p-AUTOMORPHIC *p*-GROUPS AND HOMOGENEOUS ALGEBRAS

LARRY DORNHOFF

A p-group was called p-automorphic by Boen, if its automorphism group is transitive on elements of order p. Boen conjectured that if p is odd, then such a p-group is abelian. Let P be a nonabelian p-automorphic p-group, p odd, generated by n elements. Boen proved that n > 3, and in joint work with Rothaus and Thompson proved that n > 5. Kostrikin then showed that n > p + 6, as a corollary of results on homogeneous algebras. In this paper it is shown that n > 2p + 3, using Kostrikin's methods, and his proof is somewhat simplified by eliminating special case considerations for small values of p.

The above results and the following terminology may be found in [1], [2], and [4]. Let A be a finite-dimensional algebra over the field K, where if $x, y \in A$ and $\lambda \in K$, we assume bilinearity and the law $(\lambda x) \circ y = \lambda(x \circ y) = x \circ (\lambda y)$, but associativity is not assumed. Following [4], A is said to be homogeneous if the automorphism group Γ of A is transitive on $A^* = A - \{0\}$, anticommutative if $x \circ y + y \circ x = 0$, and nil if all endomorphisms $K_a: x \to x \circ a$ are nilpotent.

For a fixed odd prime p, suppose that P is a nonabelian p-automorphic p-group with minimal number n of generators. It is shown in [1] that P has a p-automorphic quotient group \overline{P} with the same number of generators, where the Frattini subgroup $\Phi(\overline{P})$ is central and is the direct product of n cyclic groups of equal order p^m . If we consider $A = \overline{P}/\Phi(\overline{P})$ as a vector space over GF(p), we define a multiplication in A as follows: for $x = a\Phi(\overline{P}), y = b\Phi(\overline{P})$ in A, a coset $z = c\Phi(\overline{P})$ is uniquely determined, such that $[a, b] = c^{p^m}$. Define $x \circ y = z$. Then it is clear that A becomes an anticommutative homogeneous algebra, and Theorem 1 of [2] asserts that A is nil.

It is proved in [4] that if A is a finite-dimensional homogeneous algebra with nontrivial multiplication over a field K of characteristic not 2, then A is an anticommutative nil algebra and K is a finite field of q elements, where $q < \dim A - 6$. In this paper we shall prove:

THEOREM. Let A be a homogeneous anticommutative nil algebra with nontrivial multiplication of dimension n over the field K of q elements, q odd. Then n > 2q + 3.

This result immediately implies the corresponding result for p-

automorphic *p*-groups.

2. In proving the theorem, we use the following notation. A is a homogeneous anticommutative nil algebra of dimension n over the field K of q elements, q odd, and Γ its automorphism group. We choose integers m and r such that

$$\dim AR_x = m, R_x^r = 0, R_x^{r-1} \neq 0, ext{ all } x \neq 0 ext{ in } A$$
 .

Of course $r \leq m + 1$. Since Γ is transitive on $A - \{0\}, q^n - 1$ divides the order of Γ . Let s be a prime dividing $q^n - 1$, but not dividing $q^t - 1$ for any t < n; the existence of s is proved in [3]. (We may assume n > 2; for the case n = 2, the theorem follows from the relation r > q, soon to be proved.) Let $\sigma \in \Gamma$ have order s; then σ is irreducible on the vector space A. Fix a nonzero element $e \in A$. Then A is spanned by $e, e\sigma, \dots, e\sigma^{n-1}$; let

$$e\sigma^n=\sum\limits_{j=1}^na_je\sigma^{n-j}$$
 , $a_j\in K$,

where σ satisfies the irreducible polynomial $P(X) = X^n - \sum_{j=1}^n a_j X^{n-j}$.

Consider the vectors $e\sigma^i \circ e, 0 \leq i \leq n-1$. We see that

$$\begin{split} (e\sigma^{i} \circ e)\sigma^{n-i} &= e\sigma^{n} \circ e\sigma^{n-i} = \left(\sum_{j=1}^{n} a_{j}e\sigma^{n-j}\right) \circ e\sigma^{n-i} \\ &= \sum_{j=1}^{n} a_{j}(e\sigma^{n-j} \circ e\sigma^{n-i}) = \sum_{j \leq i} a_{j}(e\sigma^{i-j} \circ e)\sigma^{n-i} \\ &- \sum_{j > i} a_{j}(e\sigma^{j-i} \circ e)\sigma^{n-j} = \sum_{0 \leq k < i} a_{i-k}(e\sigma^{k} \circ e)\sigma^{n-i} \\ &- \sum_{k=1}^{n-i} a_{i+k}(e\sigma^{k} \circ e)\sigma^{n-i-k} \end{split}$$

Transferring all terms to the right-hand side, we have a relation

$$AR_{e}B=0$$
,

where $B = (b_{ij})_{0 \le i,j \le n-1}$, as a matrix over $\overline{K} = K(\sigma)$, say, with row index j and column index i, is given as follows: Define $a_0 = -1$, $a_k = 0$ if k < 0 or k > n. Then

$$b_{ij}=a_{i-j}\sigma^{n-i}-a_{i+j}\sigma^{n-i-j}$$
 .

