finitely additive, we have immediately that $\sum_{i=1}^{\infty} \mu'_0(A_i) \leq \mu'_0(A)$. In case $\sum_{i=1}^{\infty} \mu'_0(A_i) = +\infty$, we are already finished. We may therefore suppose that $\sum_{i=1}^{\infty} \mu'_0(A_i) < +\infty$. Since Lemma 3 carries over to (S', Σ', μ'_0) , there is a set $A' \in \Sigma'_0$ such

that $A_i \subseteq A'$ and $\mu'_0(A') = \sum_{i=1}^{\infty} \mu'_0(A_i)$. From $A_i \subseteq A'$ we conclude that $A \subset A'$, and therefore $\mu'_0(A) \subseteq \mu'_0(A') = \sum_{i=1}^{\infty} \mu'_0(A_i)$.

Since μ'_0 is countably additive on Σ'_0 , we can extend μ'_0 to a positive measure μ' on Σ' , the sigma field generated by Σ'_0 .

We shall show that (S', Σ', μ') is the measure space asserted to exist in the statement of Theorem 1. Thus, for instance, $\dot{L}_p(S, \Sigma, \mu)$ is isomorphic to $L_p(S', \Sigma', \mu')$.

Since $B \subseteq \dot{T}M(S, \Sigma, \mu)$ is total, we can extend $j: B \to \Sigma'_0$ to $i: \dot{T}M(S, \Sigma, \mu) \to TM(S', \Sigma', \mu')$ by extending first to μ -simple functions, setting $i_0(\sum_{i=1}^n \alpha_{iE_i}) = \sum_{i=1}^n \alpha_i x_j(E_i)$, and then extending i_0 from the space of simple functions to $\dot{T}M(S, \Sigma, \mu)$ (in which the μ -simple functions are dense). One must, of course, show that i_0 is well-defined, but that is easy.

From the definition of i, it is immediate that i is an order preserving multiplication-preserving isometric isomorphism into, taking characteristic functions $(f \in B)$ to characteristic functions $(x_{i(f)})$.

For $A \in \Sigma'_0$, $\chi_A = i(j^{-1}(A))$, so that $\chi_A \in \text{im } i$. Since $\{\chi_A \mid A \in \Sigma'_0\}$ is total in $TM(S', \Sigma', \mu')$, i is onto.

If $G \in B$ and $\mu_1(G) < +\infty$ then $G \in \dot{L}_p(S, \Sigma, \mu)$, and $|G| = \mu_1(G)$ where the norm is taken in \dot{L}_p . Therefore, i_0^{-1} takes μ'_0 -integrable simple functions to elements of $\dot{L}_p(S, \Sigma, \mu)$ and preserves the L_p -norm. Therefore i^{-1} takes $L_p(S', \Sigma'_0, \mu'_0)$ into $\dot{L}_p(S, \Sigma, \mu)$ preserving norms. But $L_p(S', \Sigma'_0, \mu'_0) = L_p(S', \Sigma', \mu')$, so i^{-1} takes $L_p(S', \Sigma', \mu')$ isometrically into $\dot{L}_p(S, \Sigma, \mu)$.

If $E \in \Sigma$ and $\mu(E) < +\infty$, then $\mu'_0(j(E)) < +\infty$ so that $x_{j(E)} \in L_p(S', \Sigma', \mu')$. Since $\chi_A = i^{-1}(x_{j(E)})$, we have $\chi_A \in \text{im } i^{-1}$. On the other hand, $\{\chi_A \mid \mu(E) < +\infty\}$ is total in $\dot{L}_p(S, \Sigma, \mu)$. So i^{-1} is onto. This verifies (2) in the statement of the theorem.

By what we have already shown,

$$K = \left\{ f \in \dot{L}_{\scriptscriptstyle 1}(S, \Sigma, \mu) \, \middle| \, \int_{\scriptscriptstyle S} f(s) \mu(ds) = \int_{\scriptscriptstyle S'} (if)(s') \mu'(ds')
ight\}$$

is a closed subspace of $\dot{L}_1(S, \Sigma, \mu)$. But clearly, every μ -simple function on S is in K. Therefore $K = \dot{L}_1(S, \Sigma, \mu)$. This verifies (3) in the statement of the theorem.

Theorem 1 could also have been proved with the assumption that μ is bounded, replacing the assumption that μ is positive. In order to effect the change, we repeat the above proof, replacing μ by its total variation u. μ as well as u can obviously be extended from Σ to B. Minor changes then convert the proof for μ positive, to a proof for μ bounded.

REFERENCES

- 1. S. Bochner, and R. S. Phillips, Additive set functions and vector lattices, Ann. of Math. 42 (1941), 316-324.
- 2. Dunford and Schwartz, Linear Operators, Part I, Interscience, 1958.
- 3. S. Leader, The theory of L^p spaces over finitely additive set functions, Ann. of Math ${\bf 58}$ (1953), ${\bf 528}$ -543.

Received September 16, 1966.