ON QF-1 ALGEBRAS

Denis Ragan Floyd

Let A be a finite-dimensional associative algebra with identity over a field k, M an A-module which is finite-dimentional as a vector space over k, and $E=\operatorname{Hom}_{k}(M, M)$ the algebra of linear transformations on M. For $a \in A$. Let a_{L} denote the linear transformation of M given by $a_{L}(x)=a x$, for $x \in M$. Define the following subalgebras of E :

$$
\begin{aligned}
& A_{L}=\left\{a_{L}: a \in A\right\} \\
& C=\{f \in E: f(a x)=a f(x) \text { for each } a \in A, x \in M\} \\
& D=\{f \in E: f(g(x))=g(f(x)) \text { for each } g \in C, x \in M\}
\end{aligned}
$$

Clearly, $A_{L} \cong D$. Require M to be faithful. Then A is isomorphic to, and will be identified with, A_{L}. If $A=D$, it is said that the pair (A, M) has the double centralizer property.
A is called a $Q F-1$ algebra if (A, M) has the double centralizer property for each faithful A-module M.

The following results in the theory of $Q F-1$ algebras are obtained:

1. Let A be a commutative algebra over an arbitrary field. Then A is $Q F-1$ if and only if A is Frobenius.
2. Let A be an algebra such that the simple left A-modules are one-dimensional. Suppose there exist distinct simple two-sided ideals A_{1} and A_{2} contained in the radical of A, and primitive idempotents e and f, such that $e A_{k} f \neq 0$, for $k=1,2$. Then A is not $Q F-1$.
3. Let A be an algebra with the properties that the simple left A-modules are one-dimensional, and the two-sided ideal lattice of A is distributive. Then if A satisfies any one of the following conditions, it is not $Q F-1$.
(a) There exist, for $r \geqq 2,2 r$ distinct simple two-sided ideals $A_{u v}$ contained in the radical, and primitive idempotents $e_{i_{u}}$ and $e_{j_{v}}$ for $1 \leqq u, v \leqq r$, satisfying $e_{i_{u}} A_{u v} E_{j_{v}} \neq 0$, where the index pair (u, v) ranges over the set

$$
(1,1),(2,1),(2,2),(3,2),(3,3), \cdots,(r, r-1),(r, r),(1, r) .
$$

(b) There exist, for $r \geqq 1,2 r+2$ distinct simple two-sided ideals $A_{u v}$ and A_{v}^{ρ}, for $(u, v)=(1,1),(1,2), \cdots,(r-1, r-1)$, $(r-1, r)$, and $(\rho, v)=(1,1),(2,1),(3, r)$, and $(4, r)$, and primitive idempotents $e_{,}, e_{j_{v}}$, and $e_{k_{\rho}}$ satisfying $e_{i_{u}} A_{u v} e_{j} \neq 0$ and $e_{k_{\rho}} A_{v}^{\rho} e_{j_{v}} \neq 0$, where (u, v) and (ρ, v) range over the index pairs indicated above.

It is to be noted that the condition given in 2 b is but one of three conditions of that type which may be formulated. An algebra
satisfying either of the other two conditions is also not $Q F-1$.
A special case of (2b) is worth mentioning, namely the case where the set of index pairs (u, v) which occur in statement is empty. There are two variants of the case, rather than the usual three. This special case appears separately in the following form: let A be an algebra whose simple two-sided ideals are one-dimensional, and whose two-sided ideal lattice is distributive. Suppose that either (i) $e_{k} A_{k} e \neq 0$ or (ii) $e A_{k} e_{k} \neq 0$, for $k=1,2,3,4$, where the A_{k} are distinct simple two-sided ideals, and the e_{k} and e are primitive idempotents of A. Then A is not $Q F$-1.

The results (2a) and (2b) appear in Chapter 3, and are stated there in terms which involve the notion of the graph associated with the zero ideal of an algebra. The notion of the graph associated with A_{0}, where A_{0} is a two-sided ideal of an algebra A contained in the radical of A was first used by J. P. Jans in his dissertation. The results above was stated in more elementary terms for the sake of brevity.

Introduction. Throughout this paper, an algebra will be a finitedimensional associative algebra with identity over an arbitrary field. All modules are finite dimensional over these fields.

In 1946, C. Nesbitt and R. M. Thrall showed [5] that if A is a Quasi-Frobenius algebra, then each faithful representation R of A is equal to its own second commutator algebra $R^{\prime \prime}$. In 1948 Thrall [6] initiated the study of the class of algebras A for which $R=R^{\prime \prime}$ for each faithful representation R of A. He called this class the $Q F-1$ algebras, and showed by an example that it properly contains the Quasi-Frobenius algebras.

