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UNIFORM APPROXIMATION OF DOUBLY
STOCHASTIC OPERATORS

CHOO-WHAN KIM

Let Loo = Loo [0,1] be the real Banach space of essentially
bounded Lebesgue measurable functions on the unit interval
I = [0,1] with the essential sup-norm. A positive linear op-
erator T: Loo —> Loo is called doubly stochastic if (1) Tl = 1,

(2) i TfdS= I fd/ where / denotes Lebesgue measure on the

unit interval. We denote the set of doubly stochastic opera-
tors by Sf. It follows that || T||co = 1 for each Te ^ . Let
Φ be the subset of £& induced by measure preserving maps
on the unit interval and Φί the subset of Φ induced by in-
vertible measure preserving maps. For each TΨ£φ we have
Tφf(x) = f(φ)(x)9 feLco. A regular probability measure μ on
the unit square I X I is called doubly stochastic if μ(AxI) —
μ{I x A) = /(A) for each A e &(I\ the Borei field of the
unit interval I. Then there is a one-to-one correspondence be-
tween doubly stochastic operators and doubly stochastic meas-
ures. If we denote such a correspondence by T <-> μτ, then

g{x)Tf{x)/{dx) = \ g(x)f(y)μτ(d(x,
I JIXI

Thus we will identify each T e !3$ with the corresponding
doubly stochastic measure μτ e Φ, the doubly stochastic measure
βψ = μτψ is singular with respect to Lebesgue measure / 2 on
the unit square. Let L be the set of all T e J^ such that μτ

is absolutely continuous with respect to /2, i.e., μτ < /2. The
metric

P(T,R) = sup j ^ I Tf-Rf\d/: \\f\U ^ l} , T,ReSf

defines a topology on & which will be called the uniform
topology. The purpose of this paper is to show that each
Te L can be approximated by a convex combination of opera-
tors from Φ in the uniform topology, called the uniform
approximation theorem.

It is known [3] that every T e S arises from a Markov transition

function P(.,.) as Tf(x) = \p(x, dy)f(y),feLoo and ̂ P(x, A)/{dx) =
/{A) for Ae^(I). For each T G ^ there is a unique T ^ e ^ such
that
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T* is called the adjoint of T. If T^μTi then T*<-*μΓ* where
μτ*(A x B) = μτ(B x A), A, Be &{I). If Γ e L , then μτ < /2, so by
the Radon-Nikodym theorem, there is an obvious one-to-one corre-
spondence between the elements of L and those k e LX(I x 7), the real
Banach space of Lebesgue integrable functions on 7 x 7, such that

k(x, y) ^ 0 and \ k(x, y)/{dy) = 1 a.e. (/) and I k(x, y)/(dx) = 1 a.e.

(/). Henceforth we often identify each T eL with the corresponding
element k e Lλ(I x 7), which is called the kernel for Γ. Thus for each

TeL we have Tf(x) = ί k(x,y)f(y)/(dy),feLoo. Hereafter D? will

denote a dyadic interval of the form [(i — 1)/2W, iβn), 1 ^ i < 2n and

D™n — [1 — 1/2", 1], 1A denotes the characteristic function of the set

A. The operators Un defined by the kernels of the form un(x, y) =

2n YAfL1lDnXDn(χi y)y n ^= 1,2, •••, are often called the conditional ex-

pectation operators. Then UneL and Unf = 2n Σ<=i (\ /^^
DV'

By the weak (strong) topology in & we mean the weak (strong)
operator topology in £^[2,8]. We note that the relative uniform
topology on Φ1 coincides with the uniform topology on Φx introduced
by Halmos [5]. We will also define the norm topology on & by the
metric

, R) = sup {| μτ(A) ~ μ*{A) I : A e <&(I x 7)} , Γ, R e &,

where ^ ( 7 x 7) denotes the Borel field of 7 x 7. We note that the
norm topology on Si is the usual norm topology on signed measures
[4] restricted to the doubly stochastic measures.

