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By a universal algebra, or briefly, an algebra we shall
here mean a pair <A; F} consisting of a nonvoid set A and a
nonvoid set F of unitary operations on A. The multiplicity
type of (A; F} is the sequence μ = (ju0, μu , βn, > where
μn is the cardinality of {fe F | / is w-ary}. The class of all alge-
bras of multiplicity type μ is denoted K(μ).

We shall study the relationship between the multiplicity
type of an algebra and its family of subalgebras. To this
end, we set S(A; F) = {B\φΦ B Q A and (B F) is a sub-
algebra of (A; F}} and, for every multiplicity type μ, T(μ) =
{S(A; F) I <A; F} e K(μ)}. We define a quasi-ordering ^ and an
equivalence Ξ= on the class of multiplicity types as follows.
If μ and μ! are multiplicity types, define μ ^ μ' if T{μ) g T(jJ)
and μ = μf if Γ(^) = T(μ'). We shall give necessary and
sufficient conditions for μ ^ μf, in terms of properties of car-
dinal numbers, and we shall also find a "normal form" for
multiplicity types, whereby every multiplicity type will have
a unique representation in normal form and the ordering of
multiplicity types in normal form will be characterized by
relatively simple criteria.

Our major results, those which characterize the ordering and
establish normal form, are Theorems 2.1, 2.2, 2.3, and 2.4.

A family 21 of subsets of a set A is called a restricted closure
system if whenever 33 S 21 and Γ[(X\Xe^&) is nonvoid, then
C](X\Xe^8)eU. If B g A then the closure of B, denoted [B], is
defined to be Γ\(X\Xe$ί, X ^2 B), provided this intersection is not
void. For any algebra <A; Fy it is easily seen that S(A; F) is a re-
stricted closure system. Birkhoff and Frink [1] proved that for any-
family 21 of subsets of a nonvoid set A, there is an algebra ζA\ Fy
such that 21 = S(A; F), if and only if 21 is an algebraic closure system,
that is, a restricted closure system which is closed under directed
union. We shall give a similar result (Theorem 1.1) with a restriction
on the multiplicity type.

One minor result of particular interest is the fact that the sub-
algebra family of any algebra whose operations are finite in number
can be realized as the subalgebra family of an algebra having precisely-
one operation. This is a consequence of Lemma 2.1.

A word on notation: μ and μf will always denote multiplicity
types, and the cardinality of a set A will be denoted \A\.
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1* Preliminary results* In this section we shall establish several
results which will be helpful in proving the later characterization
theorems for the ordering ^ among multiplicity types. For the most
part, these are simply technical lemmas of no interest for their own
sake. The main result is Theorem 1.2, which gives necessary condi-
tions for μ ίg μ'. In § 2, these conditions will be shown to be sufficient
when all entries of μ are countable.

A. Definitions and simple lemmas. The following definitions
are largely for the purpose of establishing convenient notation.

DEFINITION. If μ and μf are multiplicity types we say that μf

accepts μ provided μ0 = 0 implies μ'o = 0. If μf accepts μ and μ ac-
cepts μ', then μ and μ' are termed compatible.

DEFINITION. Let n be a natural number and m a nonzero cardinal.
We shall denote by en(m) the multiplicity type having m as its nth

entry and zeroes everywhere else. The multiplicity type έn(m) is de-
fined as follows. If n = 0, then έΛ(m) = εn(m). If n > 0, then
(εn(m))Q = 1, (εn(m))n = m, and (εn(m))k = 0 for k Φ 0, n. For simplicity,
εn(l) and έn(l) will be denoted simply by εn and έw> respectively.

DEFINITION. If μ and μf are multiplicity types, we define μ + μf

to be their pointwise sum; that is, (μ + μf)k = μk + μ'k for every k.
Similarly, we define the sum of any set of multiplicity types.

DEFINITION. The length of μ, denoted l(μ), is the greatest integer
n such that μn Φ 0. If no such integer exists, we set l(μ) = oo, We
denote by s(μ) the sum of the entries of μ; that is, s(μ) = Σ (/** I & ^ 0).

The following lemma establishes simple properties of the ordering.

LEMMA 1.1. ( i ) If μ <* μ', then μf accepts μ.
(ii) If μf accepts μ and μk ^ μk for all k, then μ ^ μ'.
(iii) Let l(μ) = n < oo. ΓΛe^ /i ^ εn(s(μ)), and μ ^ εn(s(μ)) if

μ0 Φ o.
(iv) k ^ n implies ek(m) ^ εΛ(m) /or αW m.
(v) If μ <, μf and v ^ y', then μ + v ^ μ' + v'.

Proof, (i) and (ii) follow from the fact that it is always possible
to define operations which will not change any pre-existing subalgebra
structure. Specifically, if an w-ary operation is required, then we do
not alter subalgebra structure by taking as an operation the function
/ defined by f(x0, , xn^) = x0. (iii) and (iv) follow from the fact
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that any operation can be replaced by one of higher rank in such a
way that subalgebra structure is not affected. E.g., if / is a binary
operation, we can replace it by the ternary operation g defined by
g(xQ, xlf x2) - f(xQt «i). To prove (v), let §1 e T(μ + v). Then Si -
S(A; F), where <A; F>eK(μ + v), and we may write F = Fx U F2,
where (A F^eKiμ) and <A; F2}e K(v). Since μ ^ μr and v^
we have S(A; F1) = S(A;G1) and 5(4; JF2) = S ( A ; G , ) , where <4;GX> e J5Γ(
and <A;G2>eK(v'). Now,

21 - S(A; F) = S(A; FJ Π S(A; F2) = S(A; Gx) Π S(A; G2)

= S(A; G, U G2) e #(/*' + v') ,

whence μ + v ^ μ' + vr. We note that the analogous statement and
proof hold for arbitrary sums.

