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ALGEBRAIC PROPERTIES OF CERTAIN RINGS
OF CONTINUOUS FUNCTIONS

Li PI SU

Let X and Fbe any subsets of En, and (Xf, dj and (Yf, d2)
be any metric spaces. Let O(X), 0 ^ m ^ oo, denote the ring
of m-differentiable functions on X, and Lc(Xr) be the ring of
the functions which are Lipschitzian on each compact subset
of X', and L(Xf) be the ring of the bounded Lipschitzian
functions o n l ' . The relations between algebraic properties
of Cm(X), (resp. Le(X') or L(X) and the topological properties
of X (resp. X') are studied. It is proved that if X and Y, (resp.
(Xf, dί) and (Y1, d2)) are m-realcompact, (resp. Lc-real-compact
or compact) then O(X) = Cm{Y) (resp. Le(X') = LC(Y>) or
L(Xf) = L(Y') if and only if X and Y are O-diffeomorphic
(resp. (X1', di) and (Y', d2) are Lc or L-homeomorphic).

During the last twenty years, the relations between the algebraic
properties of Cm(X) and Cm(Y) and the topological properties of X
and Y have been investigated by Hewitt [4], Myers [9], Pursell [11],
Nakai [10], and Gillman and Jerison [3], where m is a positive integer,
zero or infinite. In 1963, Sherbert [12] studied the ring L(X). Recently,
Magill, [6] has obtained the algebraic condition relating C(X) and C(Y)
(i. e., m = 0) which are both necessary and sufficient for embedding
Y in X, where X and Y are two realcompact spaces.

This work is to utilize the method of Gillman and Jerison [3] for
studying the algebraic properties of Cm(X) and Le(Xj) (§§ 2-5), and
how they are related with topological properties of X and X1 respec-
tively. In view of [8, Cor. 1.32], we will restrict X in Cm(X) to a
subset of E*. The results of Magill are also true in Cm(X) and LC(X)
with some modification. In the last section, § 6, we observe some
other cases.

2* Rings and ideals* Let X be an arbitrary subset of En, an
^-dimensional euclidean space, and Cm(X) be the set of all real-valued
functions of class Cm in the sense of Whitney [14, § 3], where m
will always refer to an arbitrary integer such that 0 ^ m <̂  oo. By
[15, Th. 4], we know that Cm(X) forms a ring with the identity u,
the constant function of value 1, and zero element θ, the constant
function of value 0. Let Cm*(X) = {feCm(X) :f is bounded}. It is
clear that Cm*(X) is a subring of Cm(X) with u and θ. Let X be a
metric space, and LC(X) be the set of all real-valued functions satisfy-
ing Lipschitz condition on each compact subset of X [2, p. 354], We
can easily show that LC(X) is a ring with u and θ. Let L(X) =
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{feLc(X):f is bounded and Lipschitzian on entire X}, L*(X) =
{feLe(X):f is bounded}. Then, both L(X) and L*(X) are the sub-
rings of LC(X) with u and θ.

Since the properties of Cm(X) (resp. CW*(X)) and those of LC(X)
(resp. Lf(X) and L(X)) are almost all the same, we will use 11 and
21' to denote CW(X) (resp. LC(X)) and Cm(Γ) (resp. Lβ(Γ)), and S3
and 33' to denote Cm*(X) (resp. LC*(X), and L(X)) and CW*(Γ) (resp.
L?(Y) and L(Γ)) respectively, where X, and F are appropriately the
subsets of En or metric space. Also " α-" and " 6-" will mean m-
(or Cm-) (resp. Lc) and Cm*- (resp. L* and L) respectively according
as 2ί is Cm(X) (resp. LC(X)) and 93 is CW*(X) (resp. LC*(X), and

The unit element of an / e Si or 23 is defined as usual. For
/e2I, Z(f) = ( X G I : / ( X ) = 0} is said to be the zero-set of /. Z(Ά) =
{Z(f):fe$ί}. It is then clear that fell is a unit if and only if
Z(f) = 0 . (For Cm(X) see [15, Th. 4].) Likewise, if / G S is a
unit, then Z(f) — 0 . But the converse need not hold, for the multi-
plicative inverse 1// of / in SI may not be a bounded function. For
example: let X = E\ and f(x) = e~*eCm*(Eι) and Z{f) = 0 . But
1//- e'WC^iE1).

A ^-filter of Z(SI) is the same as in [3,2.2]. It is obvious that
Z[I] = {Z(/) : / e J} is a 2-filter on J if 7 is a proper ideal in 21, and
Z-%^~\ = {fe 3ί : Z(f) e ^} is a proper ideal if ^ " i s a ^-filter on X
Note that it may be false that a proper ideal / c 93 implies that
Z[I] is a ^-filter. For example: let us consider 33 = Cm*{Eι) and let
f(x) = 1/(1 + or2), and / = (/) be the ideal generated by / in 33. Then
it is clear that 0 e Z[/].

