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A CHARACTERIZATION OF ANALYTICALLY
UNRAMIFIED SEMI-LOCAL RINGS

AND APPLICATIONS

L. J. RATLIFF, JR.

It is proved that a semi-local ring R is analytically un-
ramified if and only if R is a subspace of a ring which is
isomorphic to a finite direct sum of semi-local Dedekind domains.
Applying this, it is proved that a local domain R is analytically
irreducible if and only if R is a subspace of a local Dedekind
domain, and this is true if and only if R is a subspace of
every local domain which dominates R and which satisfies the
altitude formula relative to R. A final application proves
that an analytically unramified local domain is unmixed if and
only if it satisfies the altitude formula.

All rings in this article are commutative rings with a unit, and
the terminology is in general the same as that in [2]. In particular
a ring iϋ* dominates a ring R in case R is a subring of it!*, each
maximal ideal in ϋ?* contracts to a maximal ideal in R, and each
proper ideal in R is contained in a maximal ideal in iϋ*. A semi-local
(Noetherian) ring R is a subspace of a semi-local ring iϋ* in case .#*
dominates R and J? is a subspace of iϋ* for the natural (Jacobson
radical) topologies. A Dedekind domain is an integrally closed
Noetherian domain of altitude one.

In § 2 it is proved that a semi-local ring R is analytically unramified
if and only if R is a subspace of a ring which is isomorphic to a
finite direct sum of semi-local Dedekind domains (Theorem 2.1). When
R is analytically unramified, Theorem 2.2 associates with each ideal
B contained in the Jacobson radical J of R a ring W such that (1)
W is a quotient ring of a finitely generated ring over R, and (2) W
is isomorphic to a finite direct sum of semi-local Dedekind domains.
Further, if Rad B = J, then (3) R is a subspace of W, and (4) if N
is a maximal ideal in W, then trd (W/N)/(R/N n E) is equal to the
depth of one (uniquely determined by N) of the prime divisors of
zero in the completion of R (Proposition 2.8). To prove Theorem 2.2
a number of preliminary lemmas are needed and among these results
Lemmas 2.3 and 2.4 are of some interest in themselves although they
follow quite readily from known results. Essentially the method of
proof of Theorem 2.2 is a combination of the methods used by Rees
in [5, 6, 7, 8] to prove the Valuation Theorem.

Applications of Theorem 2.2 are given in §3, 4 and 5. Theorem
3.5 and Theorem 3.7 characterize the intersection of W and the total
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quotient ring of R under the additional assumption that B is not
contained in any of the prime divisors of zero in R. This ring also
has the properties (1), (2), (3), and a variant of (4) listed above.

In § 4 it is proved that a local domain (R, M) is analytically
irreducible if and only if R is a subspace of a local Dedekind domain
(Theorem 4.1). When R is analytically irreducible, Theorem 4.2
associates with each M-primary ideal B a finite number of local
Dedekind domains which have properties (1), (3), and (4) above.
Theorem 4.5 generalizes Theorem 4.1 and states that R is analytically
irreducible if and only if R is a subspace of every local domain (S, N)
which dominates R and is such that altitude S + trd (S/N)/(R/M) =
altitude R + trd S/R < <χ>. Finally in § 5, a special case of Theorem
5.2 proves that an analytically unramified local domain satisfies the
altitude formula if and only if it is unmixed.

2* A characterization of analytically unramified semi-local
rings* The following notation is fixed throughout this section:

R is a semi-local ring with maximal ideals Mu , Mh, J = Γ\ί ̂ -i
is the Jacobson radical of R, and qlf , qg are the prime divisors of
zero in R. (The numbers h and g are fixed.)

Also, the following two notational conventions will be used
throughout this paper:

(1) If B = (b19 , bJA is an ideal in a ring A, then &(A, B)
will denote the Rees ring A[tb19 , tbm, u] (t an indeterminant, u = 1/ί)
of A with respect to B. (&(A, (0)) = A[u], and &(A, A) = A[t, u]);
and

(2) If A is a ring, then A' will denote the integral closure of
A in its total quotient ring.

THEOREM 2.1. R is analytically unramified if and only if R
is a subspace of a ring which is isomorphic to a direct sum of a
finite number of semi-local Dedekind domains.

Proof. It is well known that a ring which is isomorphic to a
direct sum of a finite number of semi-local Dedekind domains is analy-
tically unramified. Hence, if R is a subspace of such a ring, then R
is analytically unramified. The converse follows from the following.

THEOREM 2.2. Let R be analytically unramified, let BξΞ=J be
an ideal in R, let & — ̂ ( i ? , B)1 and let S be the complement in
&' of the union of the prime divisors of u.^Sf. Then W = &i is
isomorphic to a direct sum of g semi-local Dedekind domains. If J
is the radical of 2?, then R is a subspace of W.
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To prove Theorem 2.2 some preliminary results are needed, so
the proof of this theorem will be given following Lemma 2.6 below.

LEMMA 2.3. R is analytically unramified if and only if Πf Qι —
(0) and R/qt is analytically unramified (i = 1, •••,#).