Although results in the theory of $Q F-1$ algebras have been obtained since Thrall's original paper, notably by Morita [3], a problem whose solution was unknown to Thrall remains unsolved to this day. The problem, which may be posed in the form of a question, is this: Is the property " $Q F-1$ ness" equivalent to one or more purely internal properties of an algebra? By the expression "internal properties" is meant properties of the algebra expressible in terms of the left, right, or two-sided ideals of the algebra, in terms of the structure constants associated with a basis, etc.

The main theorems of this paper, Theorems 1.1, 2.1, and 3.2, may be viewed as contributions to the solution of this problem. The first of these states that a commutative algebra is $Q F-1$ if and only if it is Frobenius. The latter class of algebras has several characterizations which may be called "internal" in the sense of the previous paragraph. The other results apply to algebras A which are required to satisfy the first, or both of the following conditions:
(i) The simple left A-modules are one-dimensional.
(ii) The two-sided ideal lattice is distributive.

The second results below is stated in terms which involve the notion of the graph associated with the zero ideal of an algebra. This notion will be defined in § 3. The results are as follows:

1. Let A be an algebra satisfying property (i). Suppose there exist distinct simple two-sided ideals A_{1} and A_{2} contained in the radical of A, and primitive idempotents e and f, such that $e A_{k} f \neq 0$, for $k=1,2$. Then A is not $Q F-1$.
2. Let A be an algebra which satisfies conditions (i) and (ii). If the graph associated with the zero ideal of A contains a cycle, a vertex of order greater than three or a chain which branches at both ends, then A is not $Q F-1$.
3. This section is devoted to the following theorem which provides a nice characterization of commutative $Q F-1$ algebras.

Theorem. A commutative algebra is QF-1 if and only if it is Frobenius.

The "if" part of the theorem is true in general; each Frobenius algebra is Quasi Frobenius, as was first established by, Nakayama [4] and Quasi-Frobenius algebras are $Q F-1$, as was shown by Nesbitt and Thrall.

The proof in the other direction is facilitated by the following lemma, the proof of which is omitted.

Lemma. Suppose A is an algebra, and $A_{i}, i=1,2, \cdots, n$ are two-sided ideals of A such that $A=A_{1}+A_{2}+\cdots+A_{n}$; where the sum is vector space direct. Let e denote the identity of A, and write $e=e_{1}+e_{2}+\cdots+e_{n}$, where $e_{i} \in A_{i}$. Then:
(i) Each e_{i} is the identity for A_{i}.
(ii) A is Frobenius if and only if each A_{i} is Frobenius.
(iii) A is $Q F-1$ if and only if each A_{i} is $Q F-1$.

We proceed with the "only if" part of the theorem. Let A be an algebra which is not Frobenius. We shall construct a faithful representation of A which is smaller than its second commutator algebra.

By virtue of the preceding lemma, we may assume A to be indecomposable as a module over itself. Then $\bar{A}=A / N$ is a simple A module and each simple A-module is isomorphic to \bar{A}. For proofs of these statements, see [1]. Let $(\bar{A}: k)=t<\infty$.

The set $S(A)=\{x \in A: N x=x N=0\}$ is called the socle of A. It is well-known that $S(A)$ is the sum of the simple (two-sided) ideals
of A. The hypothesis implies that $S(A)$ is not simple. For suppose $S(A)$ were simple. Let B be a basis for A containing $s \in S(A)$, and let $f: A \rightarrow k$ be that unique linear map satisfying $f(s)=1, f(b)=0$, $b \in B \sim\{s\}$. Clearly $S(A) \not \subset \operatorname{ker} f$. Therefore, since each nonzero ideal of A must contain $S(A)$, it follows that $\operatorname{ker} f$ can contain no such ideals. This implies that A is Frobenius, a contradiction. Thus $S(A)$ is not simple. Let A_{1} and A_{2} be distinct simple ideals of A.

Choose a composition series $0=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=A$ satisfying $V_{j}=\sum_{i=1}^{j} A_{i}$, for $j=1,2$, and $V_{n-1}=N$. By an inductive procedure, a single basis for A may be chosen which contains a basis for V_{i} for each i. We may assume that that part of the basis in V_{2} but not in V_{1} is chosen from A_{2}.

Let R denote the regular representation of A relative to the basis chosen above. Let X_{i} be the induced representation whose space is V_{i} / V_{i-1} for $i=1,2, \cdots, n$. Because the composition factors are all isomorphic, it may be assumed that for each $\alpha \in A$, the matrices $X_{i}(\alpha)$ are equal; denote their common value by $X(\alpha) . \quad R(\alpha)$ is exhibited in the following block form:

$$
R(\alpha)=\left\|\begin{array}{llll}
X(\alpha) & & & \\
Q(\alpha) & P(\alpha) & & \\
Y_{1}(\alpha) & S_{1}(\alpha) & X(\alpha) & \\
Y_{2}(\alpha) & S_{2}(\alpha) & & X(\alpha)
\end{array}\right\|
$$

where $X(\alpha)$ and $Y_{i}(\alpha)$ are $t \times t$ matrices, $Q(\alpha)$ and $S_{i}(\alpha)$ are $(n-m-1) t \times t$ and $t \times(n-m-1) t$ matrices, respectively, and $P(\alpha)$ is an $(n-m-1) t x(n-m-1) t$ triangular matrix which has $n-m-1$ copies of $X(\alpha)$ on its main diagonal.

