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UNIVERSALLY WELL-CAPPED CONES

L. ASIMOW

A closed convex cone P is said to be universally well-
capped if it contains a compact convex subset B such that
P\B is convex and P = u »=ί nB. The compact convex sets
which are universal caps of some cone are represented as
the positive part of the unit ball of an ordered Banach dual
space with the weak* topology. A characterization, involving
the directedness of the unit ball, is given of those ordered
Banach spaces whose dual cones are universally well-capped.
An application is made to the Choquet boundary theory for
subspaces of continuous functions on a compact Hausdorff
space.

The notion of a cap of a convex set X was introduced by
Choquet [2] for the case where X is a cone in a Hausdorff locally-
convex space E. Following Choquet, B is a cap of X if B is a
compact convex subset of X for which X\B is convex. If each
point of X is contained in a cap then X is said to be well-capped.
An important property of well-capped closed convex sets is that they
satisfy a Krein-Milman type theorem [1; 2].

If £ is a cap of a cone Q such that Q = \Jζ=ί nB then B is
called a universal cap of Q. It is shown in [1] that if X is closed,
convex and well-capped then X x {1} generates a closed convex well-
capped cone Q in the space E x R. Each cap of X is associated
with a cap of the cone Q and each cap B of Q is itself a universal
cap of the extremal sub-cone \Jn=ιnB. The purpose of this paper
is to give a characterization of those compact convex sets which
are universal caps of some cone. As far as we know, this problem
was first posed by Choquet in lectures given at the University of
Washington in 1964.

A particular instance of a universally capped cone is the case
where the cone has a compact base. It is shown by Klee [11] that
this is equivalent to the cone being locally compact. The properties
of locally compact cones have been studied in some detail. We refer
specifically to the work of D. A. Edwards [5] in which he shows that
a locally compact cone can be embedded in a Banach space with the
weak* topology as the dual of a Banach space with an order-unit norm.

We note here that an analogous construction is possible for
universally capped cones. We give a characterization of the sub-dual
spaces that arise in this context in terms of an ordering property
of the unit ball which we term approximate directedness (definition
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below). It is shown that a set is a universal cap of a cone if and
only if it is linearly homeomorphic to the positive part of the unit
ball (weak* topology) in the dual of an approximately directed Banach
space.

If E is an approximately directed subspace of continuous functions
on a compact Hausdorff space then E possesses a Silov boundary.
Since such subspaces need not contain the constants this allows an
extension of the standard minimal boundary theory to a class of
continuous functions vanishing at infinity on a locally compact
Hausdorff space.

2* Approximately directed Banach spaces. Let E be a Banach
space ordered by the closed convex positive cone P. In what follows
we shall denote the dual of E by E* and the set {x e E: || x || ^ a}
by Ea.

DEFINITION. The ordered Banach space E is said to be a-directed
if whenever x and y are elements of El9 there exists zeEa such that
z ^ x and z ^ y. If E is 1-directed we will say simply that E is
directed. If E is α-directed for all a > 1 we will say that E is
approximately directed. We give an example below (§5) of an
approximately directed space which is not directed.

DEFINITION. Let E be a Banach space with a closed positive
cone P. Define the dual cone

P* = {Fe E* I F(x) ^ 0 for all xeP} .

Denote by B the positive part of the unit ball in j?*, i.e., B =
P * f l £ * . The set B is always compact in the weak* topology.

THEOREM 1. The following are equivalent:
( i ) E is approximately directed
(ii) B is a universal cap of P* in the weak* topology
(iii) The norm in E* is additive on P*.

Proof. ( i )=>( i i ) . Clearly B is compact, convex and P* =
\Jn=inB. Suppose F and G are elements of P*\B. Then | | .F | | ,
||G\\ > 1. Choose a > 1 and /, g e E, such that F(f) > a and G(g) > a.
Since E is <x-directed there exists heEa such that h 7> f, g. If
0 ^ λ ^ 1 then

| XF + (1 - λ)G || α ^ || λ ί 7 + (1 - λ)G || || Λ |

+ (1 - λ)G(Λ) >
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Thus | | λ F + (1 - \)G\\ > 1 and so P*\J3 is convex.
(ii) ==> (iii). This follows immediately from the convexity of P*\B.
To show (iii) => (i) we first state a lemma.

