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GEOMETRIC THEORY OF A SINGLE
MARKOV OPERATOR

ROBERT SINE

A Markov operator acting on the space of continuous
functions on a compact Hausdorff space which is uniformly
stable in the mean allows a topological ergodic decomposition.
A partial converse to this is obtained; if the operator has a
decomposition it is then uniformly stable in the mean when
restricted to the conservative set. The characterization of
uniformly mean stable operators in terms of its invariant
structures is the major result. The problem of characterizing
the manifolds which can be the invariant manifold for some
Markov operator is also considered.

1* We denote by C(X) the collection of all continuous real valued
functions on the compact Hausdorff space X. A Markov operator on
X is a bounded linear operator T taking C(X) into C(X) with TΊ =
1 = 11 T11. A probability on X will always mean an element μ in the
dual space C(X)* with μ(l) = 1 = \\μ\\', the w*-compact convex set
of all probabilities on X will be denoted by K. The following are
immediate:

(a) K is invariant under T*,

(b) T is order preserving on C(X).
The Tychonov fixed point theorem gives

(c) there is a nonempty compact convex set KF of T*-invariant
probabilities.

We let M be the closed linear manifold of invariant functions;
then M contains the constant functions (and possibly nothing more).
We obtain a natural decomposition of X from the equivalence relation
x ~ y if f(x) = f(y) for all / in M. Each set D in this collection &}
of sets is closed for it is the intersection of level sets of continuous
functions. A partition of a compact Hausdorff space is upper semi-
continuous if it is the collection of level sets induced by a continuous
map into another compact Hausdorff space [2, p. 132], If we let Z
be the product of the ranges of all of the invariant functions and
define φ to be the map which sends x into the point of Z with f(χ)
for its / t h coordinate we see that & is the level set partition of φ
and so is upper semicontinuous. The quotient space Y = X/& is then
compact Hausdorff and the projection map π: X —> F is continuous and
closed. We can lift the map π to a map Π: C(Y) —> C(X). The image
set of Π consists of all continuous functions on X which are constant
on each set of & and Π~]M is a subspace of C(Y) which contains
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the constant functions and separates the points of Y.
We will call a nonempty closed set F self-supporting if the support

of T*ζx is in F for each x in F (ξx is the unit point mass at x and
support will always mean the unique closed support). The collection
of all self-supporting sets is denoted by ^ . We have introduced
this terminology to avoid the lengthy phrase "topologically and stochasti-
cally closed."

THEOREM 1.1. A nonempty closed set F is self-supporting if and
only if Tf vanishes of F whenever f vanishes on F.

Proof. If F is in ^~ and / = 0 on F then

τf(χ) = (/, τ*ξ.) = j/aτ*cβ = o .

On the other hand if x is in F and the support of T*ξx is not in F
we can find a continuous nonnegative function / so that / = 0 on F
and / is strictly positive at some point of the support of T*ζx. Then
0 < \fdT*ξx = Tf(x) so F is not in jr*.

The major importance here of self-supporting sets is that the
process can be localized to these sets. For F in ^ , to define T \F

on C(F) we let T\Ff= Th\F where h is any continuous extension of
/ from F to all of X. The previous theorem shows that T \F is well
defined. We now consider specific examples of

THEOREM 1.2. Let f be in M and denote the maximizing set of
f by m(f). Then m(f) is self-supporting.

Proof. Suppose max {f(x) x e X} = r and y is in m(f). Then

r = f(y) = Tf(y) ^ Tr = r. Since the dT*ζy integral of / is the
maximum value of /, the support of T*ζy is in the maximizing set.

THEOREM 1.3. Let μ be an invariant probability. Then S(μ),
the support of μ, is self-supporting.

