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A TAUBERIAN RELATION BETWEEN THE BOREL AND
THE LOTOTSKY TRANSFORMS OF SERIES

SORAYA SHERIF

This paper is concerned with the equiconvergence of the
Lototsky transform and the Borel (exponential) transform for
a class of series satisfying the Tauberian condition an = o(l).

If sn = a0 + cLi + + αΛ, the Borel (exponential) transform f(x)
of sn is usually defined by

0 0 /y*n

e 2-1 s™—Γ

Writing sn = aλ + α2 + « + αΛ, the Lototsky transform σ% of sn

introduced by A. V. Lototsky [8] is defined by

(1.1) σn = -ί- Σ P ,*s* >

where pntk is the coefficient of xk in

pn(a;) - «(a? + l)(x + 2) (x + w - 1) , (w = 1, 2, - •) .

Thus it is usual in considering Lototsky summability to take the first
term of the series as al9 and in considering Borel summability1 to take
it as α0. In order to compare the methods without changing the
customary notation we will therefore apply the Borel methods to the
series 0 + aλ + a2 + and apply the Lototsky method to the series
ax + α2 + •••. We recall (Hardy [5] pp. 182-3) that the Borel sum-
mability of aλ + α2 + implies the Borel summability 0 + a + a + ,
but not conversely. The two methods are equivalent if (and only if)

); this is true in particular if

(1.2) an =

and thus for the series considered in this paper.
Lototsky's transform is essentially a special case of a class of

transformations introduced by J. Karamata [7]. It is the (/, dn) trans-
form defined by G. Smith [11], when f(z) = s, dn = n, and the [F, dn]
transform defined by A. Jakimorski [6], when dn = n — 1 and n^>l.
It is also the σa method of summability introduced by Vuckovic [12],
when a = 1.

Numerous properties of this Lototsky transform and its relation

1 "Borel summability" is throughout taken to refer to BoreΓs exponential method.
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with some of the other transformations have been shown in Agnew
([1], [3]).

In § 2 of the present paper we shall show that, for the class of
series satisfying the Tauberian condition (1.2), the Lototsky transform
σn and the Borel transform f(\ogn) are equiconvergent. This includes
the result that, under the condition (1.2), Lototsky summability implies
Borel summability, and it should therefore be remarked that this
result is essentially due to Agnew ([1], [3]). For we have, with
Agnew's notation, (since for suitably restricted sequences the starred
and unstarred methods are equivalent)

LczBI* ~BI~B .

The argument of § 2 depends on an asymptotic expression for pnk for
large n given by Moser and Wyman [10].

In §3, we introduce a Tauberian constant for the Lototsky trans-
form.

Agnew ([2] §'s 2, 3) has obtained a result of a similar nature to
Theorem 3.1 of this paper but for the Borel transform instead.

We may observe that Theorem 3.1 is included in Theorem 2.1 of
the present paper. Also, a " 0 " Tauberian theorem for the Lototsky
transform is included in Theorem 2.1, but not in Theorem 3.1.

2. THEOREM 2.1. Suppose that (1.2) holds. Then

(2.1) σn — /(log n) —* 0 , as n —> oo .

For the proof of Theorem 2.1, we require the following lemmas.

LEMMA 2.1. There is a K = K(ri) such that

Pnl < Pn2 < * * < PnK ^ Pn,K + l > Pn,K+2 > ' " > Pnn

and that for large n

(2.2) K(n) = log n + 0(1) .

The result is due to Hammersley [4]. Hammersley gives a more
precise result than (2.2), but this is enough for our purposes.

LEMMA 2.2. Let α, b be constants with 0 < a < 1 < 6. Then for
large n uniformly in

(2.3) a log n ^ k ^ b log n ,

we have
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(2.4) 2k = θ(—L=

n\ \v\og n

where we write

k(2.5) φ(θ) = θ - 1 - θlogθ θ =

Proof. Write

Λ - l +

" ί + V

We note that, for fixed n, as ί increases from 0 to °°,fn(t) increases
from 1 to n.