LEMMA. Assume the norm in E* is additive on P*. Let h be
an a fine function on E* such that h(0) > 0. Assume further that
h\E* is weak* continuous. Define h on E* by h(0) = 0 and

h(x) = \\x\\-h{xl\\x\\) for XΦO .

Then h | E* is convex, lower-semi-continuous, and h\B is affine.
Also h\E* ^ h\E*.

Proof of lemma. Observe first that if x Φ 0

h(χ) = \\χ\\-h(χ/\\x\\) + ( l - \ \ x \ \ ) - h ( 0 ) .

Thus for all x, h(x) = h(x) + (1 - || x \\)h(0) and it follows that
h(x) — h(0) ^ h(x) with equality if and only if x = 0 and

h(x) < h(x) if || a? | | < 1

h(x) - h(x) if || a; || = 1

h(x) > h(x) if | |oj | | > 1 .

We show first h is convex on Ef. Let x,ye E? and z = Xx + (1 — X)y;
0 < λ < 1. Suppose first x,y,z Φ 0. Let a — λ || x || + (1 — λ) || y \\.
Then α ^ | | ^ | | with equality if x,yeB. Then

h(z) = || z\\ h(z/\\ z ||) ^ || z || h(z/\\ z ||) + (a-\\z

= a[(\\z\\/a)h(z/\\z\\) + ((a - \\z\\)\/a)h(0)]

= ah(z/a)

= ah[(X\\ x \\la)(x/\\x ||) + ((1 - λ) || y \\/a)(yl\\ y ||)]

= Xh(x) + (1 - X)h(y)

with equality if a?, y e B. The cases where x, y or « = 0 follow
similarly. Thus h is convex on E? and affine on B.

To show h is weak* l.s.c. on E? it suffices to show

A Ξ {(a;, r) G JSi* x i2: Λ(α) ^ r}

is closed. Let

C = {(a?, r) e £Ί* x i?: λ(a ) = r}

and

C - {(a?f r) G JSί* x i2: h(x) ^ r} .
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Then C is compact, C" is closed and we show that

A = C U conv (C U {0, 0}) .

Let (x, r) e A. If h(x) ^ r then (x, r) e C. Suppose then h(x) <̂  r < h(x)
and x Φ 0. Then h(x) > h(x) - h(0), so h{x) > r > (h(x) - h(0)). Let
s = h(0)/(h(0) - h(x) + r) . Then 1 < s < oo. Since

a? = (l/«)(βα?) + ((« - l)/«)0, Λ(a?) - (l/s)h(sx) + ((s - l)/«)Λ(0) .

It follows from the last equation and the definition of s that h(sx) = sr.
Also h(sx) = s\\x\\ h(x/\\ x \\) = s/ϊ(α;) ^ sr = /i(sίc) and thus || sa? || ^ 1.
So we have

(a?, r) = (l/β)(βa?, sr) + ((s - l)/s)(0, 0) e conv (C U {0, 0}) .

If (x, r) e C then (x, r) e A. If (x, r) = λ(̂ /, s) where (̂ /, s) e C and
0 < λ < 1, we have h(x) = λΛ(i/) <£ λΛ(i/) = λs = r. Thus (a?, r) e A.

We continue now with the proof of (iii) ==> (i). Let a > 1 and
f, geEL be given and let ε = α — 1. We show that there exists a
sequence {hn}~^ of weak* continuous affine functions o n ί * such that

K(x) ^ /(a?) V g(x) for all a? e B ,

0 < hn(0) < s2~n ,

sup {| hn(x) | : x e ^ } ^ l + £ Σ 2 - f c

sup {| hn(x) - hn^(x) I : x e E,} ^ 5ε2~n for n > 1 .

