BASES IN HILBERT SPACE

WILLIAM J. DAVIS

A sequence (x_i) of elements of a Hilbert space, \mathcal{H} , is a basis for \mathcal{H} if every $h \in \mathcal{H}$ has a unique, norm-convergent expansion of the form $h = \sum a_i x_i$, where (a_i) is a sequence of scalars. The sequence is minimal if there exists a sequence $(y_i) \subset \mathcal{H}$ such that $(x_i, y_j) = \delta_{ij}$. Every basis is minimal, and the sequence (a_i) in the expansion of h (above) is given by $a_i = (h, y_i)$. In this paper, we restrict our attention to real Hilbert space.

We derive, from classical characterizations of bases in B-spaces, criterea for (x_i) to be a basis for \mathcal{H} , as well as for (x_i) to be minimal in \mathcal{H} . We show that the sequence is minimal if and only if there are sequences $(g_i) \subset \mathcal{H}$ whose Gram matrices have a prescribed form. Similar conditions are obtained for (x_i) to be a basis for \mathcal{H} .

Let (x_i) be a linearly independent sequence of elements of \mathcal{H} . Using the Gram-Schmidt process, one finds an orthonormal basis, (w_i) , for the closed span, $[x_i]$ of the sequence (x_i) . We assume throughout that $[x_i] = \mathcal{H}$. Then, we may write

$$x_i = \sum_{j=0}^i p_{ij} w_j$$
 ,

and

$$w_i = \sum_{j=0}^i q_{ij} x_j$$
 .

If we let P and Q denote the matrices (p_{ij}) and (q_{ij}) , respectively, then each is lower triangular, and $PQ = QP = I = (\delta_{ij})$. It is a classical result that Q is the unique inverse of P.

For (x_i) to be minimal, we need a sequence (y_i) such that $(x_i, y_j) = \delta_{ij}$. It is easy to see that, formally, $y_i = \sum_{j=1}^{\infty} q_{ji} w_j$. Further, the sequence is minimal if and only if the distance from x_k to $[x_j], j \neq k$ is positive. Using these facts, we get the following theorem. The second part is similar to the characterization of minimality due to Foias and Singer [2].

THEOREM 1. Let $H = (h_{ij})$ denote the Gram matrix of (x_i) , i.e., $h_{ij} = (x_i, x_j)$. Then the sequence is minimal if and only if any of the following conditions holds:

- (a) The matrix $R = Q^TQ$ exists.
- (b) There exists a sequence, (δ_i) , with $\delta_i > 0$ for all i, such

that for all real vectors $A = (a_0, a_1, \dots, a_n, 0, \dots)$, $AHA^T \ge \sum \delta_i a_i^2$.

(c) There exists a sequence (ε_i) with $\varepsilon_i > 0$ for all i such that $ARA^T \ge \sum \varepsilon_i a_i^2$, with A as in (b).

Proof. (a) Follows from the formal relation $y_i = \sum q_{ji}w_j$. For (b), notice that $AHA^T \ge ||\sum a_ix_i||^2$. If (x_i) is minimal, then $AHA^T \ge \lambda_i ||x_i||^2 a_i^2$, where $\lambda_i^{1/2}$ is the distance from $x_i/||x_i||$ to $[x_j]$, $j \ne i$. Therefore, for each permutation (n_i) of the nonnegative integers,

$$AHA^{\scriptscriptstyle T} \geq \sum a^{-(n_i+1)} \lambda_i a_i^2 ||x_i||^2$$
 .

So $\delta_i = 2^{-(n_i+1)}\lambda_i ||x_i||^2$ works. On the other hand, if $AHA^T \ge \sum \delta_i a_i^2$, then $AHA^T \ge \delta_i a_i^2 = \lambda_i ||x_i||^2 a_i^2$ for each i. Part (c) follows since (y_i) is minimal if and only if (x_i) is minimal.

2. Here we derive further criteria, for minimal and basic sequences, which depend upon the existence of certain Gram matrices. First, we recall that a fundamental sequence (x_i) in a B-space is minimal if and only if, for each n, there exists a constant $K_n \ge 1$ such that, for all m and all sequences (a_i) ,

$$\left\|\sum_{j=0}^n a_j x_j\right\| \leq K_N \left\|\sum_{j=0}^{n+m} a_j x_j\right\|$$
 .

Further, such a sequence is basic if and only if (K_n) is bounded (that is, if and only if a bounded sequence (K_n) can be chosen) [1]. In either case, K_n is to be chosen in such a way that

$$\left\{K_{n}^{2} \left\| \sum_{j=0}^{n+m} a_{j} x_{j} \right\|^{2} - \left\| \sum_{j=0}^{n} a_{j} x_{j} \right\|^{2} \right\}$$

defines a positive definite form on the collection of all finite real sequences. Associated with this form is the matrix $S = S(n, K_n)$, defined as follows:

$$S_{ij} = egin{cases} (K_n^2-1)(x_i,\,x_j);\, 1 \leq i,\, j \leq n \ K_n^2(x_i,\,x_j); ext{ otherwise .} \end{cases}$$

The positive definiteness of the form ASA^T will be achieved over the finite vectors $A = (a_1, a_2, \dots, a_n, 0, \dots)$ if and only if each principal $k \times k$ submatrix, $S^{(k)}$ of S is positive definite. Each $S^{(k)}$ is positive definite if and only if there exists a real, nonsingular, lower triangular matrix T such that $S^{(k)} = T^{(k)} T^{(k)^T}$. A routine calculation shows that

$$T_{ij} = egin{cases} \sqrt{K_n^2 - 1} \; p_{ij}; \; 1 \leq i, j \leq n \ & K_n^2 \ \hline \sqrt{K^2 - 1} \; p_{ij}; \; i > n, 1 \leq j \leq n \; . \end{cases}$$