For $i=1,2$, let y_{i} denote arbitrary nonzero elements of A_{i}. For $x \in N, y_{i} x=x y_{i}=0$. In general, $y_{i} x \in A_{i}$. Thus, $X\left(y_{i}\right), Q\left(y_{i}\right)$ and $P\left(y_{i}\right)$ are zero matrices and $Y_{i}\left(y_{i}\right)=0, i \neq j$. The matrices $Y_{i}\left(y_{i}\right)$ are nonzero, since otherwise y_{i} would annihilate A, and hence $y_{i} 1=y_{i}$ would be zero, contradicting the choice of y_{i}. Furthermore, $Y_{i}\left(y_{i}\right)$ are nonsingular, by the following argument: consider the nontrivial linear transformation $T_{i}: \bar{A} \rightarrow S_{i}$ defined by $T_{i}(x+N)=y_{i} x$. Because A is commutative, it is easily seen that the T_{i} are A-homomorphisms, and hence isomorphisms, since \bar{A} and S_{i} are simple. As $Y_{i}\left(y_{i}\right)$ is the matrix of T_{i} relative to appropriate bases, it is nonsingular. Without loss of generality we may assume that $Y_{i}\left(y_{i}\right)$ is the $t \times t$ identity matrix, I_{t}, for $i=1,2$.

Let I be the 3×3 identity matrix, T the 3×3 matrix with 1 's directly below the main diagonal and 0 's elsewhere. We observe, by direct computation, that the matrix function

$$
S(\alpha)=\left\|\begin{array}{lll}
I \times X(\alpha) & & \\
I \times Q(\alpha) & I \times P(\alpha) & \\
I \times Y_{1}(\alpha)+T \times Y_{2}(\alpha) & I \times S_{1}(\alpha)+T \times S_{2}(\alpha) & I \times X(\alpha)
\end{array}\right\|
$$

is a representation for A.
Let C represent a matrix in the commuting algebra $\mathscr{C}(V)$ of V, the space on which S acts. Then C must commute with the two matrices representing y_{1} and y_{2}

$$
\left\|\begin{array}{llll}
0 & 0 & 0 \\
0 & 0 & 0 \\
I \times I_{t} & 0 & 0
\end{array}\right\| \text { and }\left\|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
T \times I_{t} & 0 & 0
\end{array}\right\| .
$$

This implies that C must have the form

$$
\left\|\begin{array}{lll}
C_{11} & 0 & 0 \\
* & * & 0 \\
* & 0 & C_{11}
\end{array}\right\|,
$$

where $C_{11}\left(T \times I_{t}\right)=\left(T \times I_{t}\right) C_{11}$. The matrix

$$
D=\left\|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
T^{2} \times I_{t} & 0 & 0
\end{array}\right\|
$$

commutes with each matrix C having the above form, yet $D \neq S(\alpha)$, for each $\alpha \in A$. Thus, A is not a $Q F-1$ algebra. This concludes the proof.
2. From this point on, we consider algebras A over a fixed field k with radical N such that A / N is the ring-direct sum of simple ideals each of which is isomorphic to k.

Each algebra of this type admits a vector space decomposition

$$
\begin{equation*}
A=S+N \tag{1}
\end{equation*}
$$

where S is the direct sum of ideals of dimension 1 over θ. That is, S has a basis of primitive orthogonal idempotents $\left\{e_{i}\right\} i=1,2, \cdots, n$, and $1=\sum e_{i}$. We call the $\left\{e_{i}\right\}$ the collection of idempotents associated with the decomposition (1).

If I is a simple two-sided ideal of an algebra A it is not difficult to prove the following facts:
(i) I is one-dimensional
(ii) There exists exactly one pair of indices (i, j) such that $e_{i} I e_{j} \neq 0$. For this pair of indices, $e_{i} I e_{j}=I$.
Theorem 2.1 gives the first of four conditions which imply that A is
not $Q F-1$.
Theorem 2.1. Let A be an algebra, A_{1} and A_{2} distinct simple two-sided ideals of A contained in N, and suppose $e_{i} A_{k} e_{j} \neq 0$ for $k=1,2$, where e_{i} and e_{j} are (not necessarily distinct) primitive idempotents of A. Then A is not $Q F-1$.