Proof. Let i2* be the completion of R. If R is analytically
unramified, then clearly (0) = Π? tf To prove that each R/qt is
analytically unramified is equivalent to proving that each q{R* is an
intersection of prime ideals, since R*/qiR* is isomorphic to the comple-
tion of R/qi. Therefore, fix i and let P be a prime divisor of q{R*.
Since q{ is a prime divisor of zero in R and since P is a prime divisor
of qiR*, it follows from [2, (18.11)] that P is a prime divisor of zero
in JS*. Hence, since i? is analytically unramified, P is the P-primary
component of g^ϋ!*. Therefore each R/q{ is analytically unramified.
Conversely, if each q{R* is an intersection of prime ideals and (0) =
Π? qi9 then (0)R* = (Πί Qi)R* = Π? (tf*R*) is an intersection of prime
ideals. Hence, from the uniqueness theorems on the primary decom-
position of an ideal, R is analytically unramified.

It is known [1, p. 365] that if an integral domain A is a finite
separable extension of an analytically unramified semi-local domain,
then A! is a finite A-module and AP is analytically unramified for
every prime ideal P in A. This result is used in the proof of the
following lemma.

LEMMA 2.4. Let & be a finitely generated extension ring of R.
Assume: (1) the zero ideal in & is an intersection of prime ideals
qf; (2) each q* Π R is a prime divisor of zero in R; (3) each &/q*
is separable over R/q* Π R; and (4) R is analytically unramified.
Then the integral closure &' of & {s a finite &-module and &s

is analytically unramified, where S is the complement in & of the
union of a finite number of prime ideals in &.

Proof. Let J7~ be the total quotient ring of ^ ? . Then by
(1) J7~ can be considered to be the (finite, since & is Noetherian)
direct sum of the fields ^Ίqt^ and then D = (&&/q* is a finite
^-module such that ^ f i Z J C ^ . Therefore ^ g ΰ g , ^ ' and
&' = Θ (&lqT)'. By (2), (4), and Lemma 2.3, R/qf Π R is an analy-
tically unramified semi-local domain, and by (3) &/q* is a finite
separable extension of R/qf Π R, hence (&/q*)' is a finite &/q*-module
[1]. Therefore &f is a finite D-module, and hence ^ ' is a finite
^-module. Let S be the complement in & of the union of a finite
number of prime ideals in &. To prove ^ is analytically unramified
it is sufficient to prove that &P is analytically unramified, for every
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prime ideal P in & such that P&s is maximal [2, (36.7)]. Therefore,
let K be the kernel of the natural homomorphism from & into &P,
say K = flί Qi- For each ΐ = 1, , s, &P\qt&P is a quotient ring
of &lq* and &jq* is separably generated over JK/g* Π i?. Therefore
&Plq*&F is analytically unramified [1], hence <%P is analytically
unramified (Lemma 2.3).

REMARK 2.5. Let R and ̂  be as in Lemma 2.4, let pu , pn

be the prime divisors of zero in &\ and let b be a nonunit in ^ ' .
Let S be the complement in ^g3' of the union of the prime divisors
of ί>^', and assume that bep{ if and only if i^k, and Pi + b&'Φ^g'
if and only if i ^ k + r. Then ^ / is isomorphic to a direct sum of
k fields and r semi-local Dedekind domains.

Proof. &' is Noetherian, since ^ ' is a finite .^-module.
Therefore a prime ideal P is a prime divisor of an ideal B in ^ ? ' if
and only if P ^ p is a prime divisor of B&P. Since ^ ? ' is integrally
closed, each prime ideal P in &' contains exactly one prime divisor
Pi of zero, so &P is a quotient ring of the integrally closed Noetherian
domain ^ ' / P The proof is completed by using the primary decom-
position of a principal ideal in an integrally closed Noetherian domain
and the fact that ^ ' = φ &'/Pi.

LEMMA 2.6. Let A be a Noetherian ring, and let b be a nonunit
nonzero-divisor in A. If A' is a finite A-module, then there is a
positive integer n (depending on b) such that bn+iAr f ] i i V A , for all
i ^ 1.

Proof. If A' is a finite A-module, then, since A is Noetherian,
D = A' Π Ά[l/&] is a finite A-module. Since every element in D may
be written in the form r/bk, where r e δ f c i ' n i , it follows that bnD^Af

for some n ^ 1. Therefore, if c e bn+iA' Π A, then c/bn+ieD, hence
c e VA.

From the definition of the Rees ring & = &(R,B) of R with
respect to B it follows that & is a graded Noetherian ring (the
homogeneous elements of degree k being the elements tkb, where beBk,
if fc > 0, and b e R, it k t^ 0), u is not a zero divisor in ^ , and
&& f] R = B\ for all ΐ ^ 1. Also, it is known [9, Lemma 1.1] that
if C is an ideal in R and C* = CR[t, u] n &, then

^ / C * = ̂ (R/C, B + C/C) .

This implies that if q is a prime divisor of zero in R and ̂  is the
total quotient ring of ^ , then ^/q^~ Π & ~ &{Rlq, B + q/q).
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These facts are used in the following.