The following lemma provides a construction that we shall use
frequently.

LEMMA 1.2. Suppose μ is a multiplicity type and n an integer
with 0 < n < μn. Let A be a set with \ A \ = μn, let C £ A with
\C\=n, and let p e A\C. Let 31 = {A} U {B \ C £ B £ A}, and let
2Ip = {B U M I B e 21}. If μ0 = 0 then 21 e T(//), απd ΐ/ //0 ^ 0

Proof. Suppose μ0 = 0. For each α e i define the ti-ary opera-
tion /β by:

. , fα if {x0, •• ,^_1} = C

(ίc0 otherwise

for all Xi£A,i<n. Let î 7 = {/β | a e A}. Clearly

2ί = S(A; F) e T(en(μn)) £ T(μ) .

If μQ Φ 0, define for each α G i the w-ary operation fa by:

ί / α ( » o , , » — i ) i f pΦXi,i<n

(ί> if p = aji for some t < n ,

and let p* be a nullary operation with value p. If F = {fa\aeA}{J{#>*},
we have 2ί, - S(A; F) e T(εn(μn)) £

JB. Characterization of 2ί e T(μ) /or some /£ o/ ^α ed length.
For a restricted closure system 21 and natural number n we shall
characterize what it means to have 21 e T(μ) for some μ of length n.
Since this is quite clear for n — 0, we consider only positive n.
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DEFINITION. A family SB of sets has the n-ary containment
property if whenever we have α0, , an_x e \J (X \ X G 23), then there
is some Y e 33 with a{eY for all 0 <S i < n.

Clearly a directed family has the %-ary containment property for
all nonzero n. Also, we note that if i ^ j , then the i-ary containment
property implies the i-ary containment property.

DEFINITION. A family 2ί is closed under n-ary union if whenever
S3 ϋ 51 and S3 has the w-ary containment property, then

DEFINITION. Let 21 be a restricted closure system over the non-
void set A. 2ί is an n-ary closure system if whenever 0 Φ B <Ξ A
and B = U ([C] | C S JS, 0 < | C | ^ n), then B e St.

THEOREM 1.1. Let % be a restricted closure system over the
nonvoid set A, and let n be a positive integer. The following are
equivalent.

( i ) 21 G T(en(m)) for some cardinal m.
(ii) 21 G T(μ) for some μ of length n.
(iii) 2ί G T(μ) for some μ with l(μ) ^ n.
(iv) 21 is closed under n-ary union.
(v) 21 is an n-ary closure system.

Proof. Clearly (i), (ii), and (iii) are equivalent by Lemma 1.1.
Assuming (i), we have 21 = S(A; F) where <A; F} e K(εn(m)) for some
m. Let S3 S 21 where S3 has the w-ary containment property. If
feF and a{e \J (X| XeS3), 0 g i < n, then α0, , an_xG Y for some
YG S3, whence /(α0, , α ^ ) G Γ C U ( ^ I Xe S3), and so

Thus (i) implies (iv).
Assuming (iv), let Q) Φ B ^ A and suppose B 3 [C] for all C

with 0 < I CI ^ w. Let

C g £ , 0 < \C\^n} .

Then U ( ^ l ^ e ^ 8 ) = #> a n ( i ^ h a s t h e π-ary containment property,
whence (iv) implies B e 21, and so (v) holds. Thus (iv) implies (v).

Assuming (v), we define a set F of operations as follows. For

each sequence <(α0, , an^y e An and each a e [{α0, , αw_i}], define an

n-ary operation / by f(a0, , an^) = a and f(xQ, , xn^) = xQ if

<£0, , xn^y Φ <α0, , αΛ_!>.
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Let F be the set of all operations defined in this manner. It is
clear that 2t £ S(A; F). To verify the reverse inclusion, let B e S(A; F)
and let CξΞ=B with 0 < | C | ^ n. Enumerate C as a sequence
<α0, •• ,αΛ_1> (possibly with repeated terms) and let ae[C]. Then,
for the operation / defined in terms of <α0, , an_^} and α, we have
a = /(α0, , α%_0 e B, and so [C] £ J3. Applying (v) we have JS e 21,
whence 21 = S(A; F) e T(εn(\F\)). Thus (v) implies (i) and the theorem
is proved.

COROLLARY. Let n > 0 and let μ be a multiplicity type with
l(μ) < n. Then εn ^ μ and εn <£ μ.

Proof. The case n = 1 is trivial, so assume w > 1. Let A be a
set of cardinality n + 1, A = {α0, , α j , and let A* = {α0, , αΛ_i}.
Define an ^-ary operation / by /(α0, , an_x) = an and /(a?0, , xn_t) =
ίc0 if <α;0, , a?n-1> ^ <α0, , an_^.

Now, A* = U ([C] IC £ A*, 0 < I C \ ̂  ί(//)), but A* ί S(A; / ) , whence
S(A; /) is not an i(//)-ary closure system, and so S(A; f) $ T(μ) by
Theorem 1.1. Thus, εn ^ μ. To see that εn ^ j«, adjoin an element
p to Af define / as above, and define also a nullary operation with
the value p; then apply a similar argument.