We look at this matrix B quite closely. If n is even, let B_1 be the lower right-hand $(n/2) \times (n/2)$ minor. B_1 is a triangular matrix with

Det
$$B_1 = (-1)^{n/2} \sigma^{1+2+\dots+\{(n-2)/2\}} (\sigma^{n/2} + a_n) \neq 0$$
,

so rank $B \ge n/2$. If n is odd, let B_1 be the lower right-hand

(n+1)/2 imes (n+1)/2 minor. B_1 is no longer triangular, but we easily compute

Det
$$B_1 = (-1)^{(n-3)/2} \sigma^{1+2+\dots+\{(n-3)/2\}} (\sigma^n + a_{n-1} \sigma^{(n+1)/2} + a_1 a_n \sigma^{(n-1)/2} - a_n^2)$$
 .

If this is 0 and n > 3, we see that P(X) reduces to $P(X) = X^n - 1$, so $\sigma^{2n} = 1$, a contradiction to the fact $s \equiv 1 \pmod{n}$ (see [3]). If n = 3, then $P(X) = X^3 - aX^2 + aX - 1$ and P(X) is reducible. Hence rank $B \ge (n + 1)/2$. We conclude that in any case

$$\operatorname{rank}\ R_{\scriptscriptstyle e} = \dim AR_{\scriptscriptstyle e} = m \leqq rac{n}{2}$$
 .

The next step in the proof is to show that r > q + 1; this is done in [4], but we repeat it here, as the final case simplifies.

First suppose $r \leq q$. Then we can linearize the identity

$$(R_x + lpha R_z)^r = R_{x+lpha z}^r = 0$$
 ,

all $\alpha \in K$, obtaining

$$\sum_{i=0}^{r-1} R_x^i R_z R_x^{r-1-i} = 0$$
 .

Applying to $y \in A$ and using anticommutativity,

$$y \cdot \sum\limits_{i=0}^{r-1} R_x^i R_z R_x^{r-1-i} = - \sum\limits_{i=0}^{r-1} z R_{y_{Rx}} i R_x^{r-1-i} = 0$$
 ,

and hence

$$\sum\limits_{i=0}^{r-1} R_{yR_x} i R_x^{r-1-i} = 0$$
 .

The equation $e = a \circ e$ is not possible, since otherwise $eR_a^k = (-1)^k e \neq 0$, and R_a is not nilpotent. Hence $a \notin AR_e$. We choose a basis $\{e_1, \dots, e_{r_1}; e_{r_1+1}, \dots, e_{r_1+r_2}; \dots e_n\}$, $e = e_n$, such that the nilpotent transformation R_e is in Jordan canonical form. Thus we have

$$r=r_{_1}\geqq r_{_2}\geqq \cdots; e_iR_{e_m}=e_{i+1} ext{ if }$$

 $r_1 + \cdots + r_{k-1} + 1 \leq i < r_1 + \cdots + r_k$, some $k; e_{r_1 + \cdots + r_k} R_{e_n} = 0$. Setting $y = e_1, x = e_n$ in the last identity, we have

$$R_{e_r} + \Bigl(\sum\limits_{i=0}^{r-2} R_{e_{i+1}} R_{e_n}^{r-2-i} \Bigr) R_{e_n} = 0$$
 .

Hence $AR_{e_r} \subseteq AR_{e_n}$; but dim $AR_{e_r} = \dim AR_{e_n}$, so $AR_{e_r} = AR_{e_n}$. Thus $e_r = e_1 R_{e_n}^{r-1} \in AR_{e_n} = AR_{e_r}$, a contradiction. We conclude r > q.