Proof of Theorem 2.2. Let S" be the total quotient ring of &.
Since ^7~ is the total quotient ring of R[t], and since &\qi^~ Π &
is isomorphic to ^ = ^(B/qi9 B + qjq^ (i = 1, , g) [9], &' is a
finite ^-module (Lemma 2.4). Further, ^ ' = ® ? ( ^ ) ' , since ^ =;
&\(li^~ Γ) ^ . Hence w ^ ' + (q^ Γ) ̂ ' ) ^ &' (i = 1, , g), since
BξΞ:J implies u is a nonunit in .^/. Therefore TF = &£ is isomorphic
to a direct sum of g semi-local Dedekind domains (Remark 2.5), and
Waj^. Further, since ^ ' is a finite .^-module, there is a positive
integer n such that, for all i ^ 1, un+i&r n ^ ξΞ,uι& (Lemma 2.6).
Therefore

i^TΓn22 = ((w w + < τrn.^ / )n^ > )n22sw < ^ ni? = ^ g ^ i ^ n i ? ,

for all ΐ ^ 1. Now the Jacobson radical of W is the radical of uW,
and the contraction of the radical of an ideal is the radical of the
contraction of the ideal. Hence, if J is the radical of B, then R is
a subspace of W.

COROLLARY 2.7. With the same notation as Theorem 2.2, let U
be the complement in R of the union of some of the minimal prime
divisors of B. Then RLT is a subspace of WΓ.

Proof. Since R is analytically unramified, Rυ is analytically
unramified (Lemma 2.4). Let K be the kernel of the natural homo-
morphism from R into Ru. Then K * = K^Γ π & is the kernel of
the natural homomorphism from & into &Ό. Since ^ / J K " * is
isomorphic to ,^{R\K,B + K/K), it is easily seen that

^(R, B)σ = #* - ^ ( i ^ , 522 )̂ ,

and from this it follows that Wv = (R*')s,, where S" is the complement
in 12*' of the union of the prime divisors of uR*'. Therefore Rσ is
a subspace of Wπ (Theorem 2.2).

REMARK. With the same notation as Theorem 2.2, assume that
B^=J,B^=q{ if and only if i ^ k, and B + q{φ R if and only if
i <, k + r. Then

Π & = ^ = &(B/qi9 B +

implies ^ = jB/g ί̂, ̂ ] (i = k + r + 1, , g), and ^ = 12/giM (i =
1, •••,&)• Therefore W = &s' is isomorphic to a direct sum of k
local Dedekind domains and r semi-local Dedekind domains.

An integral domain A satisfies the altitude formula in case it is
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true that for every finitely generated integral domain D over A, if
P is a prime ideal in D, then

height P + trd (D/P)/(A/P f] A) = height P Π A + trd D/A

(where trd (E/F) denotes the transcendence degree of the integral
domain E over its subdomain F). It is known [3, Corollary 2.9] that
an analytically irreducible local domain satisfies the altitude formula.

PROPOSITION 2.8. With the notation of Theorem 2.2 let
so that the completion R* of R is a subring of the completion W*
of W. Let Q be a prime divisor ofu.^?', let p* be the prime divisor
of zero in W* which is contained in QW*, and let p = p* C) R*.
Then p is a prime divisor of zero in R* and

depth Q = trd (&'/Q)/(R/Q n R) = depth p .

Proof. Let ^ ? * = &(R*, BR*). Then &' is a subring of &*'.
Since TF* is isomorphic to a direct sum of local Dedekind domains
and R* is a subring of ΫF* (Theorem 2.2), it follows that ^ * ' is a
subring of W*. Since QW is a maximal ideal in W, QW* contains
only one prime divisor p* of zero in W* and p' = p* Π ̂ * ' c Q * =
QTF* Π ̂ * ' (since u£p*). To prove that p = p* f] R* is a prime
divisor of zero in R* it suffices to prove that pf is a prime divisor
of zero in ^?* ' . Now Q* contains a (height one) prime divisor N of
? ^ * ' , and then N n &' = Q* Γi &' = Q. Also έ&*'/N is integrally
dependent on &*/Nn&*, and &*/Nf) &* = ^/Nf] & (since
ueΛΓ and Rad B = / imply R*/N f) R* = R/N f) R). Hence, since
£&*ΊNS&ΊNΓ\ &' 3&INΠ & and (Q*/ΛΓ) n (^P'/Nn^') = (0),
it follows that ζ>* = iV, so p' is a prime divisor of zero in ^ * ' .
Since &*'\Q* is integrally dependent on &'\Q and &'\Q is a finitely
generated integral domain over the field ϋϊ/Q n -R = R*IQ* Π J2*, it
follows that

trd (^*7Q*)/(β*/Q* Π Λ*) - trd (^'/Q)/(R/Q Γ) R) = depth Q .

Finally, i2*/p satisfies the altitude formula [3] and

p, BR* + pip)' .

Hence trd(^*7Q*)/(JB*/Q* Π Λ*) = altitude i2*/p = depth p, since height
Q*/p' = tτά(.&*'/p')l(R*lp) = 1.

REMARK 2.9. With the notation of Proposition 2.8 QW* Π &*'
is a (height one) prime divisor of u&*'. Also, if a prime divisor >̂
of zero in R* is given, then there is a prime divisor Q of % ^ ' suck
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that the prime divisor p* of zero in W* which is contained in QW*
is such that p* Γ) 22* = p (since the radical of an ideal contracts to
the radical of the contraction of the ideal).