C. Necessary conditions for μ <^ μ'. Before establishing necessary
conditions for μ <̂  // we shall prove two lemmas which simplify special
cases. In proving these lemmas, and elsewhere in the sequel, we shall
make use of the following well-known inequality (see, e.g., [2], Chap-
ter 1). If 31 is a restricted closure system over the nonvoid set A,
and $LeT(μ), then, for each nonvoid δ g i , we have | [B] \ ^

LEMMA 1.3. ( i ) Suppose l(μ) > 0 and 0 < μQ ^ ^ 0 . If μ! is
defined by μ'o = 1 and μ\ = μ{ for i > 0, then μ = μf.

(ii) If μ <, μ' and s(μf) ^ ^ 0 , then s(μ) ^ s(μ').
(iii) If μ < μ' and s{μf) ^ ^ 0 , then s{μ) ^ ^ 0 .

Proof. To prove (i) it suffices by Lemma 1.1 to show that μ <̂  μr.
First suppose s(μ) > ^ 0 . Then there is some n > 0 such that μn is
infinite. For such an n we have

μ = εo(/ ô - 1) + μ' ^ εn(^0 -1) + μ' = μ' .

Now suppose s(/̂ ) ̂  ^ 0 and let Si e T(μ); Sί = S(A; F) where <A; F> e
iΓ(/^). Let / be an w-ary operation for some n > 0 (such an / must
exist because l{μ) > 0), let B be the set of values of the nullary
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operations in Fy and let C = [B]. Since 0 < |J5 | <; ^ 0 , we have
0 < I CI <£ V̂ o, so we enumerate C as C = {c\ c\ , c\ •} in such a
way that if C is infinite then all elements in the enumeration are
distinct, while if C is finite, of power N, then cι = c^1 whenever
i^N.

Let F' = (F\(F0 U {/})) U K, /'}, where Fo is the set of nullary
operations in F, d° is a nullary operation with value c°, and / ' is an
%-ary operation defined by:

_ \ci+1 if a?0 = a?i = = α*-i = c* e C

(/(&<,, , ffn-i) otherwise .

It is straightforward to verify that 3ί = S(A; Fr) e T{μf), whence

μίίμ'.
To prove (ii) let A be a set of cardinality s(μ) and define opera-

tions fa, aeA, such that S(A; {fa \ a e A}) e T(μ) and fa is a constant
function assuming the value a. Then S(A; {fa \ a e A}) — {A}, so
1 [{α}] I = s(μ) for all aeA. Assuming μ ^ μ', we then have:

whence s(μ) ^ s(μ').
To prove (iii) let μ* be any multiplicity type such that μ' ^ μ*

and s(^*) = Ko. (e.g., μ* = // + ε^o)) Then ^ ^ μ*, whence s(μ) ^

LEMMA 1.4. ( i ) εo(m) ^ εx if 0 < m < ^ 0 .

(ii) εo(m) ^ ε, if 0 < m ^ ^ 0 .
(iii) εo(^o) ^ ε1#

(iv) εo(n) + εx(m) ^ ε^m), i/ 0 < n <£ ^ 0 αtwZ 0 < m
( v ) ε ^ o ) ^ e i ( « 0 ) .

Proof. ( i ) Let5te T(εo(m));yί = S(A; F) where <A; F}e K(εo(m)).
Let ^ be the number of distinct elements of A which are values of
nullary operations. If n = 1 we are through; if n > 1, let these
elements be c0, •• ,cw«1 and define the unary operation / by /(c<) =
c ί + 1 for i < w — 1, and f(x) = c0 for all other « G 4 . Then >S(A;/) = §ί,
whence Sί e Tie,), and so εo(m) ^ ε1#

(ii) εo(m) ^ εo(m) + Si = εx by Lemma 1.3.
(iii) Let N be a set of cardinality ^ 0 and let each element of N

be the value of a nullary operation. Then N is the only subalgebra.
Thus, if it were true that εo(^o) ^ εu there would exist a unary
operation / such that S(N; f) = {N}. Under this assumption, [{x}] =
{^,/(x),/2(α;), •• ,/ % (^), •••} for each xeN, and we cannot have x =
fk(x) for any k, since this would imply that [{x}] is finite. Now,
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[{/(»)}] = {/(&), , /*(*), 'I- But g ί [{/(a?)}], since α; e [{/(a?)}] implies
x = fk(χ) for some k. Thus [{/(#)}] ^ N, a contradiction.

(iv) In view of Lemma 1.3, it suffices to show that ε^m) ^ ε^m).
By (ii), ε0(^0) <. έx, whence it follows from (iii) that έx ^ eu and so (iv)
holds for m = 1. The following proof shows that (iv) holds for m — 2,
but it will be evident that an analogous proof can be given for any
finite m Φ 0.