Hereafter, we will always use " ideal " to mean the proper ideal,
unless the contrary is mentioned.

Accordingly, every ^-filter is of the form Z[I], for some ideal I
in 2ί. That Z~ι[Z[I]\ z) I is also clear. The inclusion may be proper.

For instance, consider 21 = Cm(Eι). (a) For any positive integer m,
let i(x) = x for all xe E\ and / = (i). Then

Z-\Z{1\\ = M0 = {fe Cm(E): /(0) = 0} .

However, i(Sw+1)/3 e Mo - /. (b) In case m = oo, let /x(^) - e~1/χ2 for
xeE1 and Λ = (/x). Then MQ = Z~ι[Z[I]\ contains an element i g / l β

Note that Mo is a maximal fixed ideal. Now, as for LC(X), we may
consider (X, d) to be a bounded metric space, and fo(x) = (fv{x)f =
(d(p,x))\ T h e n / O G L C ( X ) . Let I O = (/O). Then

Z-ι[Z[Io]] = {/ G LC(X): f(V) = 0} = Mv

i s c l e a r . H o w e v e r , / p (a?) = d(p, x ) e Mp — Io.
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A 2-ultrafilter on X is a maximal z-filter [3,2.5]. We know that
every subfamily of Z(St) with the finite intersection property, by Zorn's
Lemma, is contained in some z-ultrafilter on X.

The proofs of following propositions are obvious.

PROPOSITION 2.1. If M is a maximal ideal in Sί, then Z[M] is
a z-ultrafilter on X.

PROPOSITION 2.2. If j y is a z-ultrafilter on X, then Z~\s^f\ is
a maximal ideal in St.

It follows from Propositions (2.1) and (2.2) that the mapping Z
is one-one from the set of all maximal ideals in 31 onto the set of all
2-ultrafilters on X.

PROPOSITION 2.3. Let M be a maximal ideal in 2ί. If Z(f) meets
every member of Z[M], then feM.

PROPOSITION 2.4. Let s/ be a z-ultrafilter on X. If a zero-set
Z meets every member of s^f, then Z e

An ideal / in SI is z-ideal if Z(f)eZ[I] implies fel. That is,
/ = Z~-ι[Z[I]\, [3,2.7]. It is obvious that every maximal ideal is a z-
ideal. A prime ideal is defined in the usual sense. The following
theorem is only true for LC(X), L?(X) or L(X). For we can show
that these are lattice-ordered rings; while Cm(X) and Cm*(X) are not.

THEOREM 2.5. For any z-ideal I in LC(X) (Lf(X) or L(X))
the following are equivalent:

(1) I is prime.
( 2 ) / contains a prime ideal.
( 3 ) For all g,he LC(X) {Lf{X) or L(X)), g h = θ, then gel or

he I.
(4) For every feLc(X) (L*(X) or L(X)), there is a zero-set in

Z[I] on which f does not change sign.

Proof is similar to [3,2.9],

3* Zero-set, α-completely regular and α-normal spaces* We
know from the proof of Lemma 25 [16, p. 669] that each closed sub-
set F of En, there is an feCm(X) such that Z(f) = F.

PROPOSITION 3.1. For each closed subset A of (X, d), there is
feLc(X) (in fact feL(X)) such that Z(f) = A.
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Proof. L e t g(x) = d(A,x) a n d f=gΛ u\ T h e n / e L ( X ) a n d

Z(f) = A.

DEFINITION 3.2. Let X be a topological space. X is said to be
α-completely regular if and only if for each closed subset F of X and
x$F, there is an fe 21 such that f(x) = 1, and /[.F] = {0}.

THEOREM 3.3. A topological space is a-completely regular if
and only if the family Z(Ά) = {Z(f) :/e2ϊ} is a base for the closed
subsets of X.

Proof is similar to [3, 3.2].

DEFINITION 3.4. A topological space is said to be α-normal if
for any disjoint closed subsets Fλ and F2, there is an fe% such that
/[FJ = {0} and f[F2] = {1}.

PROPOSITION 3.5. Every subset X of E* is m-normal. Hence is
m-completely regular.

Proof. Let F1 and F2 be any two disjoint closed subsets of X.
We know that there are closed subsets F[ and Fl of En such that
Ft = Fl Π X,i = 1, 2. We know that there are /< e Cm(En) with
Z(fi) - Fl. Let gi = fi\ X, and / = g\l(g\ + ^ ) . Then / e Cm{X) and

= Zίflfi) = Flf /[F2] = {1}. The last part is obvious.

PROPOSITION 3.5'. Every metric space (X, d) is L-completely regular;
and every compact metric space (X, d) is L-normal.