3. The ring W Γ) T. Let R,BQJ, and W be as in Theorem
2.2, and let T be the total quotient ring of R. It is known [2, (33.7)]
that if V is a local Dedekind domain and F is a subfield of the
quotient field of F, then V Π F is either a local Dedekind domain or
F. This implies that if B is contained in exactly k of the ideals qi9

then PF Π T is isomorphic to a direct sum of fc fields and g — k semi-
local Dedekind domains. Under the assumption that B^qt (i — 1, , g),
Theorems 3.5 and 3.7 below describe W f] T as the quotient ring of
a finitely generated ring over R and Theorem 3.10 gives a related
result. To prove these theorems the following notation will be fixed
throughout this section:

R is an analytically unramified semi-local ring with maximal ideals
M19 , Mh, J is the Jacobson radical of R, and q19 ,qg are the
prime divisors of zero in R. B = (6^ , bm)R is contained in J and
B£q{ (i = l, •••,#) (so height AT, ^ 1 (i - 1, , h)). Let ^ =
^ ( 2 2 , J5), let Q1? '",QS be the prime divisors of % ^ ' , and let Pi =
Qι Π & and P{ = P{ f] R (i = 1, , s). (There may be less than s
distinct p{ or pim) Let T{^~) be the total quotient ring of
let S - / ^ ' - Ui Q*, and let T7 = . ^ / .

REMARK 3.1. Since BQ J, W is isomorphic to a direct sum of g
semi-local Dedekind domains (Theorem 2.2). Therefore, each q ^ Γ\ &'
is contained in at least one Qd, so q^" ΓΊ & c Pά. Hence each q{ is
contained in at least one p5 and the containment is proper, since
B£qt (i = 1, ..-,flf) and J 3 g p y ( i = 1, •• ,s).

LEMMA 3.2. ( 1 ) trd {.^'IQdKRIvd ^ 1 (ΐ = 1, , s).
( 2 ) There exists a positive integer k {depending on B) and an

element b e Bk such that tkb £ p{ (i — 1, , s).

Proo/. (1) Fix i and let Q = Qif P=Pi9 and p = p{. Let
be the minimal prime ideal contained in Q. Since &'\Q is isomorphic
to a factor ring of .^(R/q, B + q/q)f [9], to prove (1) it may be
assumed that R is an integral domain. Let F * = ^</, let iV* = Q F * ,
and let F be the quotient field of R. Since F * is a local Dedekind
domain and N = N* f) F^p Φ (0) (Remark 3.1), V = V* Γ) F is a
local Dedekind domain [2, (33.7)]. Therefore b3 V = BV, for some
i = 1, , m, so R[bjbj9 , bm/bd] C F. Thus JD = F ^ , w] a ^ , so
&Q' = F * = JD^ΠD' NOW D' is a finite D-module [1] and F satisfies
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the altitude formula [3], hence trd (D'/N* Π D')/( V/N) = 1. Since
Df/N*ΠD' and &'/Q have the same quotient field, and since
V/N^R/p, (1) is proved. It now follows with the above notation
that:

(3.1) In the general case (when R is not assumed to be an integral
domain) tbό $ Q, and when R is an integral domain F* =
V[tb]NVίm, for each beB such t h a t bV = BV.

Since &' is isomorphic to a direct sum of integrally closed Noetherian
domains and each Q{ is a prime divisor of u&', it follows from [2,
(33.11)] that each Pt is a prime divisor of u&. Hence, since & is
a graded ring, each Pζ is a homogeneous ideal which contains all
elements of negative degree. Also B* = (tbu , £δm)^? is a homo-
geneous ideal in &. Therefore to prove (2) it is sufficient to prove
that J8* g P ί (i = 1, , s), and this follows from (3.1).

REMARK 3.3. Since each q ^ n ^ is contained in some Pif if
beBk is such that £*δ £ P^ (i = 1, , s), then 6 is not a zero-divisor
in β. Also, if RjMό is an infinite field (j = 1, , fe), then it can be
shown that there is an element beB such that tb g P4 (i = 1, , s).

If B is an ideal in a ring A, then the set J5α of elements x in
A such that x satisfies an equation of the form

xn + biX*-1 + + bn = 0 ,

where δi e B* (ΐ = 1, , w), is the integral closure of B in A. Clearly

LEMMA 3.4. Let b be a nonzero-divisor in (Bk)a, where k ^ 1,
let C = £?'[l/tkb], and let A = R[βJb, , βr/b] where Bk = (β19 , βr)R.
Then there is a one to one correspondence between the prime divisors
Q of uC and the prime divisors 3? of bA' such that if & and Q
correspond, then & — Q Π A' and Q — QiC, for some i — 1, , s.

Proof. Let A* = A'[tkb, l/tkb]. Then A* is an integrally closed
Noetherian ring since A' is (Lemma 2.4). An equation of integral
dependence of δ on Bk shows that tkbe^r, so C is a quotient ring
of ^ ' , hence C is integrally closed. Therefore, since the elements
tkβi (i = 1, « ,r) are in ^ , i * g C . Further, C is integrally de-
pendent on A*, since &' is integrally dependent on

R[tkβίf . . . , ^ r , ^ ] g A * .