Proof. It is clear that the condition $e_{i} A_{k} e_{j} \neq 0$ remains true if e_{i} and e_{j} are replaced by isomorphic idempotents. We may therefore assume that if e_{i} and e_{j} are distinct they are nonisomorphic. Similar assumptions will be made tacitly in the proof of Theorem 3.2. We may choose a decomposition of A of form (1) such that the associated collection of idempotent contains e_{i} and e_{j}.

We put the left regular representation R of A into triangular form relative to a basis containing the $\left\{e_{r}\right\}$, a basis for N, and a basis b_{k} for $A_{k}, k=1,2$. Specifically, let $x_{k}(\alpha)$ be the coefficient of e_{k} in the representation of an element α in A in terms of this basis, and let $y_{k}(\alpha)$ be the coefficient of b_{k} in the expansion of αe_{j}, for $k=1,2$. Since the A_{k} are annihilated on either side by the radical, it follows that R has the form

$$
R(\alpha)=\left\|\begin{array}{llll}
x_{j}(\alpha) & & & \\
P(\alpha) & Q(\alpha) & & \\
y_{1}(\alpha) & S_{1}(\alpha) & x_{i}(\alpha) & \\
y_{2}(\alpha) & S_{2}(\alpha) & & x_{i}(\alpha)
\end{array}\right\|
$$

and that there exist elements $\alpha_{k} \in A_{k}$, for $k=1,2$ such that $x_{j}\left(\alpha_{k}\right)$, $x_{i}\left(\alpha_{k}\right), P\left(\alpha_{k}\right), Q\left(\alpha_{k}\right)$ and $S_{l}\left(\alpha_{k}\right)$ are zero matrices, and such that $y_{l}\left(\alpha_{k}\right)$ is 0 for $l \neq k$ and 1 for $l=k$.

Let I and T be as in the proof of Theorem 1.1. We observe by direct computation, that the matrix function

$$
S(\alpha)=\left\|\begin{array}{lll}
I \times x_{j}(\alpha) & & \\
I \times P(\alpha) & I \times Q(\alpha) \\
I \times y_{1}(\alpha)+T \times y_{2}(\alpha) & I \times S_{1}(\alpha)+T \times S_{2}(\alpha) & I \times x_{i}(\alpha)
\end{array}\right\|
$$

is a representation for A. A comparison of S with the regular representation R shows that S is faithful.

Let V be the module on which S acts. If C represents a matrix in the commuting algebra $C(V)$ of this representation, then C must commute with the two matrices

$$
\left\|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
I & 0 & 0
\end{array}\right\| \text { and }\left\|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
T & 0 & 0
\end{array}\right\|
$$

which represent α_{1} and α_{2}. This implies that C must have the form

$$
\left\|\begin{array}{lll}
C_{11} & 0 & 0 \tag{2}\\
* & * & 0 \\
* & * & C_{11}
\end{array}\right\|,
$$

where $C_{11} T=T C_{11}$. The matrix

$$
D=\left\|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
T^{2} & 0 & 0
\end{array}\right\|
$$

commutes with each matrix of form (2). However, $D \neq S(\alpha)$ for each $\alpha \in A$. Thus, S is strictly smaller than its second commutator algebra $S^{\prime \prime}$. This concludes the proof.
3. For an algebra A, the symbol L_{A} will denote the lattice of two-sided ideals of A. In this section we consider only algebras A for which L_{A} is distributive. For such algebras, we define a graph, G_{0}, associated with the zero ideal of A. (This is a special case of the notion of the graph associated with an arbitrary two-sided ideal contained in the radical of A-a notion which was first defined and investigated in [2]). Let $\left\{A_{k}\right\}_{k}$ be the collection of simple two-sided ideals of A. Let e_{i} be the collection of primitive orthogonal idempotents associated with a vector space decomposition of A of the form (1). The graph G_{0} consists of a set of n symbols P_{1}, \cdots, P_{n}, called the vertices of the graph, and a relation R in this set defined by: $P_{i} R P_{j}$ if and only if there exists k such that $e_{i} A_{k} e_{j} \neq 0$. If $P_{i} R P_{j}$ obtains, then P_{i} and P_{j} are said to be connected by an (oriented) edge. It is clear that the definition of R does not depend upon the particular decomposition of A of form (1).

We shall say that the vertex P^{i} has right order τ (left order τ) if there exist distinct vertices $P_{i_{1}}, \cdots, P_{i_{\tau}}$, such that $P_{i} R P_{i_{j}}\left(P_{i_{j}} R P_{i}\right)$ hold for $j=1,2, \cdots, \tau$. The order of a vertex is the larger of the two orders. A chain C is a set of vertices and edges

$$
\left(P_{i_{1}}, P_{i_{1}} R P_{i_{2}}\right), P_{i_{2}}, P_{i_{3}} R P_{i_{2}}, \cdots, P_{i_{\tau-1}}, P_{i_{\tau-1}} R P_{i_{\tau}}, P_{i_{\tau}},\left(P_{i_{\tau+1}} R P_{i_{\tau}}, P_{i_{₹+1}}\right),
$$

such that successive edges are distinct, that is $i_{\nu} \neq i_{\nu+2}$, for $\nu=$ $1,2, \cdots, \tau-1$. The parentheses indicate that the first and last edges of the chain may have either orientation. The chain C_{2} extends the chain C_{1} on the right (and C_{1} extends C_{2} on the left) if the last vertex of C_{1} is the first vertex of C_{2} and identifying these equal vertices makes C_{1} followed by C_{2} a chain. The chain C is a cycle if it extends itself. Note that a cycle has an even number of edges.