Let

H0 = {(x,r)eE1* xR:r^\\x\\ + ε/2} ,

β, = {(a?, r)eBx R: f(x) = r} ,

B2 = {(x, r)eB x R: g(x) = r}

and let A = conv (β x U-B2) With the weak* topology on £/*, Jϊ0 is
closed and convex, and A is compact and convex. Also if (a?, r) e A,

(x, r) = λ(a?lf r j + (1 - λ)(a?2, r2); 0 ^ λ ^ 1, /(ajj = n ,

g(x2) = r 2 .

Since || || is affine on B,

\\x\\ = λ|| ^ || + (1 - λ) || x21| ^ λ/fo) + (1 - λ)βr(α;2) - r

and so iϊ 0 and A are disjoint. Using the separation theorem on E* x R
and taking the hyperplane so obtained as the graph of a function on E*
we have a weak* continuous affine function ht such that

^ f(x) V g(x) for x e B, and 0 < ^(0) < ε/2 .
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Since

h,(x) ^ II x || + ε/2, h^x) = 2^(0) - h,{-x) ^ - | | x \\ - ε/2 .

Thus

sup {| ^(a?) |: a? e E?} ^ 1 + ε/2 .

Proceeding by induction suppose we have Λn-1, n > 1, satisfying the
required properties. Define Λ^_i(0) = 0 and

Λ-1(a?) = ||αj||λ^1(a?/||α?||) for x Φ 0 .

By the lemma, hn_x is convex, l.s.c. on E? and affine on B. Let
i f ^ = {(Xf r) e E? x R: r ^ λ n - 1 + ε2~w}. If α? e JB and x Φ 0 then
Λn-i(aj) ^ || a? ||/(a?/|| « II) = f(x). Similarly hn_γ(x) ^ g(x). Since Λw-1 is
affine on B it follows that Hn_γ 0 A = 0. Again by the separation
theorem we obtain a weak* continuous affine function hn such that
hn(x) ^ f(x) V g(x) for a e ΰ and 0 < hn(x) < e2rn. Also

hn{x) ^ Λ^ίa?) + e2-n ^ fcn-!(a?) + ε2~% ^ 1 + ε Σ 2"fc

for all xeE? .

Thus sup {| hn(x) \:xe E*} ^ 1 + ε Σ*=i 2"fe. Since Λn(a?) ^ Λw»1(a?) + e2~n,

hn(x) = 2hn(0) - hn{-x) ^ -K(-x) ^ -fcH-1(-a?) - e 2 - .

But

- KΛ-x) = hn^(x) - 2hn_1(0) ^ hn_λ(x) -

Thus hn(x) > hn_γ{x) -5e2~n and so

sup {| hn(x) - hn^(x) |: a? e E?} ^

Define A(α ) — lim^oo ^(ίc). This defines an affine function h on
E* such that Λ(a?) ^ /(a?) V flf(a?) for xeB and sup{| A(a?) \ixeE?} ^
1 + ε — a. Since &(0) = 0 and hn-+h uniformly on Ef, h is linear
and weak* continuous on E?. Thus heE.

3* Normal cones* Let E be an ordered Banach space with
positive cone P. It will be useful in the sequel to assume that E*
is positively generated, i.e., E* = P * — P * . This property of E* is
related to a property of E called normality.

DEFINITION. The Banach space E is a-normal if

(E, + P) n (E, - P) c
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The space E* is a-generating if E? c a conv (B U — B), where B =

p* n .EΊ*.

We now list for future reference some easy and/or well-known
equivalences of 1-normality.

THEOREM 2. Let E be an ordered Banach space with closed
positive cone P. Let B — P* n Ef. The following are equivalent.

( i ) E is 1-normal
(ii) xeE implies \\ x\\ = sup{| f(x) \:feB}
(iii) E is isometrically isomorphic to the space A0(B) of con-

tinuous affine functions on B vanishing at 0, where B is given the
relative weak* topology

(iv) E* is 1-generating.