(If k = 1, then C = A*.) Since C is integrally dependent on A* and
δA* = ^*A*, it follows that bA! = A! if and only if uC = C, and if
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& is a prime divisor of 6A', then there is a prime divisor Q{C (for
some i = 1, , s) of uC such that Q C n i * = ^ A * . Now let Q be
a prime divisor of uC, and let qj^ Π C be the minimal prime ideal
contained in Q. Then q^?~ f] A* is the minimal prime ideal contained
in Q n i * . Hence, since A*/q^~ Π A* is integrally closed, height
Q Π A* = 1 [2, (10.14)], so Q Π A' is a prime divisor of 6A'. Finally,
let V* = CQ = ^Q^,, let AT* = QF*, and let F be the quotient field
of R/q. Then F*3A'/4Tn A' and, since height Q Π A' = 1, height
(IV* Π (A'/qTΓ\ A')) = 1. Therefore (3.1) implies that distinct prime
divisors of uC which contain q^~ Π C must contract to distinct prime
divisors of bA'. Hence distinct prime divisors of uC contract to
distinct prime divisors of bA''.

THEOREM 3.5. With the fixed notation of this section, let

be such that tkb £ P< (i = 1, , s), let A = R[βjb, , βr/b], and let
U be the complement in A! of the union of the prime divisors of
bA!. Then A!n = W Π T. If J is the radical of B, then R is a sub-
space of A'Um

Proof. The existence of tkb g P{ (i = 1, , s) is given by Lemma
3.2, and then Remark 3.3 shows that Lemma 3.4 is applicable for
such b e Bk. Therefore by Lemma 3.4 the ideals ^ - Qi^'[l/tkb] n A!
are distinct and are the prime divisors of bA\ so A'Lr gΞ .^'[l/tkb]Lr = W,
hence A!v C W Π Γ. Therefore for each i = 1, , g,

A = A!υ\qiτ n ^ g £ - ( i f n τ)/Qiτ

and ^ is contained in the quotient field T\q{T of D{. Thus, since
A[r = φ? A and 13* is a semi-local Dedekind domain (Remark 2.5),
and since W Π T is integrally closed in T, to prove that A!π = W Π ϊ1

it is sufficient to prove that A = £/< (ί = 1, , gr). Since D* = Π DiN,
where N runs over the maximal ideals in Diy and since DiN is a
maximal proper subring of its quotient field, A = E{ if it is shown
that for each maximal ideal N in D{ there is a prime ideal N' in E{

such that N' 0 Di = N. This, for each ΐ = 1, , g, follows imme-
diately on considering the ideals Qά W ΓΊ (W n T) (j = 1, , s). Finally,
if RadB = J, then J? is a subspace of W (Theorem 2.2), hence R is
a subspace of A'̂ .

COROLLARY 3.6. A'v depends only on B. That is, A'TJ is inde-
pendent of the choice of k and b e Bk such that tkb g P* (i = 1, , s).

Proof. This follows from A'v = TF n Γ.
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REMARK. With the notation of Theorem 3.5 let Rad B = J. Let
& be a prime divisor of bA! and let Q be the prime divisor of u&'
such that QWf] A! = & (Lemma 3.4). Then it follows from (3.1)
and Proposition 2.8 that

depth & = trd (A'/&*)/(R/&* Π R) = depth Q - 1 .

Theorem 3.7 below shows in particular that W Π T is determined
by any ideal between Bn and (.B%)α, where π ^ 1.

THEOREM 3.7. Let R, B, tkb, A, U, and T be as in Theorem 3.5.
Let R* be a ring such that RQR*QR', let n^l, let 5* be an
ideal in #* such that BnR*^B*^BnA' Π R*, and let Σ = &(R*, B*).
Then:

(1) A! = R*[yjbn, , 7d/bn]', where B*k = (τlf , 7,)i2*;
(2) ^J?' /̂ αs exactly s prime divisors;
(3) ί j , n Γ = A'Uf where S' is the complement in Σr of the

union of the prime divisors of uΣf\ and
( 4) u*Σr Π R* = (B*% and bniAf Π i2* - (B***)., for all i ^ 1.

Proof. Since

A' n J?* = bnA! n -B*

and A' = R[cjbn, , cβ/6Λ]', where BfcΛ = (c:, . -., ce)R, (1) is straight-
forward. To prove (2) it will first be shown that u&n' has exactly s
prime divisors, where .5?Λ - .g?(R, Bn). Now ^ ' [ l / ί t ] 3 4 ' (by (1)),
so Lemma 3.4 (applied to bn e (Bnk)a) and (1) show that there is a one
to one correspondence between the prime divisors of u^n

f[lftkbn] and
bnA'. Therefore, since bnAf and bA! have the same prime divisors and
bA! has s prime divisors (by the proof of Theorem 3.5), u&J, has at
least s prime divisors. Also, if Bn = (dlf •• ,cί/)i?, then &n is iso-
morphic to D = R[tndu , Γd/, wn] and ^ = &(R, B) is integrally
dependent on D. Hence, since tkb is not in any prime divisor of
v,&'i the integral dependence of ^ ' on D' ~ <%£ implies that tkbn

is not in any prime divisor of u&n'm Therefore u&n' has exactly s
prime divisors. Now ^n^Σ, so (2) holds if Σ<^&n'. For this it
suffices to prove that if xei?*, then txe&ή. Now xeB* implies

xk e BnkA' = bnAr s bnA!ψb\ l\tkbn\ g uk^n'[l/tkbn] .