Proof. Let F be a closed subset of X and pe X — F. Then
d(F, p) ^ 0. Let / be defined as follows: f[F] = {1}, and f(p) = 0.
Then / is bounded by 1 satisfies a Lipschitz condition with constant
K = (d(jP, p))-1 o n F U {p}. We know that there exists f0 eL(X) such
that fQ\Fu{p} = f, (by [7, p. 97]). Hence the first assertion follows.
The proof of the second part is the same.

Note that the compactness in (3.5)' cannot be omitted. For
instance: let X = E2,

F = {(x, y)eE2:xy = 1} and F' = {(x, y)eE2:xy = -1} .

Then F and Ff are two disjoint closed sets in Έ2. However, it is
clear that there is no feL(E2) such that f[F] = {1} and/[F'] = {0}.

1 u stands for the constant function of value 1.
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Having done these, we can show the characterization of fixed
maximal ideal of 21 and . ^ and how they are related to a compact
space are the same as in [3, (4.6), (4.8), (4.9) (a), (4.10) Lemma, and

4* Real ideals, α-realcompact space* In 1948, E. Hewitt defined
real maximal ideals and realcompact space (Q-spaces) (see [4, § 7] and
[3, Ch. 5]). He also contributed many interesting properties about
real maximal ideals and realcompact spaces. Unfortunately, those
properties can only be carried to the rings LC(X), L?(X) and L(X),
but not to Cm(X), since Cm(X) is not a lattice-ordered ring. (As
feCm(X) implies | / | eCm(X) is not always true.) Recently (1965),
Rudolphe Bkouche has shown that every paracompact Hausdorff differ-
entiable ^-manifold is m-realcompact (see (4.2), and [1, Th. 2]). Here
will show that every closed subset of En is m-realcompact.

We can show easily that every residue class field of 21 or έ%
module a maximal ideal contains canonical copy of real field R. We
can also show, by using [3, (5.1) to (5.4)] or [13], that LJM, L*/M,
and L(X)/M are totally ordered for each maximal ideal M. We will
show that Lf(X)/M (resp. L(X)/M) ~ R if M is maximal in Lf (resp.
L(X)). The real and hyper-real ideals are defined in [3,5.9],

LEMMA 4.1. Let M be a maximal ideal in L*(X), (resp. L(X)),
•and L?(X), (resp. L(X)) be normed by the sup norm || !!«,. Then
M is closed in LC*(X) (resp. L(X)) under || \\^.

Proof. In view of [3, 2 Ml], cl M is either a proper ideal of
L*(X) or Lf(X) itself. Suppose clikf= L*(X). Then ueclM, and
for any neighborhood of u, Nε(u), Nε(u) n M Φ 0 . Take ε = 1/2.
Then Nm(u) Π M Φ 0 . That is, there is an fe M such that

This implies | f(x) \ > 1/2 for each x e X. We can easily show that
l/feL*(X). That is, M has a unit so that M = LC*(X). This is a
contradiction. Hence cl M is a proper ideal containing M so that
M = cl M. The proof for M in L(X) is similar.

PROPOSITION 4.2. For each maximal ideal M in L*(X)9 (resp.
L(X)), Lί(X)/M (resp. L(X)jM) = R.

Proof. It is enough to show that for any positive nonconstant
residue class M(f), simply denoted by /, there is a positive integer n
&uch that / — 1/n is positive. (See [3,5.6] and [13].) Suppose that
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there does not exist such a positive integer. Then we would have
/ - 1/n is negative for all n e N. That is, (/ - 1/n) + \f-l/n\ eM
for all n. Consider now the sequence {gn = (f — 1/n) + / — 1/n : n e N}
which has f+\f\ as the limit under the norm || ||«>. By (4.1),
f+\f\ee\M=M. This shows that - / = | / | (mod M). This is a
contradiction.

DEFINITION 4.3. A topological space X is said to be α-realcompact
if every real maximal ideal in 51 is fixed.

It is clear that if X is compact, then X is α-realcompact.

LEMMA 4.4. An ideal in 21 is free if and only if for every
compact subset A of X there exists an fel having no zero in A.

Proof. Suppose I is free and A is any compact subset of X.
If for each fel, Z(f) n i ^ 0 , then ,βr= {Z(f) Π A: for some fel}
has the finite intersection property. Since A is compact, f] ̂ Φ 0*
Hence Π Z[I] 2 Π ̂ Φ 0, which is impossible.

The sufficiency is clear.

PROPOSITION 4.5. Let X be a closed subspace of En. Then X
is m-realcompact as well as Lc-realeompact.