The equivalence of (i) and (iv) is a special case of a theorem of
Grosberg-Krein [8]. The proof below of (i) => (ii) is a minor modifi-
cation of the proof of 23.5 of [10],

Proof. ( i ) => (ii). Let BQ (the polar of B) = {x e E: \ f(x) | ^ 1
whenever feB}. It suffices to show B°czE1. Let xeB° and let r be
any number such that 0 < r < 1. If rx £ E1 + P then there exists an
fe E* such that f(rx) ^ mif(E1 + P). But then fe B and f(rx) ^ - 1
so that f(x) < - 1 contradicting x e B°. Thus rx£E, + P and similarly
rxeE1- P, so rx e E, for all r, 0 < r < 1. It follows that x e E19

(ii)=>(iii). It is well-known (see for example 4.5 of [13]) that
the natural map of E into AQ(B) has a norm-dense image. Since (ii)
implies the map is an isometry, (iii) follows.

(iii) =- (iv). Suppose / e J ^ c o n v (B U -B). Then there is an
x e E s u c h t h a t \\x\\ ^ f(x) > s u p {g{x): g e c o n v (B (J -B)} = \\x | |.

(iv) => ( i ) . L e t zeE a n d z = x + p = y - q; x , y eE1 a n d p,q eP.
Then fe E? implies / = \fx - (1 - λ)/2; 0 ^ λ ^ 1 and fu f2 e B. Then

f(z) = *fi(x + P) - (1 " λ )/2(i/ - q) ^ -

and

f(z) - λΛ(i/ - ?) - (1 - \)ft(x + p) ^ 1 .

Thus |/(2)| ^ 1 for all feE? and hence | |2 | | ^ 1.
Davies [4] defines an ordered Banach space to be regular if
( i ) || y || <̂  || x || whenever — a? ^ y ^ x.
(ii) for each ε > 0 and for each x there exists y such that

|| j/1| ̂  || # || + ε and y ^ x, -x.
He proves that if E is an ordered Banach space and E* is given
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the dual ordering then E* is a Kakutani L-space [9] if and only if
E is a regular space which is directed and satisfies the Riesz decom-
position property. Such spaces E are termed simplex spaces by Effros
[7]. We note that if E is 1-normal and directed then E is regular.
Also, if 2?* is an L-space then in particular it is 1-generating and
thus E is 1-normal. Hence we have the following:

THEOREM 3. An ordered Banach space with closed positive cone
P is a simplex space if and only if

( i ) E has the decomposition property,
(ii) E is 1-normal, and
(iii) E is directed.

4* Representation of universal caps* In the following we shall
assume that B is a universal cap of the convex cone Q and that the
space F — Q — Q is a Hausdorff locally convex space considered in
the weak topology w(F, F') induced by its topological dual F'. If
feFr then define

THEOREM. With || || defined as above F' is a normed linear
space such that (F\ \\ j|)* with the weak* topology is linearly
homeomorphic to F. The dual norm induced on F is additive on Q
and F, = conv (B U -B).

This result is closely related to a theorem of Dixmier [3] which
is used in the proof of the analogous result for locally compact cones
in [5].

Proof. The set conv (I? U —B) is compact, convex, balanced and
absorbent in F and thus its Minkowsky functional is a norm on F
such that Fι — conv (B U — B). Since Q\B is convex, the norm is
additive on Q. Then the polar Fϊ, is the unit ball for a dual norm
on Ff and clearly if feF' then | | / | | = swp{\f(x)\:xeB}. Since F,
is w(F, Fr) compact it follows from the Mackey-Bourbaki Duality
Theorem (see 8.3.1 of [6]) that the norm topology on F preserves
the duality between F' and F, i.e., {F\ || | |)* = F'. Obviously the
weak* topology on F is the same as w(F, Ff).

COROLLARY. If B is a universal cap of Q then B absorbs any
other cap Bf of Q (there exists r > 0 such that Bf c rB).