Hence, since ίfc6w is not in any prime divisor of u ^ J and xe R',
(tx)ke^n

f. Thus, since ^ n ' is integrally closed, txe&n', hence (2)
holds. J?* is analytically unramified since R is. Therefore, (3) holds
by (1), (2), and the proof of Theorem 3.5, since
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Σ' = ^ ,

and tkbn is not in any prime divisor of u&n'. For (4), if x e uιΣf Π R*
then PxeΣ', so there are elements f, •••,/,,• in Σ such that

( W + ftfxy-1 + + Λ = 0 .

Since 21 is a graded subring of JR*[£, w], and since each term on the
left side of this equation is in R*[t,u], the definition of &(R*,B*)
and the jί-th component show that xe(B^)a. If xe bniA! Π R*, then

x e bniA'[tkbn, l/tkbn] n R*SukiΣ'[l/tkbn] Π J ' Π Λ* .

Therefore, since ί&6% is not in any prime divisor of uΣ\ x e ukiΣ' Π R* =
(U* fci)α. The opposite inclusions follow readily by dividing an equation
of integral dependence (of degree j) by uίj (by bnij) and using the
definition of Σ (using (1)).

Theorem 3.10 below gives a result which is related to Theorems
3.5, 3.7, and the "necessity" part of Theorem 4.1 below. Its proof
is based on Lemma 3.8 below. The following facts will be used in
the proof of Lemma 3.8.

Let b be a nonzero-divisor in a Noetherian ring A. Then it is
known [4, Lemma 1] that (bA)a = bA! Π A, and an element ce A is in
(bA)a if and only if c/beA'. Also [4, Lemmas 2 and 4] bA = (bA)a

if and only if Ap is a local Dedekind domain, for each prime divisor
p of bA. Finally, if A! is isomorphic to a (finite) direct sum of Krull
domains, then it follows from [2, (33.11)] that each prime divisor of
bA! contracts in A to a prime divisor of bA.

LEMMA 3.8. Let Qlf •••,(?„ be specified prime divisors of
(v ^ s). Then there is an integer n (depending on B and Qlf , Qv)
and a nonzero-divisor ce(Bn)a such that tnceQi (i = 1, , v) and
tnciQi (i = v + 1, « ,s).

Proof. Let 6 and A be as in Theorem 3.5 and let C = &
so that bA' has the s ideal Q{C Π A! as its prime divisors (Lemma
3.4). Let D = A' Π A[l/δ]. Then Z) is Noetherian, since A! is a finite
A-module (Lemma 2.4), and D is the set of elements x/bm, where
x e bmA! Π A. By the definition of D and the remarks preceding
this lemma it follows that bD = (bD)a, and then that the prime divisors
of bD are the s height one prime ideals ^ = (ζ^C Π A') Π D. Hence,
since there are no containment relations among the ^ , there is an
element x/bm in D which is in ^ if and only if i <̂  v, and it can be
assumed that x/bm is not a zero-divisor. Then, by the definition of
A, there is an integer i and a nonzero-divisor c e Bkί such that x/bm =
φm+ί. Since A ' g C and tkb is a unit in C, c/δm+i and cίmfc+ίfe generate
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the same ideal in C. Let n = k(m + i). Then c e unC Π &' = u 7 1^ 3 ' ,
hence Γ c e ^ ? ' and ΓceQ C Π ̂ ' if and only if ΐ <£ v. Finally,
c e u*\^?' Π i ί = (JBw)β (Theorem 3.7).

COROLLARY 3.9. There is an integer n (depending on B) and a
nonzero-divisor c e (Bn)a such that cAf is a primary idealf where
Bn = (cu , ce)R and A = R[cjc, , cjc].

Proof. This follows immediately from Lemma 3.8 and 3.4.

THEOREM 3.10. With the fixed notation of this section let
Rad B = J, and let q?, , g J be the prime divisors of zero in the
completion iϋ* of R. Then there is an integer n (depending on B)
and a nonzero-divisor c e (Bn)a such that cA' has exactly d prime
divisors ^ and R is a subspace of A!v, where Bn — (c19 •• ,ce)iί,
A = R[cjc, , cjc], and U is the complement in A' of the union of
the prime divisors of cA!. Further,

trd (A!\^%)l(R\^ n JB) = depth qf - 1 .

Proof. Let ̂ * = ̂ ( # * , BR*) and let ̂ ~* be the total quotient
ring of ^ ? * . Then ^ ? * ' is a subring of the completion IF* of W
(as in the proof of Proposition 2.8). Also, by renumbering if necessary,
Qf = Q W* n ̂ * ' D g ? ^ * ίΊ ̂ * ' and Qf is a (height one) prime
divisor of u^T*' (i = 1, « ,d) (Remark 2.9). Let i7* = ̂ ? * ' -
UfQt* and let U' = &' ~ \JtQi. Then F* = ̂ ** ' is isomorphic to
a direct sum of d local Dedekind domains, F* dominates ϋ?*, and
F* Π ^ ~ = &{j>. Also, since i2* is complete, R* is a subspace of F*
[2, (30.2)]. Therefore, since F* dominates ^ J , and ̂ J , dominates
2ί, it follows that J2 is a subspace of &jj,m Let ̂  be chosen such that
there is an element c e (Bn)a such that tnc e Q{ if and only if i > d
(Lemma 3.8), let Bn = (clf , ce)R, and let A = R[cjc, , c,/c]. Then
by Lemma 3.4 cA! has the ideals ^ = Qi^'[l/tnc] n A' (ΐ = 1, , d)
as its prime divisors. Let [7 = A! ~ JJf ̂  Then «̂ ?J, dominates
A{r and A^ dominates R, hence β is a subspace of A'σ. The last state-
ment follows from Proposition 2.8 and the Remark following Corollary
3.6.

