p-AUTOMORPHIC p-GROUPS AND HOMOGENEOUS ALGEBRAS

Larry Dornhoff

Abstract

A p-group was called p-automorphic by Boen, if its automorphism group is transitive on elements of order p. Boen conjectured that if p is odd, then such a p-group is abelian. Let P be a nonabelian p-automorphic p-group, p odd, generated by n elements. Boen proved that $n>3$, and in joint work with Rothaus and Thompson proved that $n>5$. Kostrikin then showed that $n>p+6$, as a corollary of results on homogeneous algebras. In this paper it is shown that $n>2 p+3$, using Kostrikin's methods, and his proof is somewhat simplified by eliminating special case considerations for small values of p.

The above results and the following terminology may be found in [1], [2], and [4]. Let A be a finite-dimensional algebra over the field K, where if $x, y \varepsilon A$ and $\lambda \varepsilon K$, we assume bilinearity and the law $(\lambda x) \circ y=\lambda(x \circ y)=x \circ(\lambda y)$, but associativity is not assumed. Following [4], A is said to be homogeneous if the automorphism group Γ of A is transitive on $A^{*}=A-\{0\}$, anticommutative if $x \circ y+y \circ x=0$, and $n i l$ if all endomorphisms $K_{a}: x \rightarrow x \circ a$ are nilpotent.

For a fixed odd prime p, suppose that P is a nonabelian p-automorphic p-group with minimal number n of generators. It is shown in [1] that P has a p-automorphic quotient group \bar{P} with the same number of generators, where the Frattini subgroup $\Phi(\bar{P})$ is central and is the direct product of n cyclic groups of equal order p^{m}. If we consider $A=\bar{P} / \Phi(\bar{P})$ as a vector space over $G F(p)$, we define a multiplication in A as follows: for $x=a \Phi(\bar{P}), y=b \Phi(\bar{P})$ in A, a coset $z=c \Phi(\bar{P})$ is uniquely determined, such that $[a, b]=c^{p^{m}}$. Define $x \circ y=z$. Then it is clear that A becomes an anticommutative homogeneous algebra, and Theorem 1 of [2] asserts that A is nil.

It is proved in [4] that if A is a finite-dimensional homogeneous algebra with nontrivial multiplication over a field K of characteristic not 2 , then A is an anticommutative nil algebra and K is a finite field of q elements, where $q<\operatorname{dim} A-6$. In this paper we shall prove:

Theorem. Let A be a homogeneous anticommutative nil algebra with nontrivial multiplication of dimension n over the field K of q elements, q odd. Then $n>2 q+3$.

This result immediately implies the corresponding result for p -
automorphic p-groups.
2. In proving the theorem, we use the following notation. A is a homogeneous anticommutative nil algebra of dimension n over the field K of q elements, q odd, and Γ its automorphism group. We choose integers m and r such that

$$
\operatorname{dim} A R_{x}=m, R_{x}^{r}=0, R_{x}^{r-1} \neq 0, \text { all } x \neq 0 \text { in } A
$$

Of course $r \leqq m+1$. Since Γ is transitive on $A-\{0\}, q^{n}-1$ divides the order of Γ. Let s be a prime dividing $q^{n}-1$, but not dividing $q^{t}-1$ for any $t<n$; the existence of s is proved in [3]. (We may assume $n>2$; for the case $n=2$, the theorem follows from the relation $r>q$, soon to be proved.) Let $\sigma \in \Gamma$ have order s; then σ is irreducible on the vector space A. Fix a nonzero element $e \in A$. Then A is spanned by $e, e \sigma, \cdots, e \sigma^{n-1}$; let

$$
e \sigma^{n}=\sum_{j=1}^{n} a_{j} e \sigma^{n-j}, a_{j} \in K
$$

where σ satisfies the irreducible polynomial $P(X)=X^{n}-\sum_{j=1}^{n} a_{j} X^{n-j}$.
Consider the vectors $e \sigma^{i} \circ e, 0 \leqq i \leqq n-1$. We see that