Let Lp = Lp[0,1], 1 ^ p < oo, be the real Banach space of p-th
power Lebesgue integrable functions on the unit interval with the
usual norm. We denote the unit ball of Lp by Bp. For each p,
1 ^ P < °°, Lp contains L^ as a dense subset in the L^-norm and so
we can extend each Te^ from L^ to Lp. From Jensen's inequality
[3], it follows that \\ T\\p = 1,1 ^> p < oo. This extension will be

assumed hereafter. For notational convenience we write 1 fd/ as 1 /.
JI J

We work with real functions on 7 only.
Certain preliminary result regarding the sets Φ and L are given

in § 1. The main results of this paper are stated in § 2. We show
the uniform approximation theorems for L and a sharper form of the
strong approximation theorem [2, 8] by means of a concrete approach.
A simpler proof is given to the weak approximation theorem [2].

1* Preliminaries* The set Φ plays an important role in the
study of Sf. A characterization of Φ is known [2]. We also add the
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following:

LEMMA 1.1. Let e: I—* I be such that e(x) = x. For each Te Ξf,

TeΦ*=>[(Te)2 = \e2 .

Proof. The necessity of the condition is obvious. It remains to
show the sufficiency of the condition. We recall that for each Te &
we have

Tf(x) =

Suppose that for some xe I, (Te)2(x) = Te2(x), i.e.,

(x, dy)J = ^e2(y)P(x, dy) .

It follows that the function e is constant a.e. P(x, •), and so P(x, •) =
e<p(χ)(-)j & probability measure concentrated at some point φ(x) of /.

If [(Te)2 = [e2, then by Jensen's inequality [3]: (Te)2 ̂  Te2, we

have (Te)2(x) = Te2(x) a.e. (/). Thus from the above discussion we
have P(x, •) = εφ{x)( ) a.e., (/). φ is defined on / a.e. (/), but it can
be defined everywhere on / in the usual manner. Thus we have

Tf(x)=f(φ(x)), feLm.

Since T G ^ , it follows that φ is measure preserving, and so T =
TφeΦ.

It is known that &f is metrizable and compact in the weak topol-
ogy [2]. The following argument also leads us to the assertion. By
identifying each element in 3ί with the corresponding doubly stochastic
measure, we can topologize 3ϊ by the subspace topology of the weak
* topology on C(I x /)*. By C(I x /) we mean the space of real con-
tinuous functions on / x 7, and C(I x /)* is the dual space of C(I x I) .
We call the topology on & so defined the weak * topology. By the
usual argument we can show that £& is metrizable and compact in
the weak * topology. It is also straightforward to prove the equiv-
alence of the weak and the weak * topologies in £&. It is interesting
to note that the metric topology defined by

w(T, R) = sup {| μτ(A x B) - μR(A xB)\:A,Be

where ^(1) denotes the intervals of /, is equivalent to the weak
topology. Incidentally the metrics

s(T, R) = sup {| μτ(A x B) - μB(A x B) |: A e &(I), B
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and u(T, R) = sup{| μτ(A x B) - μR(A x B)\:A,Be ^(1)} define topol-
ogies in £& which are equivalent to the strong and the uniform
topologies respectively. We write ^w{^% &w) to denote 3f endowed
with the weak (strong, uniform) topology. The map T—>T* defined
on 3tw(Sίu) into itself is continuous. But this is not the case in ^ %
as we will show. First we state without proof a well known fact.

LEMMA 1.2. The following are equivalent.

( i ) Tn-^U T and J(2\<7)2 — \(Tgf for each geB^.

(ii) Tn-^->T.

PROPOSITION 1.1. The map T —> T* defined on ^ s into itself is
not continuous on Φ — Φγ but is continuous on Φ*.

Proof. Given T e Φ — Φly by Φ = Φγs: the closure of Φx in the

strong topology [2], there is a sequence {Tn} in Φ1 such that Tn > T.

Since Φ f) Φ* = Φu we have T* g <2>, and so by Lemma 1.1,

= 1,2, . . . .

It follows from Lemma 1.2 that T* -+* T* in the strong topology.

Suppose that TeΦ* and Γn — -̂> T. Then ϊ\* -^U T* e 0 and for
each # G I?*, as n —* oo ?

*g ||2 II Tig ||2 ^

and so J(Γί^) 2— U2 = ί(T*g)2. Hence by Lemma 1.2, 7? -^-> Γ*.

In view of Proposition 1.1, our Strong Approximation Theorem 2.2
is sharper than that of [2, 8]. We now prove

THEOREM 1.1. Φ is a residual set in 3ίw.

The proof follows from the following lemma.