4* A characterization of analytically irreducible local

mains* Throughout this section R is a local domain with maximal
ideal M.

THEOREM 4.1. R is analytically irreducible if and only if R is
a subspace of a local Dedekind domain.
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Proof. It is well known that a local Dedekind domain is analyti-
cally irreducible. Hence, if R is a subspace of such a ring, then R
is analytically irreducible. The converse (for altitude R ;> 1) follows
3.10. With no restriction on altitude R the converse follows from
from Theorem the following.

THEOREM 4.2. Let R be analytically irreducible, let B be an
M-primary ideal in R, let & — &{R,B), and let Q be a prime
divisor of u&f. Then R is a subspace of &§, and

trd (<^'/Q)/(RIM) = altitudeR.

Proof. Let S be the complement in &f of the union of the prime
divisors of u&f. Then W = &l is a semi-local Dedekind domain
and R is a subspace of W (Theorem 2.2). Therefore ^ * ' is a subring
of W* Π J ^ * , where i2* (W*) is the completion of R (W) and ̂ ~*
is the quotient field of ^g3* = ̂ ( ^ * , J5i2*). Let Q be a prime divisor
of u&' and let Q* - QJF* n ̂ * ' Then height Q* = 1 (Remark
2.9), thus F* = ̂ ρΐ ' is a local Dedekind domain which contains R*
and iV* Π iϋ* = MK*, where iV* = ζ>* F*. Hence, since R* is complete,
i£* is a subspace of F* [2, (30.2)]. Let ^ ~ be the quotient field of
& and let V = F* Π ̂ ~. Then iϋ is a subspace of F, since iϋ is a
subspace of F*, and V = &Q', since iV* Π ̂ ' = Q. The last state-
ment follows since R satisfies the altitude formula [3].

The following Corollary is a special case of Corollary 4.6 below.
It is included here because it will be used in the proof of Theorem
4.5 below.

COROLLARY 4.3. Let R be analytically irreducible, let altitude
R >̂ 1, and let B ~ (b^ , bs)R be an M-primary ideal. If b e B is
such that bA! is a proper ideal, where A — R[bjb, •••, bjb], then R
is a subspace of A'P, for every prime divisor P of bA!.

Proof. Let <& = &(R, B) and let C = έ?'[l/tb]. Then, if P is
a prime divisor of bA!, there is a prime divisor Q of u.^g' such that
QC Π A! = P (Lemma 3.4). This implies that .^/ dominates A'P.
Hence, since A!P dominates R and R is a subspace of &£ (Theorem
4.2), R is a subspace of A'P.

REMARK 4.4. Let R be analytically irreducible. (1) Rf is a local
domain. (2) If altitude R ^ 1 and if (S, N) is a local domain that
dominates R, then R is a subspace of S.

Proof. (1) Since R is analytically irreducible, Rf is a finite R-
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module, and the completion R* of R is a complete local domain.
Therefore, the completion R* of Rf is R' ®RR* [2, (17.8)], so R* =
R*[R], hence i2* g R* g # * \ Also, Λ*' is a local domain [2, (30.3)
and (30.5)], so it follows that R! is a local domain. (2) If altitude
R = 0, then iϋ is a field, so R is a subspace of S. If altitude R = 1,
then JR' is a local Dedekind domain (by (1)) which is a finite lϋ-module.
Thus A = S[R'] is a finite S-module, hence A is a semi-local domain
that dominates R'. Therefore Rf is a subspace of A, since the maximal
ideal in R' is a principal ideal. Since R is a subspace of R', it follows
that R is a subspace of S.

Theorem 4.5 below gives a generalization of Remark 4.4. The
following result [10, Lemma 1] is used in the proof of Theorem 4.5:
If x19 , xn (n > 1) is a system of parameters in a local domain
(S,N), then, with D == S^/^, , xjx^, ND is a height one prime
ideal and the λ/Ό-residues of the xi/x1 are algebraically independent
over S/N.

THEOREM 4.5. R is analytically irreducible if and only if R is
a subspace of every local domain (S, N) such that (1) S dominates R
and (2) altitude S + trd (S/N)/(R/M) = altitude R + trd S/R < oo.