Proof. Suppose that Λί is a free maximal ideal and Cm(X)/M ~ R.
Let g(x) = 1/(|| x |j2 + 1). Then that g e Cm(X) and g is a unit is clear.
Hence giM. i.e., M(g) Φ 0. For any positive number r and a suffici-
ently small number ε > 0 , # < r — ε for all but a compact subset of
En, say Aε. Then Bε = A£ Π X is compact in X as X is closed. Let
A' = c\x(X - Bε). Then there is an fe Cm(X) such that Z(f) = A'.
We will show that Z(f) e Z[M]. We know that Bε is compact in X.
By (4.4), there is an f e M such that Z(f) Π Bε = 0 . Hence Z(/:) g
X - Be S Z(f) so that Z(/) G Z(M). Therefore, g ^ r - ε on the zero-
set Z(f), and r - g ^ ε. Let h, = (r ~ g)112 on Z(/). Then fex is Cm

on Z(/) which is closed in En. By Whitney's Analytic Extension
Theorem [14], we have a Cm extension h, i.e., h\Z(f) = hίm Hence
h2 = r — g on Z(/). Therefore, h2 = r — g (mod M). In other words,
Λf(&2) = M(r - fir) = Jlf(r) - M(g) = r - M(^). But, since Cm(X)/M is
real M(/̂ 2) ̂  0, we have M(^) <̂  r. As r is any positive number, ikf(#)
is infinitely small. This is a contradiction. The proof of the last part
is similar.

We now will give an example to show that a nonparacompact
space may not be an m-realcompact space. However, the existence
of non-Le-realcompact spaces remains as an open question.

Let L be the long line as defined in [5]. Then, L is Hausdorff
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space satisfying the first axiom of countability. Furthermore we have:

PROPOSITION 4.6. For each a e L, a Φ 1, [1, a] is isotonehomeomor-
phic to unit interval [0,1], Consequently, each point of L, not the
first element, 1, has an open neighborhood which is homeomorphic to
an open interval.

Proof. Use transinfinite induction.

PROPOSITION 4.7. L is countably compact but is not paracompact,
hence is not a compact space.

Proof. Let A be any countably infinite subset of L. Then, A
will be contained in the union of {Ia : a e J a W}, where W is the set
of all ordinal numbers less than the first uncountable ordinal, and Δ
has at most countably many elements. Let a0 be the least upper
bound of A. Then [1, a0] is homeomorphic to [0,1], Hence 4 c [ l , 4
a compact set, must have a limit point in [1, a0] c L, so that L is
countably compact. In view of (4.6), L is locally metrizable [5, p. 80]
but L is not metrizable. By Theorem 2-68 [5, p. 81] L is not para-
compact. Hence, it is not compact.

PROPOSITION 4.8. Of any two disjoint closed sets in L, one is
bounded.

Proof is similar [3, 5.12 (b)].
By (4.6), we know that L is a 1-dimensional manifold with a

boundary point 1. Hence we may define the differentiate function
on L.

PROPOSITION 4.9. Every function feC(L) is a constant on a tail
L — L(ά) where a depends on /, and L(a) = {σ e L : σ < a}.

Proof is similar to [3, 5.12(c)].
Let L* be the union space of L and the point Ω, the first uncoun-

table ordinal. Then, L* is a compact 1-dimensional manifold. For
each feCm(L), we extend / to a function /* on L* by defining that
f*(Ω) is the final constant value of /. Evidently /* e Cm(L*) and is
unique. On the other hand, for each g e Cm(L*), g\Le Cm(L). Hence
Cm(L) is isomorphic with Cm(L*), under the mapping /—>/*.

Since L* is compact, every ideal is fixed, and the maximal ideals
assume the form Ma = {/* 6 Cm(L*) :f*(σ) = 0}, where σeL*. By
virtue of isomorphism of Cm(L*) with CW(L), the maximal ideals in
Cm(L) are in one-one correspondence with those of Cm(L*). Moreover,
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the fixed maximal ideals in Cm(L) correspond to the ideals Mσ in Cm(L*)
for each σ eL, leaving just one free maximal ideal in Cm(L), namely,
Mo = {feCm(L) : / * eMΩ}, the one that corresponds to MΩ. Though
Mo is free, it is not hyper-real, for Cm(L)/M0 = Cm(L*)/M = R. Hence
L is not m-realcompact.

5* Homomorphism, α-mapping and α~homeomorphisiτu In
this section we will describe the relation between any α-mapping from
X into Y and homomorphisms from §1' to 51.

DEFINITION 5.1. Let X c E*1, and Y c Enκ A mapping τ : X -+ Y
is said to be a Cm-mapping at a point p, if each component of τ(x) =
(τ,{%u ••,&»!>, , τ%1(xu , xni)) is C" [14, § 3] at p. If τ is C" at
each point of X, then τ is said to be a Cm-mapping on X. If τ is a
Cm-mapping, one-one, onto Y and its inverse mapping, τ~ ι, is also a
Cm-mapping, then τ is Cm-difϊeomorphism. We will say then X and
Y are Cm-diffeomorphic.

Note that by (5.1), X and Y are Cm-diffeomorphic implies nL = w2.