Now, it follows from Moser and Wyman ([10], equation (4.51) and
the line below it) that, uniformly in a bigger range which includes (2.3)

<2.6) pnk =
(2πH)iRkΓ(R)

where R is the unique positive solution of the equation

<2.7) UR) = k

and where

<2.8) H = k - Σ ^—i-

Now, it clearly follows from the definition that for large n uniformly
in 0 S t sΞ c (c is a constant) we have

<2.9) fn(t) =

Choose c > δ; then it follows from (2.9) that, for sufficiently large n

fn(c) >b\ogn

and hence, for sufficiently large n, we have R <£ C for all fc satisfy-
ing (2.3).

In the rest of the proof of this lemma, the symbol 0 is to be
taken as applying for large n uniformly for k in the range (2.3).
Thus, by what has just been said, R = 0(1). Also since (2.9) is valid
for t = R we deduce from (2.7) that

<2.10) R - - A - +
logw

We also note, that since R is bounded



148 SORAYA SHERIF

(2.11) H=k + 0(1) .

Now, since R is bounded, it follows at once from Stirling's approxima-
tion that

(2.12) Γ(n±EL = %«-iΛ + 0( 1\) .

However, if we consider log (nR~ι) we find, by (2.10) that

(log (n*-1) = (R - 1) log n = k - log n + 0(1)
(2 13)

' =(θ -l)logn + 0(1) .

Also, by (2.10)

log (Rk) = k log R = k log 0 + k log
(2.14)

I = (θ log 0) log M. + 0(1) .

Also, since R Ξg K > 0, where IT is a constant, we have

also by (2.11)

(2.16)
2/7H

Thus combining (2.6) and (2.12)-(2.16) the result (2.4) follows.

LEMMA 2.3. Let X be a constant so that

(2.17) l < λ < |

Then for large n uniformly in the range

(2 .18) |ifc -

we have

n\ V2π\ogn \ 21ogw
(2.19)

xU

)

1 V loor n ) V loer2 n /1log w / V log2

where we write

(2.20) fc = log n + Λ .
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Proof. To prove (2.19) we need an improvement on (2.10). We
have

where v is Euler's constant. Hence by definition of R

MR) - Ml) = h - v -

But for some t between 1 and R

MR) - Λ(l) = (R -

Also for the relevant t we have, since R = 0(1)

-o (ί + vγ ίA t + v - i (t + vγ
- log n + 0(1) .

Thus

A - 7 + θ(—) = (R - 1) (log w + 0(1)) ,

^log'
__ h — 7 ,

logw

Since Γ(l) = 1 and since d/dt(l/Γ(t)) is bounded for t between 1 and
R, we have

(2 22) = = 1 +
1 } Γ(R) + ~ V logπ
Also

<2.23) ^ = ^ ( 1 + 0(1));

(2.24) - ± = = " > 1 + 0
V A; VJog n \

Also

log w -̂1 = (R - 1) log n = h - γ + θf [ fe [ + 1

\ logn
so that

(2.25) n^ = e>
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Up to this point, results are valid in the whole range (2.3) of
Lemma 2.2, though they give an improvement on (2.3) when \h\ =
o(logn). But from now on, we take "0" as applying for large n
uniformly in k in the range (2.18) only.

Consider log (Rk). We have

log (Rk) = k log R

= (log n + h) log {l + AzJί. + θ(i^i±JΛ}
I logn \ log2n n

= (log n +
logn 2\og2n

log2n

Thus

«2.2β, Λ .

Combining (2.6), (2.12) and (2.22) - (2.26), the result (2.19) follows.

Proof of Theorem 2.1. Let N be the integer nearest to log n.
Then we have, for x = log n.

f{x) = e~*±sk^- = <r ^
λ=i A:!

Let λ be a constant such that (2.17) holds. Write

(2.27) μ(n) = logw — (lognf, v(n) — logn + (logn)λ.

Since, by (1.2)

(2.28) sk - sκ = o(k)

uniformly for k ^ N, it follows from Theorem 137 (6) of Hardy [5] that

Ίf

Also, since
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(2.29) sk - sN = o(N)

uniformly in k ̂  N, it follows from Theorem 137 (3), loc. cit., that

n)

Thus

(2.30) f(x) = sN + e-χ Σ — (sk-sN)
v{n)<k<μ(n) k !

We also have

But Agnew ([1], p. 106) has remarked that

Hence

(2.31) σn = sΛ- + - L Σ P»*(βib - ^ ) .
nl k=ί

Let 6 be a constant such that 6 ^ 1 and such that, with the
notation of (2.5),

(2.32) φ(b) < - 2 .