$$
\begin{aligned}
\left(e \sigma^{i} \circ e\right) \sigma^{n-i}= & e \sigma^{n} \circ e \sigma^{n-i}=\left(\sum_{j=1}^{n} a_{j} e \sigma^{n-j}\right) \circ e \sigma^{n-i} \\
= & \sum_{j=1}^{n} a_{j}\left(e \sigma^{n-j} \circ e \sigma^{n-i}\right)=\sum_{j \leq i} a_{j}\left(e \sigma^{i-j} \circ e\right) \sigma^{n-i} \\
& -\sum_{j>i} a_{j}\left(e \sigma^{j-i} \circ e\right) \sigma^{n-j}=\sum_{0 \leq k<i} a_{i-k}\left(e \sigma^{k} \circ e\right) \sigma^{n-i} \\
& -\sum_{k=1}^{n-i} a_{i+k}\left(e \sigma^{k} \circ e\right) \sigma^{n-i-k} .
\end{aligned}
$$

Transferring all terms to the right-hand side, we have a relation

$$
A R_{e} B=0,
$$

where $B=\left(b_{i j}\right)_{0 \leq i, j \leq n-1}$, as a matrix over $\bar{K}=K(\sigma)$, say, with row index j and column index i, is given as follows: Define $a_{0}=-1, a_{k}=0$ if $k<0$ or $k>n$. Then

$$
b_{i j}=a_{i-j} \sigma^{n-i}-a_{i+j} \sigma^{n-i-j}
$$

We look at this matrix B quite closely. If n is even, let B_{1} be the lower right-hand $(n / 2) \times(n / 2)$ minor. $\quad B_{1}$ is a triangular matrix with

$$
\operatorname{Det} B_{1}=(-1)^{n / 2} \sigma^{1+2+\cdots+((n-2) / 2)}\left(\sigma^{n / 2}+a_{n}\right) \neq 0
$$

so rank $B \geqq n / 2$. If n is odd, let B_{1} be the lower right-hand
$(n+1) / 2 \times(n+1) / 2$ minor. $\quad B_{1}$ is no longer triangular, but we easily compute

Det $B_{1}=(-1)^{(n-3) / 2} \sigma^{1+2+\cdots+((n-3) / 2)}\left(\sigma^{n}+a_{n-1} \sigma^{(n+1) / 2}+a_{1} a_{n} \sigma^{(n-1) / 2}-a_{n}^{2}\right)$.
If this is 0 and $n>3$, we see that $P(X)$ reduces to $P(X)=X^{n}-1$, so $\sigma^{2 n}=1$, a contradiction to the fact $s \equiv 1(\bmod n)$ (see [3]). If $n=3$, then $P(X)=X^{3}-a X^{2}+a X-1$ and $P(X)$ is reducible. Hence rank $B \geqq(n+1) / 2$. We conclude that in any case

$$
\text { rank } R_{e}=\operatorname{dim} A R_{e}=m \leqq \frac{n}{2} .
$$

The next step in the proof is to show that $r>q+1$; this is done in [4], but we repeat it here, as the final case simplifies.

First suppose $r \leqq q$. Then we can linearize the identity

$$
\left(R_{x}+\alpha R_{z}\right)^{r}=R_{x+\alpha z}^{r}=0,
$$

all $\alpha \in K$, obtaining

$$
\sum_{i=0}^{r-1} R_{x}^{i} R_{z} R_{x}^{r-1-i}=0
$$

Applying to $y \in A$ and using anticommutativity,

$$
y \cdot \sum_{i=0}^{r-1} R_{x}^{i} R_{z} R_{x}^{r-1-i}=-\sum_{i=0}^{r-1} z R_{y R_{x}} i R_{x}^{r-1-i}=0,
$$

and hence

$$
\sum_{i=0}^{r-1} R_{y R_{x}} i R_{x}^{r-1-i}=0 .
$$

The equation $e=a \circ e$ is not possible, since otherwise $e R_{a}^{k}=$ $(-1)^{k} e \neq 0$, and R_{a} is not nilpotent. Hence $a \notin A R_{c}$. We choose a basis $\left\{e_{1}, \cdots, e_{r_{1}} ; e_{r_{1}+1}, \cdots, e_{r_{1}+r_{2}} ; \cdots e_{n}\right\}, e=e_{n}$, such that the nilpotent transformation R_{e} is in Jordan canonical form. Thus we have