Proof. Let Qf = (JSU nB'. Clearly B' is a universal cap of Q'
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and Bf)Q' is also a universal cap of Q'. Thus it suffices to consider
the case where both B and Bf are universal caps of Q. In this case
F = Q - Q can be normed so that F1 = conv (B' U — B'). Since JP is
the dual of a normed linear space F is complete in this norm. Also
F = U~=i w c o n v (-B U —J3) and so it follows from the Baire theorem
that Fί = conv (J3' U -B')(zr conv (J5 U -B) for some r > 0. Suppose
x e B'. Then a; = r(λδx - (1 - λ)62); 0 ^ λ ^ 1 and 6lf 52 e B. Let
6 = rλδi. Then berB and 6 — # e Q. If α? ̂  6 choose μ ^ 1 suf-
ficiently large so that x + μ(b — x) £ rB. Then

6 = (1 - l/μ)x + (l/^)(» + M& - *))

Thus xerB since Q\rJ3 is convex. Hence B' crB.
It was pointed out by I. Namioka that this corollary can be

proved directly from 10.2 of [10].

THEOREM. Let B be a universal cap of Q and let F and Ff be as
above. Then E = A0(B) is the || \\-completion of F'. Let E be
ordered with closed positive cone P as a subspace of C(B). Then E
is 1-norτnal, approximately directed and E* is isometrically iso-
morphίc to (F, || |l) This isomorphism is order preserving.

Proof. It follows from the definition of the norm on Fr and
a well-known theorem that Ff is isometrically-isomorphic to a norm-
dense subspace of A0(B). Thus E is the || ||-completion of Ff. Since
F is the norm dual of Ff it is clear that each xeF can be uniquely
extended to a bounded linear functional on E with the same norm.
Thus (F, || II) i s identified with E*. To show the identification is
order preserving it suffices to show P * = Q. If 0 Φ xeQ then rxeB
for some r > 0. Thus f(x) ^ 0 for all fe P and so x e P * . Since B
is w(F, F') compact it is a w(F, E) closed subset of F1 and hence
w(F, E) compact. But then Q Γ) Fx = B is w(F, E) compact and so by
the Krein-Smulian theorem Q is w(F, E) closed. Suppose now x e P*\Q.
Then there is an feE such that f(x) < inf {f(y): y eQ}. Thus
f(y) ^ 0 for all yeB and so feP. But inf {f(y): yeQ} = 0 and so
f(x) < 0 which contradicts x e P * . Thus P * = Q. Since the norm
on F is additive on Q = P*, E is approximately directed. Also,
Fι = conv(J5(J —B) and so F is 1-generating and hence E is 1-normal.

COROLLARY. / / B is universal cap of Q then there exists an
ordered Banach space E ( = A0(B)) with closed positive cone P such
that E is approximately directed, 1-normal and B is affinely
homeomorphic to P* Π E*. If Q is identified with P* then Q is
closed in the weak* topology.
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We remark here that if Q has a compact base then Q is closed
(this is due to Klee [11]). The corresponding fact about Q in the
case that it has a universal cap is also true for the weak* topology
as the dual of complete space but does not hold in general. We give
an example below.

5* Examples* The following example shows that an approxi-
mately directed Banach space is not necessarily directed.

Let c0 be the space of sequences converging to 0 with the
supremum norm. Let

E = \x G c01 xι + x2 = Σ 2-*αjw+3} .

Clearly E is a closed subspace of c0. Let a > 1 be given and let
x, y e JEΊ. Choose zn = a for 3 ^ n ^ iV where JV is sufficiently large
so that aΣί=02~% ^ 2. Let zn = a?w V #Λ V 0 for n > N. Then

oo

= _̂j ^ ^ίi + 3 == "W'

Thus ^ and z2 can be chosen between 1 and α. Then \\z\\ ^ α and

2;Λ ^ a;Λ V 3/w for all n. Thus £7 is approximately directed. Now let

and

» = (0,1,1,0, . . . , 0 , . . . ) .

If z^>x,y and | | ^ | | ^ 1 it would be necessary for zn to be
exactly 1 for all n. But zn —> 0 so E is not 1-directed.