Proof. If / = 0 on S(μ) and / is nonnegative we have

so we must have for the nonnegative function Tf that Tf = 0 on
S(μ). Now if / is any function vanishing on S(μ) we can look at
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REMARK. Although the maximizing set of an invariant function
is self-supporting the other level sets in general are not. However
we do have

THEOREM 1.4. Let f be in M and μ be an invariant probability
with support S{μ). Then for each closed nonempty set A of reals
in the range of f the set F — f~~ι{A) Π S(μ) is self-supporting.

For the proof we need a lemma due to Rosenblatt [10]. If μ is
an invariant probability and Tf = / on S(μ) we say / is //-invariant.

LEMMA 1.5. For each μ in KF1 the set of μ-invariant functions
forms an algebra.

Proof. It is sufficient to show that / V g is μ-invariant whenever
both / and g are. Now f^fVg and g ^ / V g so Tf ^ T(f V g)
and Tg ̂  T(f V g). So TfVTg£ T(f V g) and on S(μ) we have
/ V g ^ T(f V g). We obtain equality at once on integrating with
respect to μ.

Now to prove Theorem 1.4. We restrict T to be a Markov operator
on S(μ). Any μ-invariant function is an invariant function when
restricted to S(μ) so the invariant functions for the restricted operator
form an algebra. We can find a continuous function φ of a real variable
so that φ of has f~\A) Π S(μ) as its maximizing set (on S{μ)). Now
φ of is in the algebra since φ o f is clearly continuous and constant
on the sets of the decomposition. Then f~ι(A) n S(μ) is a self-sup-
porting set for T on S(μ); but this is clearly a property that is
independent of the embedding of S(μ) in X.

It is standard Zornification that each self-supporting set contains
a minimal self-supporting set. Members of the class of minimal self-
supporting sets are disjoint.

THEOREM 1.6. If F is in j ^ ~ there is an invariant probability
with support contained in F.

Proof. We can regard F as embedded in K by x—>ζx. Then
FQ = coF is compact convex and T* -invariant so the result obtains
from Tychonov again.

THEOREM 1.7. Let F be a minimal self-supporting set. Then F
is the support of an invariant probability and each invariant func-
tion is constant on F.

Proof. F supports at least one invariant probability; if the sup-
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port is a proper subset of F we contradict minimality. Now if / is
invariant the level sets of / restricted to the support can give only
a trivial partition of F so / is constant on F.

COROLLARY 1.8. Each minimal self-supporting set is contained
in exactly one D in £&.

Those sets of £& which do support invariant probabilities will be
called ergodic sets; the collection of ergodic sets will be devoted by
i? and W = U {E: Ee gf} will be called the conservative set.

THEOREM 1.9. The conservative set is closed.

Proof. By properties of upper semicontinuous decompositions if
VΊ is open in X and contains E then there exists an open set V2 with
EdVzdVΊ where πV2 is a neighborhood of the point e = πE in
Y = X/&. Now if xa is a net of points in the conservative set W
with xa —* x0 we have πxa —* TΓOV For any neighborhood Vγ of i? the
ergodic sets Ea are ultimately in F 2 c F 1 ( Then if we pick μa to be
any invariant probability on Ea we can pass to a subnet so that
μa -* μ0 where μ0 is an invariant probability. The support of μ0 is
in Eo so that Eo is an ergodic set.

REMARK. Jamison [3] proves this last result for a uniformly mean
stable operator. Lloyd [4] actually works with the Markov projection
that always exists for a uniformly mean stable operator; he shows
that the set of extremes of KF forms an closed set (in the w* topology).
These properties are equivalent for a uniformly mean stable operator.
Choquet has given an example of a deterministic operator with a
nonclosed extreme point set for KF [8, p. 83].

It is easy to see that the ergodic sets are in general a proper
subcollection of &. It is also clear that an ergodic set may contain
more than one minimal self-supporting set (consider Tf(x) = f(x2) on
[0, 1]). But it is not at all obvious that a minimal self-supporting set
may support more than one invariant probability. Let N be the
positive integers; translation n—>n + 1 extends to a homeomorphism
φ of βN\N (βN denotes the Stone-Cech compactification). For the
reversible deterministic operator Ύf—foφ Alvarez de Araya [1] and
Raimi [9] show that each minimal self-supporting set supports at least
two distinct invariant probabilities.