It is possible to choose such a constant, since

φ(θ) > — oo aS θ > co .

It follows from (2.30) and (2.31) that

σn-f(logn)=( Σ + Σ + Σ

- e-'-π-) (β* - 8A.) + o(l)

say, where x = log n.
It follows from Lemma 2.1 that, for all terms occur ing in the

sum Σi> the value of pnk/nl is less than the value it takes for the
last term, and by Lemma 2.3 this is

:exp - —
log n L 2
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Since the number of terms in the sum is O(logn), it follows with
the aid of (2.28) that

Σ = o(i) .

We can deal with X,2 in a similar way. Again for all terms
occuring in the sum Σs> the value of pnk/nl is less than the value it
takes for the first term, and by Lemma 2.2 this is

θ ( / Ί

1

\v log\v log n

We have, for each individual term

sk - sN = o(n)

and the number of terms in the sum does not exceed n; hence it
follows with the aid of (2.32) that

It follows from Lemma 2.3 and from Theorem 137 (5) of Hardy
[5] that in the range of summation of Σ 4 we have, with x = logn,
h = k — log n

n\ k\ V log n L expΓexp ( )lΓθ(
log n L \ 2 log n /JL V log n

Further, in this range it follows from (1.2) that

sk ~ sN = o(h) .

F u r t h e r ,

I λ I + 1 = o(| A I)

except for the term k — N, since \h\ ^ i; and, for this term sk — s?ί

vanishes. Hence

(2.33) Σ-o{ / Σ X(h)\
4 l V lOg U μ{n)<k<v{n) )

where

= χ(h; n) = \h\(JAL + J ^ J L ) e X p
V log n log w /

+ ) e X p ( ^
log n log w / V 2 log n

It is easily verified that, for h > 0, χ(fe) is increasing for h < h0 =
ho(n) (say) and decreasing for h > hQ. Thus for any integer k with



THE BOREL AND THE LOTOTSKY TRANSFORMS OF SERIES 153

h = k — log n ^ h0 — 1

we have

(2.34) χ(h)

and similarly for h ^ hQ + 1.

(2.35) χ(h) < Γ χ(t)dt .
J h—1

There are at most two terms for which neither of the inequalities
(2.34), (2.35) are valid; and these are 0(1) (uniformly in n) since
χ(h; n) is bounded. We can deal with negative values of h in a
similar way. It thus follows from (2.27) that expression in curly
brackets in (2.33) does not exceed

Using this in (2.33) it follows that

M
log n J~

n T
log n

2 log

- θ|Γ 4) exp

This is enough to establish (2.1).

3* THEOREM 3.1. Suppose that

(3.1) ak =

Let m be an integer valued function of n such that

(3.2) lim sup | (m — logw)/i/ log n \ ̂  c ,

where c is a constant. In other words

(3.3) m = log n + cV log π + o(V log ^) .

Then

(3.4) lim sup | σn — sm \ g ^(c) lim sup | A:2 ak
W—>oo Jc—*oo

where φ(c) is a Tauberian constant defined by

(3.5) φ(c) =J— jexp (-c2/2) + cΓexp (-u 2 /2)^
v 7Γ I Jo

result is the best possible in the sense that equality can occur
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in (3.4).
The least possible value of φ(c) occurs when c — 0.

Theorem 3.1 follows at once from Agnew's result of ([2] §'s 2, 3)
with the aid of Theorem 2.1. It also could be deducted from Theorem
1 of Meir2 [9], since Lemma 2.3 satisfies Meir's conditions when Meir's
q equals logn.

Theorem 3.1 implies analogous results to Theorem 1.4, 1.5 of
Agnew [2] but for the Lototsky transform instead. The analogue of
Agnew's result of ([2] § 4) for the Lototsky transform can be deduced
from Agnew's result of §4 with the aid of Theorem 2.1. The only
change in our results is that we have logn instead of Agnew's t.

I am very much indebted to Dr. B. Kuttner for his detailed criti-
cisms and suggestions which have been most helpful at all stages.
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2 Meir states in his Lemma B that the other conditions imply his Equation

(3.4). This is obviously untrue, but if we assume his Equation (3.4) as an additional

hypothesis, then Meir's theorems become correct.