We now give an example to show that a universally capped cone
need not be closed. Let P be the positive cone of I1 with the
product topology as a subspace of RN. Let

Then Q is not closed, for let an be the element of Q for which αf = 1,
al = n and αi = 0 for mΦl.n. Then αw—>(1, 0, , 0, •) $ Q.
But since (-1,1/2,1/3, , 1/n, •) ec0, Q is closed in the weak*
topology on I1 as the dual of c0. Thus B = {# e Q: Σ ϊ U ^^ = 1} ^s

weak* compact and hence compact in the weaker product topology.
Thus B is a universal cap of Q.

6. Silov boundaries* If X is a compact Hausdorff space and
E is a subspace of the space C(X) of continuous real-valued functions
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on X, then the subset K of X is called a boundary of E if feE
implies there exists xeK such that \f(x)\ = | | / | | . If there is a
smallest closed boundary of E (one which is contained in every other
closed boundary) it is called a Silov boundary. It is well known that
if E separates points and contains the constants then E possesses a
Silov boundary. However this is not necessarily the case for arbitrary
separating subspaces of C(X) (consider, for example, the subspace of
C[0,1] of functions satisfying f(x) +/(1 — x) = 0 which possesses the
two minimal closed boundaries [0,1/2] and [1/2,1]). This is perhaps
most relevant to the consideration of subspaces of C0(Y), Y locally
compact Hausdorff; or equivalently to subspaces of continuous functions
all of which vanish at some point of a compact Hausdorff space. We
observe here that the usual argumeiits in case E contains the constants
can be adapted to show that a closed approximately directed subspace
E of C(X), and consequently any dense subspace of E, possesses a
Silov boundary.

Let ί / b e a closed, separating and approximately directed subspace
of C(X); let B = {LeE*: L ^ 0 and | | L | | ^ 1}. Then B is weak*
compact and if φ is the usual evaluation map from I to Jϊ* then
Φ(X) is a closed subset of B homeomorphic to X.

PROPOSITION. B = cl-conv (Φ{X) U {0}).

Proof. Let K = cl-conv (φ(X) U {0}). Obviously KaB. Suppose
LeB\K and without loss, | | L | | = 1. Then L ? conv (K(J -K): If
Leconv(K{J-K) t h e n L = L L - L 2 ; L u Lze K a n d {{L.W + | | L 2 | | = 1 .
But since E is approximately directed and

L,Ll9LM^0, 1 = \\L\\ = \ \ L 1 \ \ - \ \ L 2 \ \ .

Thus \\L2\\ = 0. But then there exists feE such that

|| f\\ ^ L(f) > s u p {L'(f):L'e conv (K\J -K)} = \\f\\ .

DEFINITION. The Choquet boundary C of

E = {x e X: 0 Φ φ(x) e ext B}

(ext B = extreme point of B).
Since E is separating there is at most one point x0 of X such

that f(x0) = 0 for all feE. It can be shown with the standard
arguments (see, e.g., [13]) that C is in fact a boundary and that C
consists exactly of the points x (excluding x0) of X for which εx is
the only probability measure which represents x in E.

THEOREM. The closure of C in X is the Silov boundary of E
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Proof, (see also Prop. 6.4 of [13]). Let K be a closed boundary
of E and suppose 0 Φ φ(x) eextB\φ(K). Let

U = {L e B: | L(/<) - /<(*) | < ε; i = 1, . . . , n}

be a weak* neighborhood relative to B containing φ(x) and disjoint from
φ(K). Let /; = {LeB: \L{f) -/<(&) | ^ ε}; i - 1, . . . , n and let J =
conv (Jx, •••, J%, {0}). Then / is compact, convex and contains ^ ( i θ
Since 0(a?) is an extreme point of B missing Jly •••,/„ and {0},
φ{x)£j. Also ||0(£)ll = 1 and it follows from the additivity of the
norm on B that φ(x) $ conv (JU —J) Thus there exists feEsuch that

/(a?) > sup {L(f): L e conv (J U - J)} ^ sup {| f(y) \:yeK}

which contradicts the fact that K is a boundary.

Added in proof. Theorem 1, together with the applications in
Sections 3 and 4, has been obtained independently by Kung-Fu Ng
[The duality of partially ordered Banach spaces, Proc. London Math.
Soc. (to appear)].
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