Now suppose r = q + 1. The identity $R_x^r = 0$ cannot be linearized, but the linearization process does enable us to prove

LARRY DORNHOFF

 $R_y R_x^{q-1} R_z + R_z R_x^{q-1} R_y + f(R_x, R_y, R_z) R_x + R_x g(R_x, R_y, R_z) = 0$,

where f and g are homogeneous polynomials, linear in R_y and R_z . (Expand $(R_x + \alpha R_y + \beta R_z)^{q+1} = 0$, use $\alpha = \alpha^q$, $\beta = \beta^q$ to combine two terms, and then use van der Monde determinants as in the usual linearization to show all terms are 0. The coefficient of $\alpha\beta$ is the left side of the desired equation.) Applying this to x and using anticommutativity,

$$0=zR_{yR_x^q}-zR_x^qR_y-zar{f}(R_x,R_y)R_x, ext{ some }ar{f},$$

showing that

$$R_{yR_{x}^{q}}-R_{x}^{q}R_{y}-ar{f}(R_{x},R_{y})R_{x}=0$$
 .

We choose a canonical basis for R_{e_n} as before and set $x = e_n, y = e_1$ in the last identity, obtaining

$$R_{e_r} = R^q_{e_n} R_{e_1} + f(R_{e_n}, R_{e_1}) R_{e_n} \;.$$

For $i \notin \{1, r_1 + 1, r_1 + r_2 + 1, \cdots \}$, we see $e_i R_{e_r} = e_i \overline{f}(R_{e_n}, R_{e_1}) Re_n \in AR_{e_n} \;.$

Also,

$$e_1R_{e_r} = e_rR_{e_1} + e_1\overline{f}(Re_n, R_{e_1})R_{e_n}$$
 ,

so since the characteristic is odd, $e_1R_{e_r} \in AR_{e_n}$. If $r_2 < r_1$, then $e_iR_{e_n}^q = 0$ for $i \ge r$, and we conclude that $AR_{e_r} = AR_{e_n}$, which we know to be impossible. Hence $r_2 = r_1 = r$. Then $n \ge 2r + 1 = 2q + 3$. If we have equality, then the canonical form shows $m = \dim AR_{e_n} = 2r - 2 = 2q > (n/2)$, a contradiction. Hence n > 2q + 3, and we are done in this case.

Thus we now may assume $r \ge q+2$, $r \le m+1$, $m \le n/2$. If n is even, we have $q+2 \le r \le m+1 \le (n/2)+1$, or $n \ge 2q+2$, so we may assume n = 2q+2; then equality holds everywhere, and r = q+2, m = q+1. If n is odd, we have

$$q+2 \leq r \leq m+1 \leq rac{n-1}{2}+1, \,\, {
m or} \,\, n \geq 2q+3 \,\, ,$$

so we may assume n = 2q + 3; then equality holds everywhere, and r = q + 2, m = q + 1. In either case, we note $n \leq 2m + 1$.

Since q is odd and $q^n - 1$ divides the order of Γ , we can choose an element $\tau \in \Gamma$ of order 2. Define

$$B = \{a \in A \mid \tau(a) = a\}, C = \{a \in A \mid \tau(a) = -a\}$$
.

Then A is a direct sum $A = B \bigoplus C$ of its subspaces B and C. Certainly

450

 $C \neq 0$. If B = 0, choose $C_1, C_2 \in C$ with $c_1 \circ c_2 \neq 0$. Then $c_1 \circ c_2 = (-c_1) \circ (-c_2) = \tau(c_1) \circ \tau(c_2) = \tau(c_1 \circ c_2) = -c_1 \circ c_2$, a contradiction. Define dim B = k > 0, dim C = n - k. It is clear that $B \circ B \subseteq B$, $C \circ C \subseteq B$, $B \circ C \subseteq C$. Hence if $b \in B$, then $BR_b \subseteq B$, $CR_b \subseteq C$; of course the nilpotency index r of R_b is the maximum of its nilpotency indexes on the subspaces B and C.

Suppose first $B \circ C = 0$. Then for any $b \in B^{\sharp}$, $AR_b = BR_b$ has dimension $m; b \notin BR_b$, so dim $B \ge m + 1$, proving dim $C \le m$. For any $c \in C^{\sharp}$, $c \circ c = 0$, so since $AR_c = CR_c$, we have

$$\dim AR_{\scriptscriptstyle e} = \dim CR_{\scriptscriptstyle e} < \dim C \leqq m$$
 ,

a contradiction.

We have thus proved $B \circ C \neq 0$. Pick $b \in B$ with $CR_b \neq 0$; $CR_b \subseteq C$, so $AR_b = BR_b \bigoplus CR_b$, and dim $BR_b \leq m - 1$. We look at the canonical form of R_b on B and on C, and use the fact

$$r = m + 1; \dim BR_b \leq m - 1$$

implies $(R_b | B)^m = 0$, so $(R_b | C)^m \neq 0$, and dim $CR_b \ge m$. Hence dim $CR_b = m$, dim $C \ge m + 1$, dim $B \le m$. This means that for any $b' \in B^{\sharp}$, dim $BR'_b < m$, so $CR'_b \neq 0$; the same argument then applies for b' as for b. We conclude that $B \circ B = 0$.