DIFINITION 5.1/ A mapping τ from (X, dλ) to (X, d2) is said to
be an Lc-(resp. L-) mapping if, for each compact subset A of X, there
is a positive number KA such that d2(τ(x), τ(x')) <̂  iΓ^ώ^α;, a?') for all
x, %' e A. (resp. if there is a positive number K such that

(x')) ^ iΓcZ(a;, a;')

for all a;, α' e X). τ is said to be an Lc-(resp. L-) homeomorphism, if
τ is one-one, onto Y and both τ and its inverse τ" 1 are Lc-(resp. L-)
mappings.

We will use " α-mapping " to mean Cm-mapping, Lc-or L-mapping,
and i' α-homeomorphism'? to mean Cm-diffeomorphism, Lc- or L-
homeomorphism according as 31 is CW(X), LC(X) or , ^ = L(X).

DEFINITION 5.2. An / e C m ( X ) is said to be a local ΐ-th projec-
tion at a point p if there exists a neighborhood U oί p such that
y*| JJ — iy where i always denotes the ί-th projection of the space En

or XaEn.

LEMMA 5.3. Let X be any subset of En. For each peX and
r > 0, there are hif (1 ^ ί <J n), hi e CW*(X) such that hι(x) — Xi for
all x e clABr(p). We call h{, (1 ^ i ^ n) the i-th bounded local pro-
jection at p.

Proof. Choose r' > r. It is well-known that there exists g e C°°*(En)
such that
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(1 if xec\E

nBr(p)

g(x) = 0 if x e En - Br,(p)

0 < g(x) < 1, elsewhere

Set hi(x) —

Let Cΐ be a subset of Cm(Y) (resp. Cm*(Γ)), and τ be a mapping
from X to Y. Then we will see what Co

m should be in order that
g-τeCm(X) (resp. Cm*(X)) for all geC? implies r is a Cm-mapping
from X into Y.

THEOREM 5.4. Let τ be a mapping from X to Y and Co

m be a
subset of Cm(Y).

(1) τ is a Cm-mapping implies g τ eCm(x) for all geC™.
( 2 ) If g-τ eCm(X) for each geCΓ, and Co

m includes all pro-
jections of X, then τ is a Cm-mapping on X.

Proof. (1) It is obvious. (2) Since g-τeCm(X) for each geCT
which includes all projections on X, we have, in particular, i τ(x) =
Ti(x) e Cm(X) ΐor 1 ̂  i ^ n2. Hence, by (5.1) τ is a Cm-mapping.

THEOREM 5.4.* Let τ be a mapping from X to Y and C™ be a
subset of Cm*(Γ).

(1) τ is Cm-mapping implies g-τ eCm*(X) for all geC™,
( 2 ) If g τeCm(X) for each geC™, and Co

m includes all local
projections, then τ is a Cm-mapping on X.

The proof is similar to (5.4)

THEOREM 5.4/ Let τ be a mapping from a metric space (X, dλ)
to another metric space (Y,d2).

(1) If τ is an Lc-mapping, then f τeLc(X) for all feLc(Y).
(2) If f-T e LC(X) for all feLe(Y), then τ is an Lc-mapping

of (X,d^ into (Y,d2).

Proof. (1) is clear. (2) Consider any compact subset A Φ 0 of
X. We will show that τ is an L-mapping on A. By [3, 3.8] we know
τ is continuous. Hence τ[A] is compact. Let Φ be a mapping from
LC(Y) to LC(X) defined by Φ(f) = f τ for all feLc(Y). Then, it is
obvious that Φ is a homeomorphism of LC(Y) into LC(X). We restrict
Φ to Lc(Y)\τ[A] = {/| τ[A]:feLe(Y)}, then Φ is into

A = {g\A:geLc(X)}.

By compactness of A and the fact that every function which is Lip-
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schitzian on a nonempty subset of a space can be extended to the
whole space [7], we can show that LC(X) \ A = L(A), and

L.(Y)\τ[A] = L(τ[A]).

By [12, 5.1] τ is an L-mapping on A. Since A is arbitrary, τ is an
Z/c-mapping.

The induced mapping is defined in [3,10.2], We are concerned
with an α-mapping r of X into Y, where the role of D in [3,10.2]
is taken by E1. The appropriate subset of ElY will be 31' or &f.
Evidently, the induced mapping r', defined by τ'(g) = g-τe% for each
g e 2Γ (resp. &') is a homomorphism from 21' to 21 (resp. &' into . ^ ) ,
and τ carries the constant functions onto the constant functions
identically. Moreover, r' determines the mapping τ uniquely.

We now examine the duality relation between τ and τ'.

DEFINITION 5.5. A subset A of I c En is Cm (resp. Cm*)-embedded
in X if for each feCm(A) (resp. CW*OA)) there is geCm(X) (resp.
Cm*(X)) such that g\A = f.