THEOREM 1.10. Let F be a minimal self-supporting set and Fo

be the closed convex hull of the invariant probabilities which are
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supported in F. If μ is an extreme point of Fo then μ is extreme
in KF.

Proof. Suppose μ = (l/2)(λx + λ2) where λx and λ2 are in KF and
μ is extreme in Fo. It is immediate that λx and λ2 are absolutely
/^-continuous and so are supported on F. Thus μ = λx = λ2.

The converse is false. Again for the example of translation as
a homeomorphism on βN\N Alvarez de Araya [1, p. 131] asserts that
there exist extremes of KF which are not minimally supported.

THEOREM 1.11. Each extreme invariant probability has its sup-
port in an ergodic set.

Proof. Let / be an invariant function which is not constant on
S(μ). If we can pick r so that the μ measure of [/ <: r] is strictly
between zero and one then [f^r]f] S(μ) is a self-supporting proper
subset of S(μ). We define a positive invariant measure by X(A) —

[f^ r]); then

μ(A) = μ[f * r ] - M ^ - + μ[f
μ[f ^ r]

shows μ is not extreme. To show such a choice of r is possible
suppose μ[f ^ r] = 0 for all r < max {/(#): xe S(μ)}. Then the μ
measure of the maximum set of / on S(μ) is 1 and / is constant on
S(μ). The same argument works as well from the other end and we
are done.

The manifold L = Π^M separates the points of X/& and
contains the constant functions. We will call a point p in X/S& a
Choquet point (for L) if the only probability on X\& which represents
the point evaluation functional on L,f—+f(p), is the point mass ξp.
The collection of all Choquet points is called the Choquet boundary
for L; it is a boundary in the sense that the maximizing set for each
function in L meets the Choquet boundary. A very readable guide
to Choquet's theorem is Phelps [8]. Although we make no use of
the Choquet-Bishop-de Leeuw theorem it is this geometric point of
view that we follow throughout. If D is a set in £%r and there is a
point x in D with the support of T*ξx not contained in D then p = πD
is not a Choquet point. Thus the Choquet points of L must be images
of ergodic sets in X. We give an example in § 3 to show that the
image of an ergodic set may fail to be a Choquet point even when
the ergodic set is self-supporting.

REMARK. We wish to point out that the self-support property
for an ergodic set E is much stronger than the measure theoretic
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result that with probability 1 no mass escapes from E where the
probability is any invariant probability supported in E. This almost
everywhere result follows at once from the fact that the support of
every invariant probability is self-supporting.

THEOREM 1.12. dimΛf^dimZ^ where dim is the affine dimension.

Proof. Let fί9 •••,/» be invariant functions which span an n-
dimensional subspace N. Let K(N) be the positive norm one functionals
in N*. Then K(N) is clearly ^-dimensional so has at least n exposed
points. Then there are n disjoint sets Fu , Fn in X and n functions
g19 •••, gn in N so that g^Fi) = 1 and gi(X\Fi) = 0. This gives n
disjoint maximizing sets and so n linearly independent invariant pro-
babilities.

2* A Markov operator on C(X) is called uniformal mean stable
if the Cesaro means Anf converge uniformly for each / in C(X) (to
a necessarily invariant function). The decomposition for such operators
has been presented by several authors [3, 4, and 10]. The observa-
tion that ergodic sets not only contain self-supporting subsets but are
themselves self-supporting appears to be new.

THEOREM 2.1. If T is uniformly mean stable and f is a function
constant on each of the sets in & then there is an invariant function
g with g — f on the conservative set.

Proof. The candidate is / = lim Anf. We know / is constant
on each set in ^ to see that it is the right constant on each set in
g7 simply integrate with respect to any invariant probability in E.