A chain branches at one end if it can be extended by at least two distinct edges at that end.

The following lemma is crucial in the proof of the main theorem.
Lemma 3.1. Let $P_{i_{k}} R P_{j_{k}}, k=1,2, \cdots, m$ be a collection of distinct edges of G_{0}. Then for each k there exists special element $\alpha_{k} \in A$, and representation R_{k} such that:
(1) R_{k} is a triangularized representation of A with the form

$$
R_{k}=\left\|\begin{array}{lll}
x_{j_{k}} & & \\
P_{k} & Q_{k} & \\
y_{k} & S_{k} & x_{i_{k}}
\end{array}\right\|,
$$

where $x_{j_{k}}$ and $x_{i_{k}}$ are one-dimensional representations of A.
(2) $R_{k}\left(\alpha_{j}\right)=0$ for $k \neq j$, and $R_{k}\left(\alpha_{k}\right)$ has a 1 in the lower left hand corner and zeros elsewhere.
(3) $+\sum_{k=1}^{m} R_{k}$ is a faithful representation for A.

Proof. Without loss of generality, we may assume that, for each $k, e_{i_{k}} A_{k} e_{j_{k}} \neq 0$. (Observe that condition (ii) listed immediately preceding Theorem 2.1 implies that to each simple two-sided ideal is associated exactly one edge of G_{0}). We choose a decomposition of A of form (1) such that the associated collection $\left\{e_{i}\right\}$ of primitive idempotents contains $e_{i_{k}}$ and $e_{j_{k}}$, all k. Select $\beta_{k} \neq 0$ in A_{k}. We may triangularize the left regular representation R of A relative to a basis B containing the $\left\{e_{i}\right\}$, containing a basis for N, and containing β_{k} for each k (here, distributivity of L_{A} is used, in case $m \geqq 3$). Let $x_{i}(\alpha)$ denote the coefficient of e_{i} in the expansion of an element α in terms of the basis first selected, and let $y_{k}(\alpha)$ denote the coefficient of α_{k} in the expansion of $\alpha e_{j_{k}}$. Put $A_{k}^{\prime}=\sum\left\{A_{i}: i \neq k\right\}$, and $B_{k}=A / A_{k}^{\prime}$. The representation R_{k} with space B_{k} has, relative to the basis of B_{k} induced by B, the form described in (1). The elements α_{k} described in (2) can be gotten as the appropriate scalar multiples of β_{k} for each k. Finally, that $+\sum_{k=1}^{m} R_{k}$ is faithful is a consequence of the distributivity of L_{A}.

In terms of the graph G_{0}, we can now state three other conditions for an algebra to be QF-1.

Theorem 3.2. If the graph G_{0} of an algebra A has a cycle, a vertex of order greater than three, or a chain which branches at both ends, then the algebra is not QF-1.

Proof. We consider separately the various cases. Assume that G_{0} has a vertex of order greater than three. We may assume that the order of the vertex in this case is the left order, the other case
being handled analogously. Then there exist four distinct edges $P_{i_{k}} R P_{i}$, for $k=1, \cdots, 4$. By Lemma 3.1, there exist four representations

$$
R_{k}=\left\|\begin{array}{lll}
x_{i} & & \\
p_{k} & Q_{k} & \\
y_{k} & S_{k} & x_{i_{k}}
\end{array}\right\|
$$

and four special elements $\alpha_{k}, k=1,2,3,4$, satisfying the conditions of that lemma.

Let I and T be as in the proof of Theorem 2.1, and let I_{6} be the 6×6 identity matrix. Then the matrix function
is seen, by direct computation, to be a representation of A. A comparison of S with the representation $+\sum_{k=1}^{4} R_{k}$ shows that S is faithful. Let C represent a matrix in the commuting algebra $\mathscr{C}(V)$ of V, the module on which S acts. In particular, B must commute with the four matrices which represent $\alpha_{k}, k=1, \cdots, 4$. By direct computation one sees that this condition forces C to have the form:

$$
C=\left\|\begin{array}{ccccccccc}
C^{\prime} & 0 & \cdot & \cdot & \cdot & & & & \\
0 & C^{\prime} & 0 & \cdot & \cdot & \cdot & & & \\
* & & & * & & & \cdot & & \\
& & & & & & \cdot & \cdot & \\
& & & & & & \cdot & \cdot & \cdot \\
& & & & & & 0 & \cdot & \cdot \\
& & & & & & C^{\prime} & 0 & \cdot \\
0 & C^{\prime} & 0 & \cdot \\
& & & & & & 0 & 0 & C^{\prime} \\
& & & & & 0 \\
* & & & * & & 0 & 0 & 0 & C^{\prime}
\end{array}\right\|
$$

where C^{\prime} is a 3×3 matrix satisfying $T C^{\prime}=C^{\prime} T$.