Proof. Let R be analytically irreducible and let (S, N) be a local
domain such that (1) and (2) hold. It may be assumed by Remark
4.4 that altitude R ^ 2 (so by (1) altitude S ^ 1). If altitude S = 1,
let F* = S'p and let Q* = PV*, where P is a maximal ideal in S'.
If altitude S = n > 1, let a?!, , #w be a system of parameters in S
and let D — S[xjxu , α̂ /a J. Then iVT) is a height one prime ideal
in D and trd (D/ND)/(S/N) = n - 1 [10]. Let V* = D'P and let
ζ)* = P F * , where P is a (height one) prime ideal in Όf such that
p Π D = jVD. Then in both cases (F*, Q*) is a local Dedekind domain
[2, (33.10)] which satisfies (1) and (2). Let T be the quotient field of
R, let V= V* f)T, and let Q = Q * n Γ . Then (F, Q) is a local
Dedekind domain that dominates R. Also,

1 + trd (V/Q)/(R/M) ^ altitude R

[11, Prop. 1, p. 330], and, since Q is a principal ideal,

trd (F*/Q*)/(F/Q) ^ trd F*/F = trd V*/R < oo .

Adding these inequalities and using the fact that (V*,Q*) satisfies
(2), it follows that both inequalities are equalities. Therefore (F, Q)
also satisfies (2), so there are elements vlf ---,vk in V (altitude R =
kΛ-1) such that V/Q is algebraic over C/QnC, where C = R[vu , vk].
Let beR be a common denominator of the vi9 and let bV f] R = B =
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Φi, , bs)R. Then B is M-primary, and

C^R[bJb, ••-,&./&] = AQA'^V.

Therefore trd (A'/Q Π A')/(R/M) = k, hence, since R satisfies the al-
titude formula, height Q n A! = 1. Thus V = A'QΓ]A,, hence i? is a
subspace of F (Corollary 4.3). Also 7 is a subspace of F* (Remark
4.4). Hence, since V* dominates S and S dominates R, R is a sub-
space of S. Conversely, if R is a subspace of every local domain (S, N)
which satisfies (1) and (2), then let xu , xn be a system of parameters
in R. It may be assumed that n = altitude iϋ > 0. Let

D = R[x2/xu , xjxj (D = R , if n = l ) .

Then D* = J D ^ is a local domain of altitude one which satisfies (1)
and (2) [10]. Therefore R is a subspace of the local Dedekind domain
Dp', where P is a maximal ideal in D*', hence R is analytically
irreducible.

COROLLARY 4.6. Let R be analytically irreducible, and let A be
an integral domain which is finitely generated over R. Then R is
a subspace of AP, for every prime ideal P in A such that P Π R = M.

Proof. R satisfies the altitude formula [3].

5* A further application* A semi-local ring R is unmixed
(quasi-unmixed) in case each prime divisor (each minimal prime divisor)
p of zero in the completion of R satisfies depth p = altitude R. It is
known [3, Prop. 2.2 and Corollary 2.7] that a quasi-unmixed semi-local
integral domain satisfies the altitude formula and the second chain
condition for prime ideals. It is also known [2, exercise, p. 135] that
a pseudo-geometric semi-local domain satisfies the second chain condition
for prime ideals if and only if it is unmixed. Theorem 5.2 below
contains a form of the converse of the first of these results (since
"unmixed" and "quasi-unmixed" are equivalent conditions under the
presence of analytical unramifiedness). Also, it is closely related to
the second of these results since a pseudo-geometric semi-local domain
is analytically unramified [2, (36.4)] and since there is a close relation-
ship between the altitude formula and the second chain condition for
prime ideals.

DEFINITION 5.1. A local ring R satisfies the altitude formula in
case for each minimal prime ideal q in R it is true that depth q =
altitude R and R/q satisfies the altitude formula. A Noetherian ring
A satisfies the altitude formula in case AN satisfies the altitude for-
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mula, for each maximal ideal N in A.

THEOREM 5.2. Let (A, N) be an analytically unramified local
ring. A satisfies the altitude formula if and only if A is unmixed.

Proof. Let A satisfy the altitude formula and let q be a prime
divisor of zero in A. Then by Lemma 2.3 and hypothesis R = A/q
is an analytically unramified local domain which satisfies the altitude
formula and altitude R = altitude A. Let M be the maximal ideal
in R, let B be an ikf-primary ideal, let & = &(R, B), and let S be
the complement in ^ ' of the union of the prime divisors of u<%f.
Then R is a subspace of W = &s' (Theorem 2.2). Let TF* be the
completion of W, and let p be a (minimal) prime divisor of zero in
the completion R* of R. Then there is a prime divisor Q of v,&f

such that p* Π R* = p, where p* is the prime divisor of zero in IF*
which is contained in QW* (Remark 2.9), and then

depth p = trd (&'/Q)/(R/M)

(Proposition 2.8). Now ^ ' is a finitely generated integral domain
over R (Lemma 2.4) and trd &'/R = height Q — 1, so, since R satisfies
the altitude formula, it follows that depth p = trd ( ^ '/Q)/(R/M) =
altitude R. Therefore R is unmixed. Hence A/q is unmixed and
depth q = altitude A, for each minimal prime ideal q in A. Therefore
A is quasi-unmixed [3, Lemma 2.2] and analytically unramified, thus
A is unmixed. Conversely, let A be unmixed and let q be a minimal
prime ideal in A. Then depth q = altitude A and A/q satisfies the
altitude formula [3, Lemma 2.2 and Prop. 2.2]. Therefore A satisfies
the altitude formula.

COROLLARY 5.3. An analytically unramified semi-local ring R
satisfies the altitude formula if and only if RM is unmixed, for each
maximal ideal M in R.
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