THEOREM 2.2. If μ and λ are two distinct invariant probabilities
for a uniformly mean stable operator then there is an invariant
function f which distinguishes in the sense that (μyf) = (λ,/).

Proof. Pick / to be any function in C(X) which distinguishes μ
and λ; then / = lim Anf meets the requirements.

COROLLARY 2.3. // T is uniformly mean stable then there is
exactly one minimal self-supporting set in each ergodic set and each
minimal self-supporting set is the support of exactly one invariant
probability. Moreover the extreme invariant probabilities are the
minimally supported invariant probabilities.
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COROLLARY 2.4. If T is uniformly mean stable each ergodic set
is self-supporting.

Proof. Let B be the image of W under π. It is clear that L \B

is C(B). Since the Choquet boundary is a subset of B and given any
continuous function on B it has an extension to X\2$ which is in L
we have that B is the Choquet boundary. So each ergodic set is
self-supporting.

COROLLARY 2.5. The conservative set is self-supporting.

Proof. The closure of the union of any collection of self-supporting
sets is easily seen to be self-supporting; but W is closed.

COROLLARY 2.6. // T is uniformly mean stable dim M = dim KF.

Proof. We need only dim M ^ dim KF. Now we can find as
many extreme points in KF as its dimension. If there are at least n
extremes then there are at least n distinct ergodic sets so at least n
points in πW. Thus C(πW) = M is at least ^-dimensional.

We now prove the converse of Theorem 2.2; this is the geometry
of the title.

THEOREM 2.7. Let T be a Markov operator on C(X). Suppose
that the invariant functions separate the invariant probabilities.
Then T is uniformly mean stable.

Proof. The M topology of KF defined by μa —> μo[M] if and only
if (/, μa) —• (/, μ0) for all / in M is Hausdorff by assumption and
clearly weaker than the w* topology of KF. Thus the two topologies
agree. For any point x in X and any / in M we have (Tnf, ξx) =
(/, ξx) = f(χ) so that the orbit of T*nξx has one invariant probability
μx in its closed convex hull. Then ^4*^ converges to μx. We claim
that the map x —* μx = lim Atξx is continuous relative to the w*
topology. For if / is in M we have f(xa) = (/, μ0) and if xa —> x0 then
f(%o) = (f,μo) and clearly f(xa) —>/(α?0). Now we have an analytic
condition known to be equivalent to uniform mean stability [3, Theorem
1.1].

3* We will say that a Markov operator has a topologically ergodic
decomposition if each ergodic set is self-supporting and supports exactly
one invariant probability. This second condition has the geometric
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interpretation that M distinguishes the extremes of the set of invariant
probabilities.

Since each ergodic set is self-supporting we can restrict the action
of T to an ergodic set. The restricted operator has a unique invariant
probability so on each individual ergodic set Anf converges uniformly
to the mean value of / on the set. We can do better than the local
uniform convergence on ergodic sets however.

THEOREM 3.1. Let T be a Markov operator with a topological
ergodic decomposition. Then the conservative set W is self-supporting
and the restricted operator is uniformly mean stable on W.

Proof. Clearly W = \J {E: Ee g*} is self-supporting. If / is con-
tinuous on W and constant on each ergodic set we have Tf = f on
W. If λ and μ are two invariant probabilities which agree on each
function in M then X(A) = μ(A) for each set in the Borel field generated
by Sf. But if λ = μ then there is a continuous function / which
distinguishes λ and μ and a Borel function / = lim Anf measurable
with respect to the Borel field generated by & which also distinguishes.
Thus the invariant manifold for the restricted operator distinguishes
the invariant probabilities so T is uniformly mean stable on W by
Theorem 2.7.