$$
r=r_{1} \geqq r_{2} \geqq \cdots ; e_{i} R_{e_{n}}=e_{i+1} \text { if }
$$

$r_{1}+\cdots+r_{k-1}+1 \leqq i<r_{1}+\cdots+r_{k}$, some $k ; e_{r_{1}+\cdots+r_{k}} R_{e_{n}}=0$.
Setting $y=e_{1}, x=e_{n}$ in the last identity, we have

$$
R_{e_{r}}+\left(\sum_{i=0}^{r-2} R_{e_{i+1}} R_{e_{n}}^{r-2-i}\right) R_{e_{n}}=0 .
$$

Hence $A R_{e_{r}} \subseteq A R_{e_{n}}$; but $\operatorname{dim} A R_{e_{r}}=\operatorname{dim} A R_{e_{n}}$, so $A R_{e_{r}}=A R_{e_{n}}$. Thus $e_{r}=e_{1} R_{e_{n}}^{r-1} \in A R_{e_{n}}=A R_{e_{r}}$, a contradiction. We conclude $r>q$.

Now suppose $r=q+1$. The identity $R_{x}^{r}=0$ cannot be linearized, but the linearization process does enable us to prove

$$
R_{y} R_{x}^{q-1} R_{z}+R_{z} R_{x}^{q-1} R_{y}+f\left(R_{x}, R_{y}, R_{z}\right) R_{x}+R_{x} g\left(R_{x}, R_{y}, R_{z}\right)=0,
$$

where f and g are homogeneous polynomials, linear in R_{y} and R_{z}. (Expand $\left(R_{x}+\alpha R_{y}+\beta R_{z}\right)^{q+1}=0$, use $\alpha=\alpha^{q}, \beta=\beta^{q}$ to combine two terms, and then use van der Monde determinants as in the usual linearization to show all terms are 0 . The coefficient of $\alpha \beta$ is the left side of the desired equation.) Applying this to x and using anticommutativity,

$$
0=z R_{y R_{z}^{q}}-z R_{x}^{q} R_{y}-z \bar{f}\left(R_{x}, R_{y}\right) R_{x} \text {, some } \bar{f},
$$

showing that

$$
R_{y R_{x}^{q}}-R_{x}^{q} R_{y}-\bar{f}\left(R_{x}, R_{y}\right) R_{x}=0 .
$$

We choose a canonical basis for $R_{e_{n}}$ as before and set $x=e_{n}, y=e_{1}$ in the last identity, obtaining

$$
R_{e_{r}}=R_{e_{n}}^{q} R_{e_{1}}+f\left(R_{e_{n}}, R_{e_{1}}\right) R_{e_{n}} .
$$

For $i \notin\left\{1, r_{1}+1, r_{1}+r_{2}+1, \cdots\right\}$, we see

$$
e_{i} R_{e_{r}}=e_{i} \bar{f}\left(R_{e_{n}}, R_{e_{1}}\right) R e_{n} \in A R_{e_{n}} .
$$

Also,

$$
e_{1} R_{e_{r}}=e_{r} R_{e_{1}}+e_{1} \bar{f}\left(R e_{n}, R_{e_{1}}\right) R_{e_{n}},
$$

so since the characteristic is odd, $e_{1} R_{e_{r}} \in A R_{e_{n}}$. If $r_{2}<r_{1}$, then $e_{i} R_{e_{n}}^{q}=0$ for $i \geqq r$, and we conclude that $A R_{e_{r}}=A R_{e_{n}}$, which we know to be impossible. Hence $r_{2}=r_{1}=r$. Then $n \geqq 2 r+1=2 q+3$. If we have equality, then the canonical form shows $m=\operatorname{dim} A R_{e_{n}}=$ $2 r-2=2 q>(n / 2)$, a contradiction. Hence $n>2 q+3$, and we are done in this case.