LEMMA 1.3. The identity map T-+T from ^ w to &s is con-
tinuous at T <=> T is in Φ.

w

Proof. {<=) S u p p o s e t h a t T e Φ a n d Tn > T. We have for
each g e B^

j TgTng ^ || Tg | | 2 1 | Tng ||2 = || g | | 2 1 | T%g ||2 ^
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and

\ T T j ( 7 V ) 2 \ 2 as n-+ oo

and so [(Tng)2->[g2 as n-+ oo. Hence from Lemma 1.2, Tn — -̂> T.

(=>) If Γ e (P, then from ^ = Φγw: the closure of (Pj. in the weak
w

topology [2], there is a sequence {TJ in (Pi such that Tn • T. Since

TeΦ, we have from Lemma 1.1, \{Tnef = Jβ2 > \(Tef, n = l,2, ,

and thus Γn -+> T in the strong topology.

Proof of Theorem 1.1. Since &w and £ ^ s are metrizable spaces,
it follows from Lemma 1.3 that Φ is a Gδ set in &w. Furthermore,
ϋ ^ w is a complete metric space and Φ is dense in &w, and thus 0 is
a residual set in &w.

Similarly we prove that 0* is a residual set in £^w. In the
remaining part of this section, we will discuss some properties of the
set L. The following lemma is obvious.

LEMMA 1.4. ( i ) Each Un is a projection, i.e.,

vι = un, u: = un

( i i ) Un •/ as n—+oo, where I denotes the identity operator.
(iii) UnUm=UmUn=Un ifn^m.

Since multiplication on £& is jointly continuous in the strong

topology, we have for each Te&, UnT-^ T and UnTUn-?-> T as
n —• co. It is worthwhile to point out that p(Un, I) ^ 1, n = 1, 2, .
Thus the uniform topology is strictly stronger than the strong topology.

It is easily shown that T e L~u « UnT-^-> T<=> UnTUn-^ T. It
follows that L = L-na L~u g L~s = L~w = 3f. In Corollary to Theorem
2.4, we will show that the norm topology is strictly stronger than the
uniform topology, but it is not clear whether the same is true on the
set L. What is L~w? The question is not completely answered. But
we state the following:

THEOREM 1.2. L is nowhere dense in £&u.

Proof. It will be enough to show that S(T, ε) $ L~u for each ε > 0

and TeL~u, where S(T, e) = {R: p(R, T) < έ). Let TnQ = U%oTUHo be

such that p{T, T%0) < e/2. Then S(TnQ, ε/2) cS(T, ε). Define Qδ, 0 < δ < 1,

by Q§ = (1 - δ)Tno + δl. It follows that Qδ -^-> Tno as δ-> 0, and so

there is δε, 0 < δε < 1, such that ρ(Tno, Q§ε) < ε/2. Thus
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Q a β eS(Γ Λ 0 > e/2)cS(Γ,6).

But we claim Qδε & L~u. It follows from Lemma 1.4 that

UnQδε = (l-dε)Tno + δεUn, n^n0,

a n d so UnQδε — Qδε = δε(Un - I ) , n ^ n0. S i n c e

p(U%QδΛ, Qδε) ̂  δ£ρ(Un, I) ^ δε > 0 , n ^ nύ ,

we have UnQδε -»Qδε in the uniform topology. Hence Qδε ί L~u and
S(T,ε) <£L~U.

We will prove

THEOREM 1.3. T c L~u <=> TiB^) is strongly conditionally compact
in L,.

Proof. (=>) Suppose T e L~u. It will be enough to show that
T(Boo) is sequentially compact in the Lx-norm. Let {/,•} be any se-
quence in B^. Let Tn = UnTUn,n = 1, 2, •••. Then T%~^-> Γ as
w-^oo. Since the range of Tn is contained in a finite dimensional
subspace of L19 Tn is a compact operator in Lx [9]. Thus we have a
family of subsequences {fnί}ίf n = 1,2, , such that for each n,
{fn+idh c {/»ili a n d Tnfnj -+ Qn in the LΓnorm as i -> co for some gn e L1#

Thus for each w, Tnfjj—*gn in the L^norm as i —> oo. Then from the
inequality:

II Γ / ϋ - Tfkk II, ^ II Tfu - Tnf,Ί II, + II T J ά ύ - Tnfkk II,
+ II Tnfkk - Tfkk II, ̂  2 ^ ( Γ , Γ J + II TJiά - TJkk II, ,

it follows that {T3Ί}j is a Cauchy sequence in the L,-norm and so
Tfόj —>g m the 1/,-norm for some g e L,.