Let D be the matrix of the same dimensions as C having the submatrix $\left(0, T^{2}\right) \times 1$ in the lower left hand corner and 0 's elsewhere. Then $D C=C D$ for each matrix C in $\mathscr{C}(V)$. However, $D \neq S(\alpha)$ for each $\alpha \in A$, and thus $S \subseteq S^{\prime \prime}$, concluding the proof for this case.

Now suppose that G_{0} contains a cycle. It can be shown that if G_{0} has a chain which has a repeated edge then G_{0} has a cycle. Thus we may assume that G_{0} has a cycle all of the edges of which are distinct. Let

$$
P_{i_{1}}, P_{i_{1}} R P_{j_{1}}, P_{j_{1}}, P_{i_{2}} R P_{j_{1}}, \cdots P_{j_{\tau}}, P_{i_{1}} R P_{j_{\tau}}, P_{i_{1}}
$$

be that cycle. Let $R_{11}, R_{21}, \cdots R_{\tau \tau}, R_{1 \tau}$ be the representations associated with the edges of the cycle by Lemma 3.1.

$$
R_{\mu \nu}=\left\|\begin{array}{lll}
x_{j_{\nu}} & & \\
P_{\mu \nu} & Q_{\mu \nu} & \\
y_{\mu_{\nu}} & S_{\mu \nu} & x_{i_{\mu}}
\end{array}\right\| \quad(\mu, \nu)=(1,1),(2,1), \cdots(1, \tau) .
$$

From the submatrices of these $R_{\mu \nu}$ construct a matrix function R,

$$
R=\left\|\begin{array}{lll}
X_{1} & & \\
P & Q & \\
Y & S & X_{2}
\end{array}\right\|
$$

which has the following description in block form (it is to be understood that those portions of the matrix blocks not described are filled with 0's):
(i) X_{1} is the direct sum of the representations $I \times x_{j_{\nu}}$, for $\nu=1,2, \cdots, \tau ; X_{2}$ is the direct sum of $I \times x_{i_{\mu}}$, for $\mu=1,2, \cdots, \tau$; and Q is the direct sum of $I \times Q_{\mu \nu}$ for

$$
(\mu, \nu)=(1,1),(2,1),(2,2), \cdots(\tau, \tau),(1, \tau)
$$

(ii) P has $I \times P_{\mu \nu}$ directly below $I \times x_{j \nu}$, and to the left of $I \times Q_{t^{\prime} \nu}$, for $(\mu, \nu) \in J \sim\{(1, \tau)\}$, and contains $T \times P_{1=}$ directly below $I \times x_{j_{\tau}}$ and to the left of $I \times Q_{1=}$
(iii) S has $I \times S_{\mu_{\nu}}$ directly below $I \times Q_{\mu_{\nu}}$, and to the left of $I \times x_{i_{\mu}}$, for $(\mu, \nu) \in J$.
(iv) Y has $I \times y_{\mu \nu}$ directly below $I \times x_{j_{\nu}}$, and to the left of $I \times x_{i_{\mu}}$, for $(\mu, \nu) \in J \sim\{(1, \tau)\}$, and contains $T \times y_{i \tau}$ directly below $I \times x_{j_{\tau}}$, and to the left of $I \times x_{i_{1}}$.

Note that Y has the form
$\left\|\begin{array}{lllllll||}I \times y_{11} & & & & & T \times y_{1 \tau} \\ I \times y_{21} & I \times y_{22} & & & & & \\ & I \times y_{32} & I \times y_{33} & & & & \\ & & I \times y_{43} & & & & \\ & & & \cdot & & & \\ & & & \cdot & & \\ & & & & & & \\ & & & & & I \times y_{\tau-{ }^{1}, \tau-1} & \\ & & & & & I \times y_{\tau, \tau-1} & I \times y_{\tau \tau}\end{array}\right\|$.

One shows, by direct computation, that the matrix function constructed above is indeed a representation for A. Comparing A with the (faithful) representation

$$
+\sum\left\{R_{\mu_{\nu}}:(\mu, \nu)=(1,1),(2,1) \cdots(\tau, \tau),(1, \tau)\right.
$$

we see that R is faithful. Let C be the matrix representing an element of the commuting algebra. $\mathscr{C}(V)$ of V the module on which R acts. Let $\alpha_{\mu \nu}$ be the 2τ special elements associated with the representations $R_{\mu \nu}$ by Lemma 3.1. Then C must commute with R evaluated at each of these elements. Direct computation shows that this forces C to have the form:

$$
C=\| \begin{array}{ll}
C^{\prime} & \\
* & C^{\prime}
\end{array}
$$

where C^{\prime} is the direct sum of r copies of a 3×3 matrix C_{0} satisfying $C_{0} T=T C_{0}$.