Thus we now may assume $r \geqq q+2, r \leqq m+1, m \leqq n / 2$. If n is even, we have $q+2 \leqq r \leqq m+1 \leqq(n / 2)+1$, or $n \geqq 2 q+2$, so we may assume $n=2 q+2$; then equality holds everywhere, and $r=q+2, m=q+1$. If n is odd, we have

$$
q+2 \leqq r \leqq m+1 \leqq \frac{n-1}{2}+1, \text { or } n \geqq 2 q+3,
$$

so we may assume $n=2 q+3$; then equality holds everywhere, and $r=q+2, m=q+1$. In either case, we note $n \leqq 2 m+1$.

Since q is odd and $q^{n}-1$ divides the order of Γ, we can choose an element $\tau \in \Gamma$ of order 2. Define

$$
B=\{a \in A \mid \tau(a)=a\}, C=\{a \in A \mid \tau(a)=-a\} .
$$

Then A is a direct sum $A=B \oplus C$ of its subspaces B and C. Certainly
$C \neq 0$. If $B=0$, choose $C_{1}, C_{2} \in C$ with $c_{1} \circ c_{2} \neq 0$. Then $c_{1} \circ c_{2}=$ $\left(-c_{1}\right) \circ\left(-c_{2}\right)=\tau\left(c_{1}\right) \circ \tau\left(c_{2}\right)=\tau\left(c_{1} \circ c_{2}\right)=-c_{1} \circ c_{2}$, a contradiction. Define $\operatorname{dim} B=k>0, \operatorname{dim} C=n-k$. It is clear that $B \circ B \subseteq B, C \circ C \subseteq B$, $B \circ C \subseteq C$. Hence if $b \in B$, then $B R_{b} \subseteq B, C R_{b} \subseteq C$; of course the nilpotency index r of R_{b} is the maximum of its nilpotency indexes on the subspaces B and C.

Suppose first $B \circ C=0$. Then for any $b \in B^{\sharp}, A R_{b}=B R_{b}$ has dimension $m ; b \notin B R_{b}$, so $\operatorname{dim} B \geqq m+1$, proving $\operatorname{dim} C \leqq m$. For any $c \in C^{\sharp}, c \circ c=0$, so since $A R_{c}=C R_{c}$, we have

$$
\operatorname{dim} A R_{c}=\operatorname{dim} C R_{c}<\operatorname{dim} C \leqq m,
$$

a contradiction.
We have thus proved $B \circ C \neq 0$. Pick $b \in B$ with $C R_{b} \neq 0 ; C R_{b} \subseteq C$, so $A R_{b}=B R_{b} \oplus C R_{b}$, and $\operatorname{dim} B R_{b} \leqq m-1$. We look at the canonical form of R_{b} on B and on C, and use the fact

$$
r=m+1 ; \operatorname{dim} B R_{b} \leqq m-1
$$

implies $\left(R_{b} \mid B\right)^{m}=0$, so $\left(R_{b} \mid C\right)^{m} \neq 0, \quad$ and $\operatorname{dim} C R_{b} \geqq m$. Hence $\operatorname{dim} C R_{b}=m, \operatorname{dim} C \geqq m+1, \operatorname{dim} B \leqq m$. This means that for any $b^{\prime} \in B^{\sharp}, \operatorname{dim} B R_{b}^{\prime}<m$, so $C R_{b}^{\prime} \neq 0$; the same argument then applies for b^{\prime} as for b. We conclude that $B \circ B=0$.

Let c be any element of C^{\ddagger}. Since $R_{c}^{m} \neq 0$ and $\operatorname{dim} A R_{c}=m$, we have $\operatorname{dim} A R_{c}^{2}=m-1$. Since $B R_{c} \subseteq C$ and $C R_{c} \subseteq B$, we have

$$
\operatorname{dim} A R_{c}=m=\operatorname{dim} B R_{c}+\operatorname{dim} C R_{c} .
$$

Also,

$$
A R_{c}^{2}=\left(B R_{c}+C R_{c}\right) R_{c} \cong C R_{c}+B R_{c}
$$

Let $\beta_{i}=\operatorname{dim} B R_{c}^{i}, \gamma_{i}=\operatorname{dim} C R_{c}^{i}, i=1,2$. We see that $\beta_{1}+\gamma_{1}=m$, $\beta_{2}+\gamma_{2}=m-1, \beta_{2} \leqq \gamma_{1}, \gamma_{2} \leqq \beta_{1}$, and of course $\beta_{2} \leqq \beta_{1}, \gamma_{2} \leqq \gamma_{1}$. Since $m=q+1$ is even, let $m=2 l$; the only solutions for the β_{i} and γ_{i} have $\beta_{1}=\gamma_{1}=l$. So $\operatorname{dim} B R_{c}=l$, for any $c \in C^{*}$.