DEFINITION 5.5/ A subset A of a metric space (X, d) is Lc (resp.
L*, or L)-embedded in X if for each feLc(A) (resp. L*(A), or L(A)),
there is geLc(X) (resp. L*(X), or L(X)) such that g\A = f.

We will simply say that a subset A of a topological space is a
(resp. 6)-embedded if A is Cm, or Lc (resp. Cm*, Lc*, or L)-embedded.

THEOREM 5.6. Let τ be an a-mappίng from X into Y, and τf

be the induced homomorphism g—*g τ from 2Γ into 21 (resp. &'
into &).

(1) τ' is an isomorphism (into) if and only if τ[X] is dense
in Y.

(2) τ' is onto if and only if τ is an a-homeomorphism whose
image is a (resp. b)-embedded.

Proof. Having (5.4), (5.4)*, (5.4)' and (5.3) in hand, the proof is
similar to [3,10.3].

COROLLARY 5.7. If τ is an a-homeomorphism from X onto Y,
then τr is an isomorphsim of 2ί' onto 21.

COROLLARY 5.8. // τ is an a-homeomorphism of a compact space
X to Y, then the induced mapping τf is onto.
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Proof. Use the theorem of Whitney's analytic extension [14] and
the fact that each Lipschitzian function on a subset can be extended
to the whole space [7]. The proof is evident.

Next, we examine the inverse problem of determining when a
given homomorphism of 2Γ into 21 is induced by some α-mapping from
X into Y. We shall first consider the homomorphism from 2ί into R,
i.e., the case in which X consists of just one point.

PROPOSITION 5.9. Any nonzero homomorphism Φ from 2Γ(or &')
into R is onto R. In fact Φ(r) — r for all reR.

Proof is similar to [3,10.5(a)].

PROPOSITION 5.10. The correspondence between the homomorphism
of 2Γ(or &') onto R, and the real maximal ideals is one-one.

Proof is similar to [3,10.5(b)].

PROPOSITION 5.11. Y is α-realcompact if and only if to each
nonzero homomorphism Φ from 21 onto R, there corresponds a unique
point y of Y such that Φ(g) = g(y) for all g e 2Γ.

Proof. Use (5.10) and α-realcompactness.
Our first result about homomorphisms from 21' into 21 for X is a

generalization of (5.11).

THEOREM 5.12. Let Φ be a homomorphism from 2Γ into 21 such
that Φ(u) = u. If Y is a-realcompact, then there exists a unique
a-mapping τ of X into Y such that τf — Φ.

Notice that the condition Φ(u) = u is necessary. Proof of the
theorem is similar to [3,10.6].

COROLLARY 5.13. An a-realcompact space Y contains an image
of an a-mapping of X if and only if 21 contains a homomorphic
image of 21' that included the constant functions on X.

Proof is similar to [3,10.9(a)].

COROLLARY 5.14. An a-realcompact space Y contains an image
of an a-mapping which is dense in Y if and only if 21 contains an
ίsomorphic image of 2Ϊ' that includes the constant functions on X.
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Proof is similar to [3,10.9(b)].

THE MAIN THEOREM. TWO a-realcompact spaces X and Y are
a-homeomorphic if and only if 2ί and 2ί' are isomorphic.

Proof. The necessity follows from (5.7).

Sufficiency. Let Φ be an isomorphism of 21' onto 2ί. Then Φ~γ

is an isomorphism of 21 onto 21'. By (5.12), there exist unique α-mapp-
ings τ and τλ from X into Y and from Y into X, respectively, such
that Φ(g) = g τ, and Φ~\f) = f-τlf for each geW and / e 2 I . Then,
g(y) = Φ~\g-τ)(y) = (g-τ).^) = g iτ τMy) for all yeY. That is,
τ τ1 is the identity mapping of Y onto itself. Similarly, τ^τ is the
identity mapping of X onto itself. Thus τ and τx are the inverse
mappings of each other. Hence X and Y are α-homeomorphic.

REMARK. S.B. Myers [9], L.E. Pursell [11], and M. Nakai [10]
have dealt with Cm-differentiable ^-manifolds. This theorem is ap-
plicable to any closed subset of En.

In spite of the remark made in (5.12), every homomorphism is
induced, in essence, by an α-mapping.

THEOREM 5.16. Let Φ be a homomorphism from 21' (resp. &')
into 21 (resp. &?), Y be a-realcompact (resp. compact). Then the set
E — {xe X: Φ(u)(x) = 1} is open-and-closed in X. Moreover, there
exists a unique a-mapping τ from E into Y, such that for any g e 2ί'
(resp. &) Φ(g)(x) = g(τ(x)) for all xeE, and Φ(g)(x) = 0 for all
xeX - E.

Proof is similar to [3,10.8].

COROLLARY 5.17. Let Φ be a homomorphism from 2ί' into a
subring R of 2ί. // Y is a-realcompact, then there exists a unique
closed subset F of Y such that the kernel of Φ is the z-ideal of all
functions in R that vanish on F.