Let JV be a set of cardinality fc$0, let x,peN, and let the unary
operations /i and /2 be defined such that {x} generates N, fγ{x) Φ x Φ
f2(x), and such that for i, i e {1, 2} and y,ze N\{p}, fi(y) = /,(z) implies
i = i and y = z. Also, we require that fλ(p) = p = f2(p) and that p
be the value of a nullary operation p*. Letting §ί = S(N;fuf2,p*),
it is clear that SI 6 ^ ( 2 ) ) . Assuming έx(2) ̂  εx(2), we have unary
operations gu g2 with 21 = S(N;gug2). Since peN = [{x}], we must
have p = h(x) where h is a function made up a finite number of com-
positions of gt and g2. Choosing h so that the number of compositions
is as small as possible, we must have p = h(x) = g^a) for some a Φ p
and i e {1,2}. Without loss of generality, suppose i = 1. Since
{p} G 21 we must have g^p) = p, and so #?(α) = 39 for all n ^ 1. There-
fore

[{*}]\{P} = {», Λ(α), flri(α), , Λ(α), •} and a Φ gi(a)

for all n because [{a}] is infinite.
Now [{α}]\{α, p} - A, U A2, where A, = [{/<(α)}]\{p}, i = 1, 2. Suppose,

without loss of generality, that g2(a) e Aιm Then Ax U {p} e 21 implies
gl(a) e Aι for all n, but this contradicts the fact that A2 is nonvoid.

( v ) Using Lemma 1.1, we have

ei(Ko) = to + Si(Ko) ^ Si + ^(«o) - βi(Ko)

For convenience in referring to (iii) and (iv) above, let us set

and let ί7 - E, U {<^o(«o), e^}.

THEOREM 1.2. If μ ^ μ', then the following hold:
( i ) μr accepts μ;
(ii) l(μ)^l(μ');
(iii) l(μ) = ϊ(^') = ?2, < oo implies μn ^ /£;
(iv) <μ,μ'>£E.

Proof, (i) and (iv) were proved in Lemmas 1.1 and 1.4. To prove
(ii), note that by the corollary to Theorem 1.1, εn <Ξ; μ' implies n ^
l(μ') for all n. If μ0 = 0, then εn <L μ <L μ' for each n such that
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μn Φ 0, so it follows that n ^ l(μ') for such n, and therefore l(μ) ^
l(μ'). If μQ Φ 0, simply replace εn by έΛ.

Since (iii) is trivial for n = 0, we consider w 9̂  0, First let us
suppose μ0 = 0 and construct a set A of cardinality n\ μn + n such
that α0, , αw_j are distinct elements of A, and A\{α0, , αn-1} =
U (Bτ I TeSn), where S» is the set of permutations of {0, , n - 1},
and |2?Γ | =μn for each T e Sn.

Fix some UeSn, and let T*:BU—+BT be a bijection, for each
TeSn. For each xeBv, define an w-ary operation /,. by:

Λ(θoΓ> , α(n_1)Γ) - α Γ* for all Te Sn ,

and

Let 51 = S(A; {fx\xe Bπ}). Clearly 31 e T(en(μn)) £ T(/i), and we
note that 3ί = {A} U {-B | K , , ̂ -̂1} S B S A}. Now, /̂  ^ /i' implies
that a = S(A; F) for some <̂ L; F>eK(μ'). For each Γ G S W , let

Eτ = {x\x = f(aoτ, , α(w-i)Γ), / e J7, / is

and let

We show that A*eSί. Let a?0, •• , ^ _ 1 G A * and / G F , Then /
is /b-ary for some k and since /̂ ' accepts μ we have A: > 0. Since
l{μr) = w, we have k ^ n. If k = n and {a?0, , xn^} = {α0, , αn - 1},
then /(α?o, •• ,a;Jk_1)6A* by construction. In all other cases, we have
{x0, , %_J G 2ί, whence

/(a?0, , /̂c-i) e {xo, , »Λ-I} S ^ * .

Thus A* G 2t, and since A* 3 {α0, , α ^ J , we have A = A*, whence
n! //w + w = IA [ = I A* I ̂  w! /£ή + w, and so μn ^ /̂  .

If μ0 Φ 0, we modify the construction as in the proof of Lemma
1.2 and the argument is similar to the above.

2. Characterization of μ <£ μ\ In this section we will show
that the conditions of Theorem 1.2 are necessary and sufficient if the
entries of μ are all countable, and that these conditions along with a
fifth condition characterize μ ^ μr whenever μf has finite length.
Moreover, we will develop "normal forms" for multiplicity types,
whereby every multiplicity type will have a unique representation in
normal form, and a multiplicity type of finite length in normal form
will be minimal in the pointwise ordering of all multiplicity types
equivalent to it.
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A. Countable multiplicity types. A multiplicity type is said to
be countable if all its entries are countable. First we shall character-
ize μ <L μf where μ and μ' are countable and differ in length.

LEMMA 2.1. If μ is a countable multiplicity type of finite length
n > 0, then μ <£ en+1. Also, if μ0 Φ 0, then μ <̂  έn+1.

Proof. Let Si e T(μ); Sϊ = S(A; F) where <A; F> e K(μ). Define
an (n + l)-ary operation / on A as follows.

For each x = ζx0, , xn^eAn, [{x0, , a?n-i}] is countable, so
we write [{x0, , xn^}] = {#°, a?1, ••-,#% •} in such a way that x° = x0

and if the set is infinite all elements in the listing are distinct, while
if the set is finite, of power N, we require that xi = xN~ι for all i ;> N.

For each xi e [{x0, , xn^}], we define f(xQ9 , xn_u xι) = xi+1.
Finally we define f(xQ, , xn_u xn) = xQ if xn i [{x0, , ajw_J]. It is
routine to verify that SI = S(A; f) e T(εn+1), whence μ ^ εn+1. The
last statement now follows from Lemma 1.3.

COROLLARY. If μ is a multiplicity type such that l(μ) > 0 and
μ Φ εlf then it ^ μ.

Proof. We consider two cases.
Case 1. Suppose l(μ) = 1. If μ0 Φ 0, then έx ^ // by Lemma 1.1.