(<=) Suppose that T(BOO) is conditionally compact in the L,-norm.
If TίL~u, then UnT-» T in the uniform topology. Thus there are
ε > 0 and a sequence {fn.} in B^ such that

From the assumption, there is a subsequence {gn.} of {/„.} such that
Tg%i-^q in the Li-norm for some qeL^ But then

e < \\ UniTgni - Tgni \ £ \\ U%i(Tg%i) - Uniq | |,

+ II Un.q - q ||, + || q - Tgn. ||, rg 2 || Tgn. - q ||, + || ^ w . g -q\\t > 0

a s % —• CXD , a c o n t r a d i c t i o n .
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2* Approximation theorems* The problem of approximating
doubly stochastic operators is discussed by several authors [2, 7, 8].
In this section we discuss various approximation theorems. First we
will give a simple proof for the weak approximation theorem [2] and
a sharper form of the strong approximation theorem [2, 8].

THEOREM 2.1. (Brown [2]) For each Te& there is a sequence
IV

{Tn: n = 1, 2, •} in Φ± such that Tn > T as n —• oo.
We prove the following lemma.

LEMMA 2.1. For each T e & and for n = 1.2, , there is Tn e Φι

such that

where Όΐ = [(i - l)/2 , i/2 ), l^i<2n, and JD£ = [1 - l/2%, 1].

Proof. Let /* = lDn and ai5 = \fiTfά. For each i and for each,

SΓ* ri O—n nγ\A X^ n O—w
> , C l ^ — -ώ d .nQ 2LJ ^A i — ^

fc=l Λ = l

We put

^ ^ = ^ — i)fe + Σ &iki y%i — (̂  ~~ i)'2 ' + Σ αfcί i

where fc = 2~% and 1 ^ i, i ^ 2\
Let φ: I—>I be such that

x — flCtf + yj+1 i-i on [α ̂  , α?< i + 1 ) ,

where 1 ^ i, j ^ 2Λ. We note that a?10 = 3/ω = 0, xjQ = ^i_i 2» and τ/i0

l/i-i2n Clearly TφeΦx. It remains to show

Since D? = [y,--!&, yj2n) and A* = fe-i2», &i2»), we have

UΓ=i 9-MItfi *-n »i*)} - UΓ=i [a* i-i, «w

Thus we have

If we set ΓΛ = Tφ, then Γw is a desired one.
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Proof of Theorem 2.1. Given n and T e ϋ ^ , we have from
Lemma 2.1, Tn e Φγ and

h, k e U^BJ ,

and hence the equality holds for h,ke ?7w(j?oo), m ^ n. I t follows
that for m(^n) and /, g e B^

\fUmTUmg = \fUmTnUmg .

If a subsequence {Tn.} of {Tn} converges weakly to Q, then for
each fixed m and for every /, g G B M ,

\fUmTUmg = j / ^ m Γ . 4 J 7 m f f >\fUmQUmg , n, ^

and j / ^ Γ ^ f l f - j / ^ Q ^ f l r , and s o T - Q .

Since ^ is compact in the weak topology, we have Tn > T as

We can also prove Theorem 2.1 by the usual approximation of
feLoo by Unf without using the weak compactness of ϋ ^ .

We will prove the following strong approximation theorem. Let
co(A) be the convex hull of the set A.

THEOREM 2.2. For each T e & there is a sequence {Rn} in
such that

Rn -?-» T and Rt -^-> Γ* at n • oo .

We need to prove

LEMMA 2.2. For each Γ e ^ there is a sequence {Rn} in
such that

UnTUn = R.U. and UnT*Un = R*U% for n = 1,2, ....