Now let D be the matrix of the same dimensions as R, which has 0's in all positions except the 3×3 position corresponding to the upper right hand corner of the matrix Y. Require that the matrix in the special position indicated by T^{2}. Then $D C=C D$, and yet $D \neq R(\alpha)$, for each $\alpha \in A$. Thus, $R \nsubseteq R^{\prime \prime}, A$ is not $Q F-1$, and the proof is complete for this case.

Finally, assume that the graph of A contains a chain which branches at both ends. It is enough to consider the case that all the edges involved are distinct, for if they are not distinct the graph has a cycle. Let the chain and its branches be as follows:

$$
\begin{array}{ccc}
P_{k_{1}} R P_{j_{1}} & & P_{k_{3}} R P_{j_{\tau}} \\
P_{k_{2}} R P_{j_{1}} & P_{j_{1}}, P_{i_{1}} R P_{j_{1}}, P_{i_{1}}, \cdots P_{j_{\tau}} & \\
P_{k_{4}} R P_{j_{\tau}}
\end{array}
$$

There are two other cases to consider, depending on the orienta-
tion of the first and last edges of C. These cases are handled analogously.

Let $R_{\mu_{\nu}}$, for $(\mu, \nu)=(1,1),(1,2), \cdots,(\tau-1, \tau)$, and R_{ν}^{ρ}, for $(\rho, \nu)=$ $(1,1),(2,1),(3, \tau),(4, \tau)$ be the $2 \tau+2$ representations associated with C and its edges as given by Lemma 3.1.

$$
R_{\mu \nu}=\left\|\begin{array}{lll}
x_{j_{\nu}} & & \\
P_{\mu \nu} & Q_{\mu \nu} & \\
y_{\mu_{\nu}} & S_{\mu \nu} & x_{i_{\mu}}
\end{array}\right\| \quad(\mu, \nu)=(1,1),(1,2), \cdots,(\tau-1, \tau)
$$

and

$$
R_{\nu}^{\rho}=\left\|\begin{array}{lll}
x_{j_{\nu}} & & \\
P_{\nu}^{\rho} & Q_{\nu}^{\rho} & \\
y_{\nu}^{\rho} & S_{\nu}^{\rho} & x_{k \rho}
\end{array}\right\| \quad(\rho, \nu)=(1,1),(2,1),(3, \tau),(4, \tau) .
$$

Form the matrix function R,

$$
R=\left\|\begin{array}{lll}
X_{1} & & \tag{3}\\
P & Q & \\
Y & S & X_{2}
\end{array}\right\|
$$

from the submatrices of the $R_{\mu \nu}$ and R_{ν}^{o}, as follows:
(i) X_{1} is the direct sum of $I_{6} \times x_{j_{\nu}}$ for $\nu=1,2, \cdots, \tau$; Q is the direct sum of $I_{6} \times Q_{\mu \nu}$ for $(\mu, \nu)=(1,1),(1,2), \cdots,(\tau-1, \tau)$, and $I_{6} \times Q_{\nu}^{\rho}$, for $(\rho, \nu)=(1,1),(2,1),(3, \tau),(4, \tau) ; X_{2}$ has $I \times x_{k_{1}}+I \times x_{k_{2}}$ in the upper left hand corner, $I \times x_{k_{3}}+I \times x_{k_{4}}$ in the lower right hand corner and the direct sum of $I_{6} \times x_{i_{\mu}}$, for $\mu=1,2, \cdots, \tau-1$ in the middle diagonal position.
(ii) P has $I_{6} \times P_{\mu \nu}$ directly below $I_{6} \times x_{j_{\nu}}$, and to the left of $I_{6} \times Q_{\mu \nu}$, and $I_{6} \times P_{\nu}^{\rho}$ directly below $I_{6} \times x_{j_{\nu}}$, and to the left of $I_{6} \times Q_{\nu}^{\rho}$.
(iii) S has $(I, 0) \times S_{1}^{1}$ directly below $I_{6} \times Q_{1}^{1}$, and to the left of $I \times x_{k_{1}} ;(0, I) \times S_{1}^{2}$ directly below $I_{6} \times Q_{1}^{2}$ and to the left of $I \times x_{k_{2}}$; $(I, I) \times S_{\tau}^{3}$ directly below $I_{6} \times Q_{\tau}^{3}$, and to the left of $I \times x_{k_{3}} ;(I, T) \times S_{\tau}^{4}$ directly below $I_{6} \times Q_{\tau}^{4}$, and to the left of $I \times x_{k_{4}}$, and $I_{6} \times S_{\mu \nu}$ directly below $I_{6} \times Q_{\mu \nu}$ and to the left of $I_{6} \times x_{i_{\mu}}$, for