If μ0 = 0, then μ Φ ελ implies ^ > 1, whence εx ^ 6^2) ̂  //.
Case 2. Suppose l(μ) > 1, and choose m > 1 such that μm 9̂  0.

If μ0 Φ 0, we have e1 ^ em ^ μ. If //0 = 0, we have, by Lemma 2.1,
ex ^ ε2 ^ εm ^ //.

COROLLARY. Lei μ a7id /̂ ' 6e countable multiplicity types with
l(μ) φ l(μ'). Then μ ^ μf if and only if the following hold:

( i ) μf accepts μ;
(ii) l{μ)<l{μ');
(iii) <μ,μ' > Φ <

Proof. In view of Theorem 1.2, we need show only that (i)-(iii)
imply μ ^ μr. Since (ii) implies that l(μ) is finite, we let n = Z(/i),
and consider two cases.

Case 1. Suppose n Φ 0. By Lemma 2.1, μ ^ εΛ+1, so if m is any
integer such that m> n and μf

m φ 0, we have μ ^ εw+1 ̂ ί em <, μ' if
/̂ ί = 0, and // <; έΛ+1 ̂  εm ^ μ' if ^ ^ 0.

Case 2. Suppose ^ = 0. There are two possibilities.
(a) μ = εo(Ho). By (in), μ' ^ εu so by the preceding corollary,

£1 ̂  / '̂. Now εo(^o) ^ έj by Lemma 1.4, so μ ^ μf.
(b) /̂  = εo(fc) where 0 < & < ^ 0 . Choosing m as in Case 1 above,

we have, using Lemma 1.4,
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εo(k) ^ ε, ^ εm ^ μ' if μ[ = 0 ,

and

eo(fe) ^ έx ^ εm ^ μ' if μj =£ 0 .

We now give necessary and sufficient conditions for μ <; μ' where
μ and μf are both countable and have the same finite length.

LEMMA 2.2. Let μ be a countable multiplicity type of finite
length n.

( i ) If nΦl, then μ <̂  εn(μn).
(ii) If μo = 0, then μ = εn(μn).
(iii) 1/ μ0 Φ 0, ίftew μ = εn(μn).

Proof. All three statements are obvious for n = 0, so assume
tt =£ 0. To prove (i), let Si e T(μ); 3t = S(A; F) where <A; ,P> 6 JBΓ^).
Let Fn be the set of w-ary operations in ί7 and let feFn. Define a
new w-ary operation / ' as follows.

For each x = <#0, , ^ - 2 > e A71"1, [{xQ, , α;w_2}] is countable, so
we write [{x0, , α;%_2}] = {x\ x\ •••,»*, •} in such a way that x° = x0

and if the set is infinite then all elements in the listing are distinct,
while if the set is finite, of power N, then we require that x* = xN~ι

for all i ^ N. For each xι e [{xQ, , xn-zi\ we define

f'(x0, -- , ^ _ 2 , x*) = α;ί+1 .

Finally we define

i f ί C n - x ί [ { » o , • • • , » — i l l -

Letting ί7' = (Fw\{/1) U {/'}, it is routine to verify that 21 =
S(A; Ff) e T(εn(μn)), whence μ ^ εn(μn).

If n Φ 1, then (ii) follows at once from (i), while (ii) is trivial if
n — 1. (iii) is a ready consequence of (ii) and Lemma 1.3.

COROLLARY. Let μ and μr be countable multiplicity types with
l(μ) — l(μr) — n < oo. Then μ ^ μr if and only if the following
hold:

( i ) μf accepts μ;
(ii) μn^μ'n;
(iii) (μ

Proof. By Theorem 1.2, it suffices to show that (i)-(iii) imply
μ ^ μf. If μ and μ' are compatible, the corollary is immediate from
the lemma. If μ and μ' are not compatible, then by (i) we must
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have μQ Φ 0, whence by the lemma, μ = en(μn) and μ' = en(μ'n). If
n Φ 1, then the corollary follows directly from (i) of the lemma, so
let us assume n = 1. If μx < μ[ we have ε^μύ ^ εί(μ1 + 1) ^ Siiμί),
so μ <£ μ'. If μγ — μ[— fc$0, then μ ^ μr by Lemma 1.4. By (iii)
there are no further possibilities, so the corollary is proved.

To simplify the consideration of multiplicity types having infinite
length, we make the following definition.

DEFINITION. For n an integer and m an infinite cardinal, the
multiplicity type ζn(m) is defined as follows. (ζw(tπ))< = 0 for i ^ n,
and (ζn(nή)i = m for i > n. The multiplicity type ζn(m) is defined to
be the sum of ε0 and ζw(tn). ζo(tπ) and ζo(tn) will be denoted simply
by ζ(πx) and ζ(m) respectively.

LEMMA 2.3. Le£ μ be a countable multiplicity type of infinite
length. If μQ = 0, then μ = ζ ( ^ 0 ) ; i/ ^ 0 ^ 0, then μ =

Proo/. Suppose //0 = 0. Clearly μ ^ ζ ( ^ 0 ) . Let / be the set of
integers at which μ has nonzero entries, and write

/ = {no,nί9 . . . , wfc, •••}

such that nk < nk+1. By Lemma 2.1,

i, and so ζ(« 0 ) - Σ (e*(«o) I ^ > 0)

^ Σ (εΛfc(«o) I Λ > 0)

^ Σ (enk+1 \k>0)

If μ0 Φ 0, we may assume by Lemma 1.3 that μ0 = 1, whence the
statement follows readily from the above.