We now consider separately the cases $n=2 q+2$ and $n=2 q+3$. Let S denote the set of all ordered pairs $\langle b, c\rangle, b \in B, c \in C$, with $b \circ c=0$. In each case we compute the order $|S|$ in two different ways to obtain a contradiction.

When $n=2 q+2=2 m=4 l$, we know that for any

$$
b \in B^{\sharp}, \operatorname{dim} C R_{b}=m,
$$

so

$$
\operatorname{dim}\{c \in C \mid b \circ c=0\}=(n-k)-m=m-k,
$$

and for any

$$
c \in C^{\#}, \operatorname{dim} B R_{c}=l, \text { so } \operatorname{dim}\{b \in B \mid b \circ c=0\}=k-l .
$$

Hence

$$
|S|=\left(q^{k}-1\right) q^{m-k}+q^{n-k}
$$

and

$$
|S|=\left(q^{n-k}-1\right) q^{k-l}+q^{k} .
$$

Therefore

$$
q^{n-k}+q^{m}-q^{m-k}=q^{n-l}+q^{k}-q^{k-l}
$$

We know $\operatorname{dim} C=n-k \geqq m+1$, so $k<m$. Equating highest terms, the equation must imply $k=l$. But now the left side is divisible by q and the right is not, a contradiction.

When $n=2 q+3=2 m+1=4 l+1$, then for any

$$
b \in B^{\sharp}, \operatorname{dim}\{c \in C \mid b \circ c=0\}=(n-k)-m=m-k+1
$$

and for any

$$
c \in C^{\#}, \operatorname{dim}\{b \in B \mid b \circ c=0\}=k-l .
$$

Hence

$$
|\mathbf{S}|=\left(q^{k}-1\right) q^{m-k+1}+q^{n-k}
$$

and

$$
|S|=\left(q^{n-k}-1\right) q^{k-l}+q^{k},
$$

showing that

$$
q^{m+1}-q^{m+1-k}+q^{n-k}=q^{n-l}-q^{k-l}+q^{k} .
$$

The largest terms on the two sides are necessarily equal, so $n-k=$ $n-l, k=l$. But then the left side is divisible by q and the right is not, the final contradiction.

Remark. Following [5], one can also consider semi-p-automorphic p-groups, in which the automorphism group is transitive on subgroups of order p, and the corresponding notion of spa-algebras, in which the automorphism group is transitive on one-dimensional subspaces. The arguments above then show $n>2 p+1$. To prove $n>2 p+3$, we require the involution τ in the automorphism group $\Gamma ; \tau$ does exist, since otherwise Γ would be of odd order and hence solvable, and the case of a solvable Γ is treated in [5].

Added in proof. Ernest Schult has announced a complete solution of Boen's problem in Bull. Amer. Math. Soc. 74 (1968), 268-270.

References

1. J. R. Boen, On p-automorphic p-groups, Pacific J. Math. 12 (1962), 813-815.
2. J. R. Boen, O. Rothaus, and J. Thompson, Further results on p-automorphic pgroups, Pacific J. Math. 12 (1962), 817-821.
3. L. E. Dickson, On the cyclotomic function, Amer. Math. Monthly 12 (1905), 86-89.
4. A. I. Kostrikin, On homogeneous algebras, Izvestia Acad. Nauk SSSR 29 (1965), 471-483.
5. E. Schult, On semi-p-automorphic groups I (to appear)

Received August 28, 1967. This research partially supported by Army Contract SAR/Da-31-124-ARO-D-336.

Yale University