$$
(\mu, \nu)=(1,1),(1,2), \cdots,(\tau-1, \tau) .
$$

(iv) Y has $I \times y_{1}^{1}+I \times y_{1}^{2}$ directly below $I_{6} \times x_{j_{1}}$ and to the left of $I \times x_{k_{1}}+I \times x_{k_{2}} ;(I, I) \times y_{\tau}^{3}$ directly below $I_{6} \times x_{j_{\tau}}$, and to the left of $I \times x_{k_{3}} ;(I, T) \times y_{\tau}^{4}$ directly below $I_{6} \times y_{j_{\tau}}$ and to the left of $I \times x_{k_{4}}$; and $I_{6} \times y_{\mu \nu}$ directly below $I_{6} \times x_{j_{\nu}}$ and to the left of $I_{6} \times x_{\nu_{\mu}}$. Note that Y has the following form:

One shows by direct computation that R is a representation of A. Moreover, a comparison of R with the faithful representation

$$
\begin{aligned}
+\sum\left\{R_{\mu_{\nu}}(\mu, \nu)\right. & =(1,1),(1,2), \cdots,(\tau-1, \tau)\}+\sum\left\{R_{\nu}^{\rho}(\rho, \nu)\right. \\
& =(1,1),(2,1),(3, \tau),(4, \tau)\}
\end{aligned}
$$

shows that R is faithful.
Now let C represent an element of the commuting algebra $\mathscr{C}(V)$ of V the module on which R acts. For convenience, we write $C=$ $\left(C_{i j}\right) i, j=1,2,3$, where the dimensions of the $C_{i j}$'s correspond in an obvious way to the dimension of the submatrices of R as exhibited in (3). Let $\alpha_{\mu \nu}$, for $(\mu, \nu)=(1,1),(1,2), \cdots,(\tau-1, \tau)$, and α_{ν}^{ρ}, for $(\rho, \nu)=(1,1),(2,1),(3, \tau),(4, \tau)$ be the special elements of A associated with the representations $R_{\mu_{\nu}}$ and R_{ν}^{ρ}, as described in the lemma. C must commute with the matrices representing these special elements. This implies that C_{12}, C_{13} and C_{23} are zero matrices, and C_{11} and C_{33} are 2τ and $2 \tau+2$ copies, respectively, of a 3×3 matrix C_{0} satisfying $C_{0} T=T C_{0}$.

Now let D be a matrix of the same dimensions as $R(\alpha)$ which has 0's in all positions except the 3×3 position corresponding to the lower right corner of the matrix Y. Require that the matrix in the special position indicated by T^{2}. Then it is easily checked that $D C=C D$; however, $D \neq R(\alpha)$, for each $\alpha \in A$; hence $R \nsubseteq R^{\prime \prime}$; this concludes the proof for the final case.

We conclude this paper with an example which illustrates the incompleteness of the theory. Let k be an arbitrary field. The algebra A of dimension 3 over k consisting of 2×2 matrices of the form

$$
\left\|\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right\|
$$

where a, b, and c are in k, satisfies the conditions that its irreducible
representations are one-dimensional, and its two sided ideal lattice is distributive. The representation of A consisting precisely of the above matrices is not equal to its second commutator algebra. However, A does not satisfy any of the conditions given in the hypotheses of Theorems 2.1 and 3.2.

Thus, " $Q F-1$ ness" is not a consequence of the negation of any, or all, of the conditions stated in the hypotheses of these theorems. A precise characterization of the class of $Q F-1$ algebras, given in terms of "internal properties" as defined in the introduction, has yet to be found.

The author wishes to thank Professor Jans for his encouragement and guidance in the preparation of this work.

Bibliography

1. C. W. Curtis, and I. Reiner, Representation theory of groups and finite dimensional algebras, Pure and Applied Mathematics, Volume XI, John Wiley and Sons, New York 1962.
2. J. P. Jans, On the indecomposable representations of algebras, Dissertation, University of Michigan, 1954.
3. K. Morita, On algebras for which every faithful representation is its own second commutator, Mathematische Zeitschrift 69 (1958), 429-434.
4. Tadasi Nakayama, On Frobeniusean algebras I Ann. of Math. 40 (1939), 611-635.
5. C. Nesbitt, and R. M. Thrall, Some ring theorems with applications to modular representations, Ann. of Math. 47 (1946), 551-567.
6. R. M. Thrall, Generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948), 173-183.

Received February 21, 1967. This paper is a revision of the author's doctoral dissertation written under the supervision of Dr. J. P. Jans at the University of Washington.