COROLLARY. Let μ and μf be countable multiplicity types of
infinite length. Then μ ^ μf if and only if μf accepts μ.

Proof. The corollary is a trivial consequence of the lemma.

Combining the previous three corollaries, we now completely de-
scribe the relations ^ and = among countable multiplicity types,
thereby obtaining, for these multiplicity types, the converse of
Theorem 1.2.

THEOREM 2.1. Let μ and μ' be multiplicity types with μ coun-
table. Then μ ^ μ' if and only if the following hold:
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( i ) μ' accepts μ;
( i i ) l(μ)£W);
(iii) l(μ) = l(μr) = n < co implies μn ^ /<;
(iv) <μ,μ'>(£E.

Proof. In view of Theorem 1.2 and the three corollaries above,
it suffices to show that (i)-(iv) imply μ <; μf when μ' is not countable.
If we define μ* by μf = μ\ if μ\ ^ fc$0 and μf = y$0 if μ\ > ^ 0 , then
μ* is countable and (i)-(iv) hold with μ* in place of μ'. Thus μ ^ μ*,
whence μ ^ μ' hy transitivity.

COROLLARY. If μ and μr are countable multiplicity types, then
μ ΞΞ μr if and only if the following hold:

( i ) μ and μf are compatible-,
(ii) l(μ) = l(μ');
(iii) l(μ) = n < oo implies μn = μr

n.

Thus we actually have a set of "normal forms" for countable
multiplicity types. That is, every countable multiplicity type is
equivalent to precisely one multiplicity type of the form εΛ(m), eΛ(m),
ζ(Wo)ι o r ζ(Ho), and the ordering among these forms is easily observed.
We shall exhibit two classes, ^V^ and ^ ^ * , of multiplicity types,
each of which will serve as a class of normal forms for all
multiplicity types. Further, the class ^V% will be seen to contain
the countable normal forms listed above.

B. Multiplicity types of finite length and minimal normal form.
We now show that the conditions of Theorem 1.2, along with a fifth
condition, characterize μ <̂  μ' when μ' has finite length.

THEOREM 2.2. Let μ and μ' be multiplicity types and suppose
μ1 has finite length. Then μ <, μf if and only if the following hold:

( i ) μf accepts μ;
(ii) l(μ)£l(u');
(iii) l(μ) = l(μ') = n implies μn ^ μ'n;
(iv) <μ,μ'>$E;
(v) For every k such that μk > ^ 0 there is a k! ^ k with

μk ^ μ'k>.

Proof. By Theorem 2.1, we may assume μ is not countable. To
see that (i)-(v) imply μ ^ μf, simply decompose each of μ and μ' into
the sum of a countable multiplicity type and an uncountable multi-
plicity, then apply Theorem 2.1 to the countable parts and (v) to the
uncountable parts.
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Conversely, suppose μ ^ μ\ In view of Theorem 1.2, we need
verify only (v). If μ0 > No, then μ0 <̂  s(μ) ^ s(μ') by Lemma 1.3, so
there must be some integer 0' such that μ0 ^ μ'o,.

Let k > 0 such that μk > No- Let A be a set of cardinality μk

and let C g A, \ C \ = k. By Lemma 1.2, we have 316 T(μ) if μ0 = 0,
where SI = {A} U {.B1 C £ B C A}. We shall assume μ0 = 0; if μ0 Φ 0,
simply choose p e A\C and use in place of 31 the family SIP of Lemma
1.2.

Now, μ ^ μ' implies SI = S(A; F) for some <A; F>eK(μ'). Let
jr* — {/1 / G ί7, / i s m-ary for some m ^ k}. (Note that F* is non-
void by (ii).) Let A* denote the subalgebra generated by C in the
algebra <A; F*>. We show that A* e SI; clearly it suffices to show
that A* is closed under F\F*. Let feF\F*; then / is m-ary for
some m < k, and so, for xOj , #„_,_ei*, we have {#0, , #«-i} e 31,
whence f(x0, , ̂ ^ J e A*. Thus A* e SI, and it follows that A* = A.
Therefore No < J"* = I A* \ g | C| | J P * | . V Ô = Σ G"« I ^ ^ *), and so
jC£fc ^ /ίί, for some kf ^ A:.

We shall now begin to define normal forms which generalize those
for countable multiplicity types. We shall ultimately give a complete
definition of a special class ^V^ of multiplicity types, but for now
we define only what we mean by μ e Λ^* if μ is of finite length.

DEFINITION. If μ is of finite length, we say that μ e ^Λ^ if and
only if l(μ) = 0 or the following hold:

( i ) Either μ0 = s(μ) > μt for all i > 0, or μ0 g 1; if μ0 ^ No,
then μ Q ^ l .

(ii) If 0 < μi ^ No, then i = 0 or i = ϊ(/^).
(iii) If 0 < i < i then μ{ = 0 or ^ > /i i#

Note that the normal forms obtained for countable multiplicity
types of finite length are members of

THEOREM 2.3. Every multiplicity type of finite length is equiv-
alent to a unique member of Λ^** Furthermore, if μe^yf^l and μ
has finite length, then μ is minimal in the pointwise ordering of
all multiplicity types equivalent to it.