Let c be any element of C^* . Since $R_c^m \neq 0$ and dim $AR_c = m$, we have dim $AR_c^2 = m - 1$. Since $BR_c \subseteq C$ and $CR_c \subseteq B$, we have

$$\dim AR_{\scriptscriptstyle c} = m = \dim BR_{\scriptscriptstyle c} + \dim CR_{\scriptscriptstyle c}$$
 .

Also,

$$AR_c^2 = (BR_c + CR_c)R_c \subseteq CR_c + BR_c$$
 .

Let $\beta_i = \dim BR_c^i$, $\gamma_i = \dim CR_c^i$, i = 1, 2. We see that $\beta_1 + \gamma_1 = m$, $\beta_2 + \gamma_2 = m - 1$, $\beta_2 \leq \gamma_1, \gamma_2 \leq \beta_1$, and of course $\beta_2 \leq \beta_1, \gamma_2 \leq \gamma_1$. Since m = q + 1 is even, let m = 2l; the only solutions for the β_i and γ_i have $\beta_1 = \gamma_1 = l$. So dim $BR_c = l$, for any $c \in C^*$.

We now consider separately the cases n = 2q + 2 and n = 2q + 3. Let S denote the set of all ordered pairs $\langle b, c \rangle, b \in B, c \in C$, with $b \circ c = 0$. In each case we compute the order |S| in two different ways to obtain a contradiction.

When n = 2q + 2 = 2m = 4l, we know that for any

$$b \in B^*$$
, dim $CR_b = m$,

so

$$\dim \{c \in C \mid b \circ c = 0\} = (n - k) - m = m - k,$$

and for any

$$c \in C^*$$
, dim $BR_c = l$, so dim $\{b \in B \mid b \circ c = 0\} = k - l$.

Hence

$$|S| = (q^k - 1)q^{m-k} + q^{n-k}$$

and

$$|S| = (q^{n-k} - 1)q^{k-l} + q^k$$
 .

Therefore

$$q^{n-k} + q^m - q^{m-k} = q^{n-l} + q^k - q^{k-l}$$

We know dim $C = n - k \ge m + 1$, so k < m. Equating highest terms, the equation must imply k = l. But now the left side is divisible by q and the right is not, a contradiction.

When n = 2q + 3 = 2m + 1 = 4l + 1, then for any

$$b \in B^{*}, \dim \{c \in C \mid b \circ c = 0\} = (n - k) - m = m - k + 1$$
,

and for any

$$c \in C^*$$
, dim $\{b \in B \mid b \circ c = 0\} = k - l$.

Hence

$$|\mathbf{S}| = (q^k - 1)q^{m-k+1} + q^{n-k}$$

and

$$|S| = (q^{n-k} - 1)q^{k-l} + q^k$$
,

showing that

$$q^{m+1} - q^{m+1-k} + q^{n-k} = q^{n-l} - q^{k-l} + q^k$$

The largest terms on the two sides are necessarily equal, so n - k = n - l, k = l. But then the left side is divisible by q and the right is not, the final contradiction.

REMARK. Following [5], one can also consider semi-p-automorphic p-groups, in which the automorphism group is transitive on subgroups of order p, and the corresponding notion of spa-algebras, in which the automorphism group is transitive on one-dimensional subspaces. The arguments above then show n > 2p + 1. To prove n > 2p + 3, we require the involution τ in the automorphism group $\Gamma; \tau$ does exist, since otherwise Γ would be of odd order and hence solvable, and the case of a solvable Γ is treated in [5].

Added in proof. Ernest Schult has announced a complete solution of Boen's problem in Bull. Amer. Math. Soc. 74 (1968), 268-270.

452

References

1. J. R. Boen, On p-automorphic p-groups, Pacific J. Math. 12 (1962), 813-815.

2. J. R. Boen, O. Rothaus, and J. Thompson, Further results on p-automorphic pgroups, Pacific J. Math. 12 (1962), 817-821.

L. E. Dickson, On the cyclotomic function, Amer. Math. Monthly 12 (1905), 86-89.
 A. I. Kostrikin, On homogeneous algebras, Izvestia Acad. Nauk SSSR 29 (1965), 471-483.

5. E. Schult, On semi-p-automorphic groups I (to appear)

Received August 28, 1967. This research partially supported by Army Contract SAR/Da-31-124-ARO-D-336.

YALE UNIVERSITY