Proof. If we write

Uuf = Σ ^ I D J , c* = 2" ( / , / e L^ n = 1, 2, . . . ,
=i * JD"l

then

(UnTUn)f=Σ*ci(UnTUn)lD« = Σ ^ M , * ,

where α ί y = 2% ί T1D* .
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It is easy to see that the matrix Dn = (atj: 1 ^ i,j ^ 2n) is
doubly stochastic [6]. Let ^ n be the subspace of LM spanned by
{lDn\ 1 <̂  i <; 2n}. By the linear operator Dn we mean the linear operator
on ,^£n into itself corresponding to the doubly stochastic matrix Dn.
Then the operators UnTUn and DnUn satisfy UnTUn = DnUn. Similarly
we have UnT*Un = D*Un, where the operator (matrix) D* is the
adjoint of the operator (matrix) Dn.

From a theorem of Birkhoff [1, 6] the doubly stochastic matrix
Dn is a convex combination of permutation matrices Pfc, i.e., Dn —
Σί=iC*P t > 1 ^ r ^ (2* - I)2 + 1, and so for adjoint, D*= Σ
By the operator Pfc we mean the linear operator on the subspace
corresponding to the matrix Pk.

For each operator Pk we choose Tk = TΨk e Φx such that PklD* =
Γ^l^j, 1 ^ i ^ 2W. It follows that P f c*l^ = Γ ί l ^ for each i. Thus,
UnTUn = (^UckTk)Un and Z7nΓ*D r

n=*(ΣUc 4Γ*)*tΓ . By setting
β» = Σί- i c * τ *> w e establish the lemma.

Proof of Theorem 2.2. Given Te&, we have from Lemma 2.2
a sequence {Rn} in co(Φ1) such that

and UnT*Un = RiUn , n = 1, 2,

From Lemma 1.4 and the argument following Lemma 1.4,

|| Tf - RJW ^\\Tf- UnTUJ\l + IIRJJJ - RJW

\\^\\υj~f\v—>o a s ^

and hence Rn -ί-> Γ. Similarly, Rt -^-> Γ*.
We state the uniform approximation theorems:

THEOREM 2.3. If the kernel for TeL is an element of L2(I x / ) ,
then there is a sequence {Tm} in co(Φ) such that

II T - Tm\\2 >0 αsm-^oo,

THEOREM 2.4. For each TeL, there is a sequence {Tm} in co(Φ)

such that Tm • T as m —> co.

Theorems 2.3 and 2.4 are easily derived from the following four
lemmas.

LEMMA 2.3. For each T G S and each n = 1, 2,

\ E) ^ || T2n - E\\2 ̂  || T - E\\\n ,
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where Ef = 1/.

The proof is immediate.
We review the notion of the independence of measurable maps

(random variables) [3]. Let φι and ψ2 be measurable maps on the unit
interval / into itself. Then φ1 and φ2 are said to be independent if
/(φϊ\A) n φΛB)) = sifΛAftsiφϊ'iB)), A, B e &?(I). It follows easily
that if φ1 and φ2 are independent, measurable maps on I, then

\f(φdfi!Pd = \f(<Pi) \f(φ*) , / e A .

LEMMA 2.4. Lβί <px αwcϊ φ2 be independent, measure perserving
maps on I. If T = cTΨί + (1 - c)T9i, 0 < c < 1, £/̂ w ^(T2", JS?) ^

^ || T - E\\\n ̂  {c2 + (1 - c)2}%, n = 1,2, . . . , and p(T2n, E) ^
_»o as ^~^c>o.

Proof. We observe that for each

T-E\\% = sup {|| Tf-EfWtifeBJ = sup{|| Γ(/ - £7/) | | 2 :/ eB2}

If Γ = cTΨl + d2V2, 0 < c < l , d = l - c , then for each g such that Eg = 0
and ||flr||2 ^ 1,

\\Tg\\l= \{cTΨιg + dTφ2gf

- (c2 + d2) [g2 + 2cdQflrJ ^ c3 + d2 ,

and so || T - E\\2 ^ (c2 + d2)1/2 and || T - E\\ln ^ (c2 + d2)». Thus Lemma
2.4 follows.

Since there are no invertible measure preserving maps φγ and φ2

on / that are independent, Lemma 2.4 can not be strengthened any
further.

LEMMA 2.5. For each n = 1, 2, , ίfeere are measure preserving
maps θx and θ2 on I such that

h + (1 - c ) i y - - tΓ. ||f ^ 2-/ ί , m = 1, 2, . . . ,

where δ2 = c2 + (1 - c)2, 0 < c < 1.