Proof. First we show the existence of the representation, and
then the uniqueness. Let μ have finite length n. Clearly we may
assume n Φ 0. If /i is countable, then by Lemma 2.2 we are done. So
suppose μ is not countable, and let m0 be the largest integer such that
μmQ = max {μt | i ^ 0, μ< > No} Let mx be the largest integer such
that μmi — max {μi \ i > m0, μ{ > No} Continue this process until it
terminates, say with mq, and let M = {m0, , m j . Define μ* as
follows. For i > 0, let (^5}ί)ί = μt if i e Λί or i = w, and (μ*); = 0
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otherwise. Finally, let

0 if μ0 = 0

1 if μ0 Φ 0 and m1

μύ if m, = 0 .

It is evident that μ ^> μ* eΛΊ. Now decompose each of μ and /**
into the sum of a countable multiplicity type and an uncountable
multiplicity type. Clearly the countable part will be the same in each
case, so it remains to show that aμ ^ Σ (em(μm) \ me Af), where aμ
is defined by {aμ)i = μt if μi > y$0, and (aμ)i = 0 otherwise.

For each k ^ q, we define a multiplicity type μk as follows.
μ°i = μ{ if i ^ m0, and μi = 0 otherwise. For 0 < k <J g, define μfc

by: μf = ^ if m ^ < i ^ mfc, and μ* = 0 otherwise. Thus, for mke M
it is clear that s(μh) = μmfc, whence μfc <̂  emk(μmk) by Lemma 1.1.
Therefore

^ Σ (μk\ 0 ^ fc ^ q)

^ Σ {εΛμm) I w& ^ -M") and so μ = μ* .

To show uniqueness, suppose μ and μ' are members of ^K^ having
finite length, and μ = μ\ We show that μ — μ\ Let n = l(μ). By
Theorem 1.2, μ and /*' are compatible, l{μ') = n, and μn = μ'n. By
prior results we may assume that n Φ 0 and that μ is not countable.
Suppose μ Φ μf and let k be the largest integer such μk Φ μk. With-
out loss of generality, we suppose μk > μ'k, and consider two cases.

Case 1. Suppose k — 0 and μ0 <£ 1. Clearly ^ 0 ^ 0, so /i0 = 1,
whence μ'o — 0. But this contradicts the fact that μ accepts μ'.

Case 2. Suppose either k — 0 and /̂ 0 > 1, or k Φ 0. In either
event, μk > μs for all i > k. Noting that μn = μ'n implies k Φ n, we
have μk > ^ 0 , so Theorem 2.2 asserts the existence of an integer
kr ^ k such that μk ^ μk. If k — k' this is a clear contradiction,
while if k! > A: then, by the maximality of k, μk, = //A, < μΛ, a con-
tradiction, whence μ = μf. It is evident from the construction of μ*
that the minimality statement holds, and so the theorem is proved.

C Multiplicity types of infinite length. We now complete the
definition of the class <yVl.

DEFINITION. If μ has infinite length, we say that μ e <yV"* if and
only if the following hold:

( i ) Either μ0 = s(μ) > μ{ for each i > 0, or μ0 ^ 1.
(ii) If 0 < μ,< Ho, then i = 0.
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(iii) There is an integer r = r(μ) > 0 such that:
(iiia) For i < r, 0 < i < j implies ^ — 0 or μ{ > μj9

(iiib) For all i ^ r, μt = μr.
(iiic) μr_x > μr if r > 1.
We shall show that every multiplicity type of infinite length has

a unique representation in

LEMMA 2.4. Let μ and μf be multiplicity types and suppose
that for each i > 0 either μ\ = 0 or μ\ is infinite. Then μ ^ μr if
and only if μf accepts μ and μk^^£A{μf

i\i^k) for all k.

Proof. Suppose μf accepts μ and μk ^ Σ (& \i ^ k) for all k,
and define μ* as follows, μt = X (μ^ \ i >̂ k) for k Φ 0, and

JO if Λ = 0
js(μ') otherwise .

Clearly it suffices to show that μ* ̂  μ'. To this end, let SI e T(μ*);
% = S(A; F) where <A; F> e K(μ*). For each k, let

Fk = {f\feF,f is Λ-ary}.

For each k such that μ* Φ 0, we may write Fk = \J (Fkfi \ί*>k),
where | Fkίi \ = μ\. For each fc > 0, for each i ^ k, and for each
/ eFkti, define an i-ary operation /* by

/*(α?0, , a?iel) = /(a?0, , %-i)

for all x0, , α?^ e A. If //0* ̂  0, then for each i ^ 0 and for each
ceA which is the value of a nullary operation in FOtl, define an i-
ary operation having the constant value c. Letting Ff denote the
set of operations defined in this way, it is routine to check that
31 = S(A; F') G T(μf), whence μ* ̂  μ'. The proof of the converse
statement is omitted because it is very similar to the proof that
μ <; μf implies (v) in Theorem 2.2.

COROLLARY. Let μ and μf be multiplicity types and suppose μf

has infinite length and is a member of ^V^. Then μ ^ μ' if and
only if μf accepts μ and for each k there is a k!'^ k with μk ^ μk,.

Proof. Since μf satisfies the hypothesis of the lemma, one need
only verify that for μ'eisK*, the second condition of the lemma is
equivalent to the second condition of the corollary.

THEOREM 2.4. Every multiplicity type of infinite length is
equivalent to a unique member of
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Proof. First we show the existence of the representation and
then the uniqueness. Since Lemma 2.3 gives the representation for
countable multiplicity types of infinite length, let μ be an uncountable
multiplicity type of infinite length.

