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BASES IN HILBERT SPACE

WILLIAM J. DAVIS

A sequence (#») of elements of a Hubert space, 3(f, is a
for £ίf if every h e ̂  has a unique, norm-convergent

expansion of the form h = Σ <*>i%i9 where (α») is a sequence of
scalars. The sequence is minimal if there exists a sequence
(yi) c <%^ such that (xi$ yi) = da. Every basis is minimal, and
the sequence (α*) in the expansion of h (above) is given by
Ui — (h, yi). In this paper, we restrict our attention to real
Hubert space.

We derive, from classical characterizations of bases in B-
spaces, criterea for (#*) to be a basis for έ%f', as well as for
(Xi) to be minimal in £%f. We show that the sequence is
minimal if and only if there are sequences (#;) c 3ίf whose
Gram matrices have a prescribed form. Similar conditions
are obtained for {%ϊ) to be a basis for Sff.

Let (x^ be a linearly independent sequence of elements of <%f
Using the Gram-Schmidt process, one finds an orthonormal basis, (w<),
for the closed span, [scj of the sequence {x{). We assume throughout
that [x^ = 3(f. Then, we may write

and

i

i = Σ Paw* f
3=0

i

>i = Σ Qua,-
j

If we let P and Q denote the matrices (p^) and (go-)> respectively,
then each is lower triangular, and PQ = QP = I = (3^). It is a class-
ical result that Q is the unique inverse of P.

For (x^ to be minimal, we need a sequence (y^ such that (»<, yό) —
δ^ . It is easy to see that, formally, y{ — ΣΓ=< ϊi ^y Further, the
sequence is minimal if and only if the distance from xk to [Xj],j Φ k
is positive. Using these facts, we get the following theorem. The
second part is similar to the characterization of minimality due to
Foias and Singer [2].

THEOREM 1. Let H= (hi5) denote the Gram matrix of (#<), i.e.,
hij = (%i, Xj). Then the sequence is minimal if and only if any of
the following conditions holds:

(a) The matrix R = QTQ exists.
(b) There exists a sequence, (<?;), with δt > 0 for all i, such
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that for all real vectors A = (α0, aίf , an, 0, •), AHAT ^ Σ ^ α ΐ
(c) Tλere e#is£s α sequence (ef ) wiίΛ e< > 0 /or αZί ί sweλ that

ARAT J> Σ ε;α*> wiίλ A as m (b).

Proof, (a) Follows from the formal relation yi — Σ tfi w,-. For (b),
notice that AHAΓ ^ I I Σ α ^ l Γ . If (&<) is minimal, then AHAT ^
λ>* || a?*||2α*, where λj/2 is the distance from xζl\\ xζ\\ to [xd]f j Φ ί. There-
fore, for each permutation (Ui) of the nonnegative integers,

A TTΛT > V n ~ ( n i + 1 } > \ π2 II <r II2

So δt = 2~{nί+ί)Xi \\Xi\\2 works. On the other hand, if AHAT ^ Σ <
then AHAT ^ δ^α2 = λ< || x{ | |

2 α 2 for each i. Part (c) follows since
is minimal if and only if (a?*) is minimal.

2* Here we derive further criteria, for minimal and basic
sequences, which depend upon the existence of certain Gram matrices.
First, we recall that a fundamental sequence (x{) in a JS-space is
minimal if and only if, for each n, there exists a constant Kn ^ 1
such that, for all m and all sequences (α^ ),

n + m 11

iLk a3Xj\\

Further, such a sequence is basic if and only if (Kn) is bounded (that
is, if and only if a bounded sequence (Kn) can be chosen) [1]. In either
case, Kn is to be chosen in such a way that

K; Σ<
j=0

Σ
j=0

defines a positive definite form on the collection of all finite real
sequences. Associated with this form is the matrix S = S(n, Kn),
defined as follows:

w.l(Xi, Xj); otherwise .

The positive definiteness of the form ASAT will be achieved over the
finite vectors A — (aua2, , an, 0, •) if and only if each principal
k x k submatrix, S{k) of S is positive definite. Each Sik) is positive
definite if and only if there exists a real, nonsingular, lower triangular
matrix T such that S{k) = Tik) T{k)T. A routine calculation shows that

Kl

W κι -
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Thus, we must solve, in the reals, the equations

Σ TiSTki = Kito, xk)

Kl-1

where πnx{ == Σ?=i PaWj If these equations are solvable, then S is
positive definite (over finite A), if and only if Tit ψ 0. Now let

JL«+i be any linearly independent sequence in £(? for which

if it exists. If we orthonormalize (/<), we get a sequence (ffi)Jl*+i
and

fi= Σ Γ ŷ

Linear independence of (/<) gives ϊ7^ ^ 0. On the other hand, if the
equations above are solvable, for (Γίy), we may set ft = Σy=n+i Γ<ywy.

We have the following theorem:

THEOREM 2. Tλe sequence (xt) is
(a) minimal if and only if, for each n, there exists Kn7>l

and a linearly independent sequence (/<)Π=Λ+I such that

(A, fj) = Kl(xi9 x,) - g " i ( π ^ - αi)

(b) α δαsίs i/ and only if it is minimal, and the sequence (Kn)
may be chosen so that it is bounded.

The sequence (xs) is minimal if and only if, for each n% there
exists Cn ̂  1 such that, for all m and sequences (α<),

Σ aiχi
I I ff I ' ' " II

^ CJ Σ «*»* .

It is basic if and only if (C») may be chosen as a bounded sequence
(see, e.g., [4]). Using these facts, and arguments similar to those
for Theorem 2, we obtain,

THEOREM 3. The sequence (&<) is
(a) minimal if and only if, for each n, there exists Cn 2: ί

and a linearly independent sequence (g^n+i such that, for i, j > n,
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(Qi, Qi) = {Cl - l)(xif xs) - C&π^Xj) ,

and

(b) basic if and only if it is minimal and (Cn) may be chosen
as a bounded sequence.

In deriving Theorem 3, one must determine the positive definiteness
of the matrices S defined by

S - = \CZ(χi> x s ) \ l ^ i ^ n o r l ^ j ^ n

\{Cl- l ) ( x i 9 x j ) ; ί 9 j > n .

An interesting characterization of minimal sequences and bases is the
following.

PROPOSITION. The sequence (α̂ ) is
(a) minimal if its Gram matrix, H, is strictly diagonally dom-

inant, and
(b) a basis if its Gram matrix is uniformly diagonally

dominant.1

Proof. If H is strictly diagonally dominant, for each n there
exists 7n e (0,1) such that jn | (xn, xn) \ < Σ I (&», Xj) l Then, for

Cl = l/τ«, the matrix S is strictly diagonally dominant, and hence
positive definite over finite A[5]. Part (b) follows in the same
manner.

Using the same method of proof, Theorems 3 and 4, and the fact
that the positive definite n x n matrices define a cone in the linear
space of all n x n matrices, we obtain the most general form of our
characterization of minimal sequences and bases in 3(f%

THEOREM 4. The sequence (Xi) is
(a) minimal if and only if, some (and hence all) a, β > 0 and

all n, there exist Kn, Cn^ 1 and (gi)T=n+i such that, for i, j > n,

(Λ, 9d = (aKi + βCl - β)(xi9 xs)

and

A symmetr ic m a t r i x A is strictly diagonally dominant [5] if \au\ > Σ i ^ ΐ I CLU I for

all i, and is uniformly diagonally dominant if there exists 7-6(0, 1) such that 7 | au\ ^
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(b) a basis if and only if (Kn) and (Cn) may be chosen as bounded
sequences.
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