Proof. Let w be a positive integer. For each integer i, 1 ^ i ^ 2*,

the operator FΛ i defined by F w < / = 2n ί ftfeL^Df), is a doubly
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stochastic operator on L^D?). We note that Vni is an analogue of
the operator E, i.e., V^= Vni and Vni = VniR = RVni for each doubly
stochastic operator R on L^D-1). Hence we have an analogue of
Lemma 2.3, i.e.,

\\R2m - 7.,II, ^ | |Λ - Vni\\T , m = 1,2, . - ,

for each doubly stochastic operator j£ on L^D?), where || ||2 denotes
the L2(Z)^)-operator norm. Let φiS: D?—>D?,j = 1, 2, be independent,
measure preserving maps. We define

T< = c T φ i ι + (1 - c ) T φ i 2 , 0 < c < l .

Clearly 7̂  is doubly stochastic on L^D?). By a similar argument
given in the proof of Lemma 2.4, we have

II ηΠ2m V II <C \\ T V ||2m < 22m /yyi __ 1 O

Let θά:I—>I,j = 1,2, be such that

Then ^! and θ2 are measure preserving but not necessarily independent.
Let T = cTθl + (1 - c)Tθ2. For each m = 1, 2, . . and each / 6 £ 2 ,

J 27V- ^ / | 2 ^ Σ II 27- - 7.,||ϊ ^ 2 δ - ,

and so || T2m - Un\\\^ 2ndim. I t follows that || T2m - Un\\2-+0 as
m—> oo.

LEMMA 2.6. For eαc/z, Te& and each Un, there exist S^
Rn € co(ί>) sucfc ί/ιαί

^Λ-ΛΛ ||2 = ^ ° y "I — ±, ό, ,

Proo/. For each Γ e ^ there is S ^ G C O ^ ) , by Lemma 2.2, such
that UnTUn - SnUn.

By Lemma 2.5, there is i?n e co(<£) such that

\\TT _ # 2 m j I < Ott/2 £2m

II ^ % « n 1I2 = = ^ ^ >

and thus

II unτun - s , ip ||2 - 11 snun - sjzr II, ̂  II c/. - Λ T I I , ^ 2 ^ 2 - .

Proof of Theorem 2.3. Let &( , •) be the kernel for TeL and
ftn( , •) the kernel for UnTUn. If Λ( , ) e L 2 ( / x / ) , then
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|| T — UnTUn \\l ^ I I k — kn \zd/2 > 0 a s n —> oo .
J IXI

By Lemma 2.6, there are Sκ 6 c o ^ ) and Rn s co(Φ) such t h a t

|| T - SJ2Ϊ-II, ^ || T - t/.TC/^ II, + II U.TU. - S.EST II.

^ { J j f c - Λ . I ^ + JW-.

Then iS^βf e co(Φ) and the assertion follows by usual argument.

Proof of Theorem 2.4. Let k and kn be as in the proof of Theorem
2.3. Then

ρ(T, UnTUn) ^ ( I k - kn\ d/2 > 0 as n-+ oo .
J/X7

By using Lemma 2.6, we have

p(T, SnRT) S p(T, UnTUn) + p(UnTUn, SnRT)

from which the assertion follows.
As a corollary to Theorem 2.4 we have the following.

COROLLARY. The norm topology is strictly stronger than the
uniform topology.

Proof. It follows from Theorem 2.4 that there is a sequence {Tn}

in co(Φ) such that Tn > E as n —> oo. Since μT(p 1 /2 for each TφeΦ,
we have μn = μu ± /2 for each n = 1, 2, . Let (Aw, Bn) be a de-
composition of I x I such that /2(1?J = 0 and μn(An) = 0. Then we
have

|| ^ - / 1 | ^ I μn(An) - ΛAn) \ = /\An) = 1 ,

and so μn -+* /2 in the norm topology.
It is not clear whether we can choose a sequence {Tm} from co(0x)

instead of co(0) in Theorems 2.3 and 2.4. By the Approximation
Theorems we have

c o - ^ ) c αr u(0) c co~s(0) = co-s(^) = Φτw = ^ .
U
L

It remains to be determined whether the inclusion relations in

co-M(0x) c co~u(Φ) c co-s(Φ)
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are proper.
This paper contains a part of the author's Ph. D. thesis submitted

to the University of Washington. The work was directed by Professor
R. M. Blumenthal to whom the author is deeply indebted for encour-
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