If {i I μ{ = s(μ)} is either void or infinite, let μ* = ζ(s(μ)) if μ0 = 0,
and μ* = ζ(s(μ)) if μ0 Φ 0. Clearly μ* e ^K* and μ = μ* by Lemma 2.4.

If, however, 0 < | {i \ μ{ = s(μ)} j < fc$0, let m0 = max {i | μ{ = s(μ)},
and let s^μ) = Σ (/^ | i > m0). If {i jtβ€ — s^μ)} is either void or in-
finite, define xμ and μι as follows.

1μ. =z μ{ if i <^ m0 and */*» = 0 if i > m

μ\ = 0 if i g m0 and μj = /^ if i > m
0

0 .

Let ^ be the unique member of ^ < ; equivalent to ιμ. Noting that
μ1 = ζ»0(Si(/0) by Lemma 2.4, we define μ* = X + ζ^is^μ)), whence
μ = ''•μ + μ1 = μ* and it is clear that ^^ e ^ i

If 0 < I {ΐ [ ̂  = s^/i)} I < Ko, let m1 = max {% \ μi = s ^ ) } and let
s2(^) = Σ (j"< I i > m j . If {i I μ< = s2(^)} is void or infinite, define 2 ^
and μ2 analogously to γμ and μ1 above, and define μ* = 2μ* + ζWl(s2(/i)).

Proceed in this manner, defining mλ and sk+1(μ) if sΛ(j«) has been
defined and 0 < | {i \ μ{ = sk(μ)} \ < y^0. Since a strictly decreasing
sequence of cardinals must be finite, this process terminates with
some n such that μ* = nμ* + ζmn_λ{sn{μ)).

To show uniqueness, we suppose μ and μ' are members of ^V^
having infinite length, such that μ = μf

m In three steps, we show
that μ = μ'.

(A) μt = μ\ for all i ^ max {r(μ), r{μr)}. For, suppose /£< φ μ\
for such an i. Without loss of generality, we may assume μi > μ\%

By the corollary to Lemma 2.4, there is an i' ^ i such that μ{ ^ μ\t.
Now i' ^ i ^ r(μ') implies //•, = //•, whence μi > μl, a contradiction.

(B) r(μ) = r(/ί'). For, supposing r(μ) ^ r(//') we may assume,
without loss of generality, that r(μ) > r(μ'). Then r(μ) > 1, so by
(iiic) in the definition of Λl, we have μk > μk+ι, where k = r(μ) — 1.
By (A), we have μk+1 = /iί+1. But, since fc ^ f(i"')> w e must have
μ'k+ί = ^'fc. Thus ^Λ > //J = /ij for all j ^ /c, and this contradicts the
corollary to Lemma 2.4.

(C) μi = μ'i for all i < r(μ) = r(/^') This can be proved by an
argument almost identical to the uniqueness proof in Theorem 2.3.
Combining (A), (B), and (C), we have μ = μ1 and the theorem is proved.

3* Maximal normal form and infinitary algebras* We now
define a class ^/~* of multiplicity types with the property that every
multiplicity type has a unique representation in ^ ^ * and every member
of ^V** is maximal in the sense in which every member of Λ^ hav-
ing finite length is minimal.
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DEFINITION. Given a multiplicity type μ, define the multiplicity
type μ* by: (μ*)0 = 0 if μ0 = 0, and (μ% = μt + « 0 ' Σ {μΛ5 > i) if
i > 0 or if i = 0 and jte0 ^ 0. We let ^/"* be the class of all multi-
plicity types having the form μ* for some μ.

THEOREM 3.1. Every multiplicity type is equivalent to a unique
member of Λr*\ specifically, for every μ, μ* is greatest in the point-
wise ordering of all multiplicity types equivalent to μ.

Proof. Consider first a multiplicity type of the form e, (m). If
m ^ Ko, then ε^m) = (ey(m))* by Theorem 2.1. If m > No, then
6j(m) = (εy(m))* by Lemma 1.1.

For any μ, let μ* = Σ ((Si(Λ ))* I J"y ^ °) Then μ = μ* and a
straightforward computation shows that μ* = /£*.

To prove maximality, it suffices to show that for compatible
multiplicity types μ and μ\ if μ' <£ /ι, then /ij. ^ μ£ for all fc. If
Kμ') = ί(i") = ^ < °°, then by Theorem 1.2 μ'n ^ μn = μϊ Thus, by
Theorem 1.2, it suffices to prove that μ'k ^ μt for all k < l(μ).

Suppose 0 < l(μ) and μ'o Φ 0. Then μ0 Φ 0 because μ' accepts
μ, and so s(μ*) = /̂ 0* ^ Ho, whence by Lemma 1.3, μ' ^ μ = μ* im-
plies μί ^ s(μ') ^ s(^*) = /i0*.

Now suppose μ'k Φ 0, where 0 < k < l(μ). Then μf ^ Ho, so we
may assume μk > Ho Thus k < μ'k and following the proof of (v) in
Theorem 2.2, we may apply Lemma 1.2 to reach the desired conclusion.

The uniqueness statement is a direct consequence of the maxim-
ality statement and the easily observed fact that μ = μ* for all
μeΛ^*. Thus the theorem is proved.

Finally we mention that many of our preliminary results can
easily be extended to the case of multiplicity types of algebras having
infinitary operations. Using methods similar to those presented here,
the author has found maximal normal forms for a wide class of in-
finitary multiplicity types. However, the problem of characterizing
the ordering and finding normal forms for all infinitary multiplicity
types remains open.
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