Proof. Let E = {xeX:Φ(u)(x) = 1}. By (5.16), there exists an
α-mapping τ from E into Y such that Φ(g){x) = g{τ{x)) for all xeE,
and Φ(g)(x) = 0 for all x e X - E, for all g e 2ί'. Let F = clγτ[E], and
I = {g e 21': Z(g) 3 F}. We can show easily that ker Φ = I. The
uniqueness of F is clear.

PROPOSITION 5.18. An α-realcompact (resp. compact) space Y
contains an image of an α-mapping of X which is a (resp. 6)-embedded
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if and only if §1 (resp. &) is a homomorphism image of 21' (resp. &').

Proof is similar to [3, 10.9(c)].

REMARK. With the previous results, one can show without any
difficulty that the Theorems (2.1), (2.3) (2.4), (2.5) and (2.6) of [6]
are true if C(X) is replaced by Cm{X) (resp. LC(X)) with the condition
that Φ(Cm(X)) contains all projections or all local projections of Cm(Y)
(resp. Φ(LC (X)) = LC{Y)). However, in Theorem (2.2) [6], only the
first three statements are equivalent. For Φ is not a lattice homomor-
phism (see [3,0.5]) from Cm(Y) to Cm(X) (resp. LC(Y) to LC(X)).

6* Remarks* We have shown that if X and Y are two α-real-
compact spaces, then 21 and 2Γ are isomorphic if and only if X and
Y are α-homeomorphic. We shall make some observations about other
cases.

Let X be a subset of En, and Sx be the set of the projections
and the constant functions on X. Let S2 be the ring generated by
S19 and &{X) = {fig : f, g e S2 and Z(g) = 0}. Evidently &(X) is a
commutative ring of rational functions on X with unity u and zero
element θ. A ring of functions, A(X), is said to satisfy property
(6-1), if ^ ( I ) S A ( I ) g C m ( I ) , and if fe A(X) with Z(f) = 0, then
l/feA(X).

LEMMA 6.1. // A(X) satisfies property (6-1), then there is an
feA(X) such that f belongs to no maximal ideal other than Ma =
{feA(X) :f(a) = 0} and Z(f) = {α}, for each aeX.

Proof. Take f(x) = Σ?=i (&» - ^) 2 , where (au , an) = a e X.
Then that feMa and belongs to no other fixed maximal ideal is clear.
If / belongs to a free maximal ideal ikf, then there is g e M with
g(a) Φ 0. Let h = p + g\ We have Z(h) = 0 so that l/heA(X).
Hence u = Khr1 e M. This is impossible.

LEMMA 6.1/ For any metric space (X,d) and p e l , there is
feLc(X) such that f belongs to no maximal ideal other than Mp

and Z(f) = {p}.

Proof. Take f(x) = d(p, x). The proof is quite similar to (6.1).

LEMMA 6.2. // A(X) and A(Y) satisfy (6-1), and Φ is an
isomorphism from A(X) onto A(Y), then for any Ma c A(X), Φ(Ma)
is a fixed maximal ideal in A(Y).
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Proof. Consider the image of f(x) = Σ?=i (a\ - α,)2, Φ(f). We
can show that Z{Φ{f)) = {&} for some beY. The result follows
immediately.

LEMMA 6.2/ // Φ is an isomorphism of LC(X) onto LC(Y), then
for MpaLc(X), Φ(MP) is a fixed maximal ideal in LC(Y).

Proof is similar to (6.2).

LEMMA 6.3. Let Bt and B2 be subrings of C(X) and C(Y) respec-
tively, which contain all constant functions, Φ be an isomorphism
from B2 to Bu and X be connected. Then Φ is the identity on the
constant functions.

Proof. It is clear that Φ(r) = r for all rational constant functions
r. If k is an irrational number k — r Φ 0, for all rational numbers
r. Moreover, Φ(k — r)-Φ(l/(k — r)) = Φ(u) = u, we have

Φ
Φ(k) - r

for any rational number r. Suppose Φ(k) is not constant. By con-
tinuity of Φ(k) and connectedness of X, we would have Φ(l/(k — r))
is undefined for some r and some point of X This is a contradiction.
Hence Φ(k) is constant. By [3, 0.22], Φ is the identity on the constant
functions.

THEOREM 6.4. Let X and Y be two arbitrary subsets of En. If
there are A(x) and A(Y) subrings of Cm(X) and Cm(Y) satisfying
(6-1), and an isomorphism, Φ, from A(Y) onto A(X) leaving all con-
stant functions unchanged, then Φ induces a mapping τ:X—>Y
defined by Φ(g) = g τ and τ is a Cm-dijfeomorphism.