Thus, we must solve, in the reals, the equations

$$\sum_{j=n+1}^{i} T_{ij} T_{kj} = K_n^2(x_i, x_k) \ - rac{K_n^4}{K_n^2 - 1} (\pi_n x_i, x_k) ,$$

where $\pi_n x_i = \sum_{j=1}^n p_{ij} w_j$. If these equations are solvable, then S is positive definite (over finite A), if and only if $T_{ii} \neq 0$. Now let $(f_i)_{i=n+1}^{\infty}$ be any linearly independent sequence in \mathscr{H} for which

$$(f_i, f_j) = K_n^2(x_i, x_j) - \left(\frac{K_n^4}{K_n^2 - 1}\right) (\pi_n x_i, x_j),$$

if it exists. If we orthonormalize (f_i) , we get a sequence $(g_i)_{i=n+1}^{\infty}$ and

$$f_i = \sum\limits_{j=n+1}^i T_{ij} g_j$$
 .

Linear independence of (f_i) gives $T_{ii} \neq 0$. On the other hand, if the equations above are solvable, for (T_{ij}) , we may set $f_i = \sum_{j=n+1}^{i} T_{ij} w_j$. We have the following theorem:

THEOREM 2. The sequence (x_i) is

(a) minimal if and only if, for each n, there exists $K_n \ge 1$ and a linearly independent sequence $(f_i)_{i=n+1}^{\infty}$ such that

$$(f_i, f_j) = K_n^2(x_i, x_j) - \frac{K_n^4}{K_n^2 - 1} (\pi_n x_i, x_j).$$

(b) a basis if and only if it is minimal, and the sequence (K_n) may be chosen so that it is bounded.

The sequence (x_j) is minimal if and only if, for each n, there exists $C_n \ge 1$ such that, for all m and sequences (a_i) ,

$$\left\|\sum_{i=n+1}^{n+m}a_ix_i
ight\| \leq C_n \left\|\sum_{i=1}^{n+m}a_ix_i
ight\|$$
 .

It is basic if and only if (C_n) may be chosen as a bounded sequence (see, e.g., [4]). Using these facts, and arguments similar to those for Theorem 2, we obtain,

THEOREM 3. The sequence (x_i) is

(a) minimal if and only if, for each n, there exists $C_n \ge 1$ and a linearly independent sequence $(g_i)_{i=n+1}^m$ such that, for i, j > n,

$$(g_i, g_j) = (C_n^2 - 1)(x_i, x_j) - C_n^2(\pi_n x_i, x_j)$$

and

(b) basic if and only if it is minimal and (C_n) may be chosen as a bounded sequence.

In deriving Theorem 3, one must determine the positive definiteness of the matrices S defined by

$$S_{ij}=egin{cases} C_n^2(x_i,\,x_j);\,1\leq i\leq n\;\; ext{or}\;\;1\leq j\leq n\ (C_n^2-1)(x_i,\,x_j);\,i,j>n\;. \end{cases}$$

An interesting characterization of minimal sequences and bases is the following.

Proposition. The sequence (x_i) is

- (a) minimal if its Gram matrix, H, is strictly diagonally dominant, and
- (b) a basis if its Gram matrix is uniformly diagonally dominant.¹

Proof. If H is strictly diagonally dominant, for each n there exists $\gamma_n \in (0,1)$ such that $\gamma_n \mid (x_n,x_n) \mid < \sum\limits_{j \neq n} \mid (x_n,x_j) \mid$. Then, for $C_n^2 = 1/\gamma_n$, the matrix S is strictly diagonally dominant, and hence positive definite over finite A[5]. Part (b) follows in the same manner.

Using the same method of proof, Theorems 3 and 4, and the fact that the positive definite $n \times n$ matrices define a cone in the linear space of all $n \times n$ matrices, we obtain the most general form of our characterization of minimal sequences and bases in \mathcal{H} .

THEOREM 4. The sequence (x_i) is

(a) minimal if and only if, some (and hence all) $\alpha, \beta > 0$ and all n, there exist $K_n, C_n \geq 1$ and $(g_i)_{i=n+1}^{\infty}$ such that, for i, j > n,

$$egin{align} (g_i,\,g_j) &= (lpha K_n^2 + eta C_n^2 - eta)(x_i,\,x_j) \ &- \left(rac{(lpha K_n^2 + BC_n^2)^2}{lpha K_n^2 + eta C_n^2 - lpha}
ight) \, (\pi_n x_i,\,x_j) \;, \end{split}$$

and

A symmetric matrix A is strictly diagonally dominant [5] if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for all i, and is uniformly diagonally dominant if there exists $\gamma \in (0, 1)$ such that $\gamma |a_{ii}| \ge \sum_{j \neq i} |a_{ij}|$ for each i.

(b) a basis if and only if (K_n) and (C_n) may be chosen as bounded sequences.

REFERENCES

- 1. S. Banach, Theorie des operationes lineaires, Warsaw, 1932.
- 2. C. Foias and I. Singer, Some remarks on strongly linearly independent sequences and bases in Banach spaces, Revue de math pures et appl. 6 (1961), 589-594.
- 3. B. Kacymarz and H. Steinhaus, Theorie der orthogonalreihen, Warsaw, 1935.
- 4. I. Singer, Baze in spatie Banach, I, Studii si Cercetari Matematice, R. P. R. 14 (1963), 533-585.
- 5. R. Varga, Matrix iterative analysis, Princeton, N. J., 1962.

Received December 13, 1966. This work was supported by National Science Foundation Grant number GP-6152.

THE OHIO STATE UNIVERSITY