We now consider two examples. For the first we take X to be
the closed unit disc A. For each x in A we define T*ζx to be the
uniformly distributed unit mass on the disc Ar(x) centered at x with
radius r equal to one half the distance from {x} to the set dA (J {0}.
The operator is then defined by Tf(x) — (/, T*ζx). The invariant
functions are easily shown to be the continuous functions on A which
are harmonic at each interior point (the origin is a removable singu-
larity). The decomposition ^ is a decomposition to points and the
ergodic sets are the individual points of dA and the point at the origin.
So T has a topological ergodic decomposition and is clearly uniformly
mean stable when restricted to the conservative set (indeed, the
restriction is the identity operator). The origin is a self-supporting
ergodic set but its τr-image is not in the Choquet boundary.

The second example is obtained by adding an additional point to
the first; let p be a point disjoint from A and set T*ξp equal to the
uniformly distributed unit mass on dA. Then f(p) — /(0) for each
invariant function. The decomposition is the collection of individual
points of the deleted disc \̂{0} together with the two point set {0, p).
This last set supports the invariant probability ξ0 so is ergodic but
T*ξp has support disjoint from {0, p) so it is not a self-supporting set.

4* Given a subspace M of C(X) which contains the constant
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functions when is it the invariant manifold of a Markov operator?
If we ask that the operator be uniformly mean stable then M is also
the invariant manifold of the Markov projection P — \imAn as well,
where the limit is in the strong operator topology. A Markov pro-
jection is called smoothing if P(fPg) = (Pf)(Pg). If X is metrizable
there is a partial answer. If the decomposition of X induced by the
algebra A is lower semicontinuous (so that π: X—> Xj£2r is open as
well as closed and continuous) then Lloyd [5] observes that a selection
theorem of Michael [7] gives the existence of a Markov smoothing
projection onto A. To show the lower semicontinuity condition is not
necessary Lloyd gives a smoothing Markov projection on the algebra
of functions continuous on [0, 2] and constant on [0, 1]. But some
additional restriction is necessary for Lloyd also gives the following
example where it is easily shown that there is no Markov projection
on the algebra (smoothing is free if the range is an algebra). A is
the space of functions continuous on [0, 3] which are constant on [1,2].

Before we can state our results we need some terminology. If L
is a subspace of C(X) which separates points and contains the constant
functions we will say that L is a simplex if the Choquet boundary
is a closed set and each point evaluation functional has a unique
representing probability supported on the Choquet boundary. Our
terminology is not standard here but we can avoid delicate measure-
theoretic interpretations of a probability supported by the boundary.

REMARK. Since the Choquet boundary is assumed closed it is
uniqueness that is the essential factor in the definition. For a point
evaluation functional will extend to the space of all continuous func-
tions on the boundary and the Riesz theorem gives a representation
as a probability on the boundary.

We will call a simplex L a Markov simplex if L when restricted
to 3L is C(dL).

THEOREM 4.1. If M is a separating subspace of C(X) containing
constants then there is a Markov projection onto M if and only if
M is a Markov simplex.

Proof. Suppose M is the invariant manifold of a Markov projection
P. The Choquet boundary is closed as a projection is always uniformly
mean stable. If / is any function continuous on the Choquet boundary
we can extend / continuously to all of X and then take the Cesaro
limit to obtain an invariant function which agrees with / on the
boundary. Uniqueness then follows from the uniqueness assertion in
the Riesz theorem. On the other hand suppose L is a simplex. Given
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x in X we wish to define P so that P*ζx = μx where μx is the unique
representing probability for x. We need only show that P acts con-
tinuously. It is known that the map μx—>x is w* continuous [8, p.
4]. The uniqueness gives the existence of the inverse map and so
x —* μx is a homeomorphism by elementary topology.

If M fails to separate points of X we cannot do nearly as well.

THEOREM 4.2. (a) // M is the invariant manifold for a Markov
projection then L = Π~ιM is a Markov simplex in C(X/&).