Proof. Define τ to be a mapping from X to 7 as follows:
τ{x) = n Z[Φ-\MX)\. By hypothesis and (6.2), Φ~\MX) is a fixed
maximal ideal in A(Y). Thus, τ is well-defined. Evidently, Mτ{x) =
Φ~ι(Mx), so that τ is one-one. Let yQ be arbitrary in Y. Then MVo is
a fixed maximal ideal in A{Y), and Φ(MyQ) = MXQ for some xQ e X. Thus
yQ = Π Z[Φ~\MX$\ = τ(x0). That is, τ is onto. Now, for each geA(Y)
and each xeX, if Φ(g)(x) = r, then Φ(g) — re Mx, g — Φ~\r) e Mτ{x) ,

so that g(τ(x)) = (φ-\r))(τ(x)) = r(τ(x)) = r = Φ(g)(x). Hence Φ(g) =
g-τ. Similarly, Φ~ι{f) = / τ - 1 where τ"1: F—>X, defined by τ~ι(y) =
Π [̂<P(Λίy)]. Since/ τ 6 A(X) and flr r ^ e A(1Γ) for each geA(X) and

/ 6 i ( 7 ) , and A(X) and A(F) contain all projections. By (5.4) τ is
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C m-diff eomorphism.

THEOREM 6.4'. Let (X, dj) and (Y,d2) be any two metric spaces.
If there is an isomorphism Φ from LC(Y) onto LC(X) leaving all
constant functions unchanged, then Φ induces a mapping τ:X—>F
defined by Φ(g) = g τ and τ is an Lc-homeomorphism.

Proof is similar to (6.4).

COROLLARY 6.5. Let X and Y be two connected subsets of En.
If there are subrings A(X) and A(Y) of Cm(X) and Cm(Y) respectively
satisfying (6-1), and an isomorphism, Φ, of A{Y) onto A{Y), then Φ
induces a Cm-diffeomorphism, τ, from X onto Y such that Φ(g) = g-τ
for each geA(Y).

Proof. Combine (6.3) and (6.4).

COROLLARY 6.5'. Let {X,d^) and (Y,d2) be two connected metric
spaces. If Φ be an isomorphism of LC(Y) onto LC(X), then Φ induces
an Lc-homeomorphism τ from X on Y such that Φ(g) = g τ for each
geLc(Y).

Proof is similar to (6.5).

REMARK. In (6.4) if A(X) = &(X), and A(Y) = &(Y), then τ
and τ~ι are not only Cm, each of their components is a rational

function. We may name this mapping as rational-homeomorphism.
We know that there is a nonlinear rational-homeomorphism. Let
X = Y = En - (0, , 0), and τ{x) = (τ^x), , τn(x)) be defined

Ti(x) = ^ for 1 < i < n .
2 2 — —

T h e n i t s i n v e r s e i s k n o w n t o b e τ~(y) — (Φx{y), •••, Φn(v)) w i t h

y\ + + v\
= j =

If the metric spaces are compact subsets of En, then we have
the same results as (6.1), (6.2), (6.4) and (6.5) with A(X) and A(Y)
replaced by B(X) and B(Y) respectively, where B(X) and B(Y) are
the subrings of L(X) and L(Y) respectively satisfying the following
property: &{X) c B(X), and/e B(X) with Z(f) = Φ implies 1/fe B(X).
We know that there is such a proper subring B(X). For instance,
let BQ(X) = {fe L(X): fe C3(X)}. Then ^(X) c BQ(X) c L(X).
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Next, we will see some algebraic properties of the rings of con-
tinuous functions which are inapplicable in the rings of Cm-differentiable
function, where 1 ^ m ^ oo.

(1) The rings of Cm-differentiable functions are not lattice-ordered.
Let X = E\ Consider Cm(X). We know i(x) = x,ie Cm(X). But

i I e Cm(X). Thus, neither / Λ θ nor / V θ, in general, is in Cm(X).
( 2 ) We know that in the rings of continuous functions, /(/) ;> 0

if there is g e C(X) such that g ^ 0 and g = /(mod /). (See [3, 5.2
and 5.4(a)].) In the rings of differentiate functions such a g need not
exist. Consider X = E\ and C\X). Let / - {fe C\X): Z(f) Z) [0,1]}.
Then I is a 2-ideal, convex, but not absolutely convex. Let fo(x) =
x — x2. It is clear that /0 ^ 0 on a zero-set of /. But there is no
g e C\X) so that g ^ 0 and g agrees with fQ on [0,1].

( 3 ) If J and J are 2-ideals in C(X), then IJ = I f] J. This is
not true in Cm(X). Let X = E\ Consider in C\Eι), I = J = Mo -
{fe C\Eι): / ( 0 ) - 0 } . T h e n I f] J = Mo. B u t i ( a ) = x , i e I n J a n d
i ί //. This also shows that the following is not true in Cm(X) or
Cm*(X). If P and Q are prime ideals in C(or C*) then PQ = Pf]Q.
For Cm*, we take X = { — n,n).
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