(b) Let A be the algebra generated by a manifold M which con-
tains the constants. If X is metrizable and if the decomposition
generated by A is lower semicontinuous then M is the range of a
Markov projection if and only if h — Π~ιM is a Markov simplex
in

Proof, (a) By uniform mean stability again the closed set πW
is the Choquet boundary for L and we again get both existence and
uniqueness for representing measures from the Hahn-Banach and Riesz
theorems.

(b) The Lloyd-Michael result gives a Markov smoothing projection
onto A. This followed by the projection P: C(X/&)—+L of Theorem
4.1 with proper indentifications gives one direction. On the other
hand if a projection exists we can restrict it to A = C(X\3ί) and use
the reverse implication of Theorem 4.1.

We give an example to show that Markov projections may exist
without factoring through the enveloping algebra. Let M be the
manifold of functions continuous on [0, 3] which are linear on both
[0, 1] and [2, 3] and constant on [1, 2]. If we define P* by

P*g\ = (1 - χ)ξQ + xX 0 ̂  x ^ 1

P*ζx = λ 1 < x < 2

P * Z \ = (x - 2 ) λ + ( 3 - x)ζ3 2 ^ x ^ 3

where λ is Lebesgue measure on [1, 2] we obtain a Markov projection
onto M. Now the algebra generated by M is the functions continuous
on [0, 3] and constant on [1, 2]. This is Lloyd's example of an algebra
with no Markov projection.

From Theorem 4.1 we see that there is no Markov projection on
the manifold spanned by 1, x and x2 in the space of continuous func-
tion on [0,1]. We can extend this negative result with a theorem
suggested by an approximation theorem of Bohrman and Korovkin
[6, p. 7].

REMARK. This approximation theorem has an elementary proof
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but while the hypotheses are easy to meet for applications (the
Bernstein and the Fejer approximation theorems) they are difficult to
interpret. More objectionable from our point of view the hypotheses
force the compact Hausdorff space to be a subset of a finite dimensional
Euclidean space.

THEOREM 4.3. Let {Tn} be a sequence of positive operators and
L a subspace of C(X) which separates points and contains the constant
functions.

(a) // for each f in L we have Tnf
2 converging to f2 with the

convergence bounded and poίntwise then Tn converges to the identity
operator in the weak operator topology.

(b) If the convergence of Tnf
2 to p is uniform then Tn converges

to the identity operator in the strong operator topology.

Proof. We have Tnl converging to 1 where the convergence is
bounded and pointwise so that the norms || Tn || are uniformly bounded.
For any x and any y = x we can pick / in L with f(x) = 0 and
f(y) = 0. Then (Tnf

2)(x) = (f\ Ttζx) and if μ is any (necessarily
positive) measure in the cluster set of T*fx we have y disjoint from
the support of μ. Since μ(l) = 1 and S(μ) is {x} we have μ = ζx.
Then Tζζx converges to ζx in the w*-topology which proves (a).

Now suppose convergence is not in the strong operator topology.
Then for some subsequence of {Tn} and some g in C(X) we have
II Tng — g || > r > 0. For the subsequence we can pick xn in X to get
I Tng(xn) — g(xn) I > r > 0. By passing to a subnet of the subsequence
we can assume xa—>x. Let μ be any w* cluster point of T*ζ(xa).
Then for / i n L with f(x0) = 0 we have that Taf

2(xa) clusters at
\f2dμ. Since Taf

2 converges uniformly to f2 we have

\f2dμ=f2(x0)=[0

and so as before μ = ξ(xQ). Finally

I Tag(xa) ~ 9(Xa) I ̂  I Tag(xa) - g(x0) \ + | g(x0) - g(xa) \

gives the contradiction as both terms go to zero.

REMARK. Convergence of the Tn on the squares of the "coordinate
functions" of X cannot be replaced with convergence on the "coordinate
functions" themselves. Let Tn be the second and third degree
Bernstein operators alternately.

COROLLARY 4.4. Let M be a subspace of C(X) which contains
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the constants and separates points. If T is a Markov operator which
leaves the square of each function in M invariant then T is the
identity operator.
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