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ALGEBRAIC GEOGRAPHY: VARIETIES OF
STRUCTURE CONSTANTS

F. J. FLANIGAN

Let ^ = cέ?{n, Ω) denote the algebraic set of structure
constants for ^-dimensional associative algebras, a subset of
Ωn*. Here Ω is a universal domain over a prime field F and
a point c = (CMJ) with h, i, j = 1, , n is in ^ if and only if
the multiplication (xh, Xi) -> XhX% = 2 ^ ChijXj is associative.
The set ^ is readily seen to be F-closed in the Zariski
topology on ΩnZ and is in fact a finite union of irreducible
closed cones (the components of ^ ) with the origin as vertex.
The natural "change of basis" action of the group G = GL(n, Ω)
on ^ yields a one-one correspondence between orbits G-c on
& and ^-dimensional ί2-algebras. One studies the globality
of these algebras (and of algebras defined over subfields of
Ω) by examining the geography of ^ .

Thus if S is a semi-simple ί2-algebra (more generally, if
the Hochschild group H2(S, S) = (0)) then its corresponding
orbit (denoted G-S) is open and therefore dense in its com-
ponent ^ o of ^ . Thus S determines all algebras which live
on i f 0. One checks that dim ^ 0 = n2 — n + s, where S =
Si 0 θ & for simple Sa. Moreover, in the language of
Gerstenhaber and Nijenhuis-Richardson, one may hope to de-
form the algebras on ^Ό into S. In commencing a study of
the parameter space ^ , therefore it seems a natural first
question to ask whether every irreducible component of ^ is
dominated by such an open orbit or, in the sense of deformation
theory, "Does every algebra deform into a rigid algebra?"
We show here that the answer is no.

In § 1 below, we develop some relations between deformation of
algebras and specialization of points on ^ . In § 2 our question is
partly settled by a demonstration that every component of ^ must
carry an open subset of nonsingular points which is either the orbit
of a single rigid algebra or an infinite union of orbits of β-algebras
which differ only in their radicals. Then in § 3 we answer the ques-
tion in the negative, showing that the second alternative of § 2 does
in fact occur by exhibiting a full component of ^ which consists
entirely of the orbits of three-dimensional nilpotent algebras.

The author recalls with pleasure several discussions with Profes-
sors Murray Gerstenhaber, Albert Nijenhuis, Alan Landman and
Maxwell Rosenlicht during the course of this work.

l Deformation and specialization* Throughout this paper, k
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will denote a subfield of the universal domain Ω in the sense of Weil
[6]. Let c = (chij) be a fc-rational point of <ĝ  thereby determining
an π-dimensional A -algebra A with multiplication (xh^xi)-^xhxi =
^ΣijCujXj which we denote alg(c, k). We say moreover that c is a
structure for A. A deformation of A in the sense of Gerstenhaber
[2] is then given by an π3-tuple tc = (£A ί i) of power series tchij =
fchij(t) in a single indeterminate £ which satisfies (i) the multiplication
(α?A, ί^)—>xh*Xi = Σu KhijXj is associative and (ii) £Aii(0) = cAiy. Such
a new multiplication determines a ! £ — ( = &((£)) — ) algebra A« =
alg (it, K); we say that A has been deformed into At. Any A -imbedding
Λ(Λ:) —> £? yields an π3-tuple c which is a point of ^ (and thereby
determines an ^-dimensional &(c)-algebra.) Further, the substitution
t —•» 0 induces a ^-specialization c —> c rational in the sense that c is
a rational point for k. Thus deformation implies specialization.

Conversely, it is asked [2, p. 85] if every such specialization in
^ is induced by a deformation. That is, let c, c e cέ? with c rational
over k and let c - ^ c be a /^-specialization. Do there exist n3 power
series ιchii e k[[t]] such that (i) ιchij(0) = chij and (ii) the map ιchij —> c A i i

defines a fc-isomorphism fe[/c] —> fc[c]? If such is the case, then we
say K and c are k-equίvalent over c. Moreover, we would rather not
rule out the cases where k is an arbitrary subfield of Ω, or c is a
singular point on loc (c, k), the λ-locus (= ^-closure) of c. The lemmas
below (which are independent of ^) give us sufficient information to
proceed in § 2 and § 3. More immediately, however, we are enabled
to give an answer (complete but for a field of definition question) to
the problem "Does a rigid algebra remain so after extension of
scalars?"

LEMMA 1. Let x—>% be a rational k-specialization in Ωm. Then
there exist m power series κ5 e k[[t]] such that K = (/Cj) and x are k-
equivalent over x provided one of the following holds:

(A) x is a simple point on the k-variety loc (x, k), k arbitrary,
(B) loc (x, k) is a curve, k arbitrary,
(C) k — C, the complex numbers.

Proof. (A) Write X = \oc(x,k). Then k[x] is a £>subalgebra of
o = o(x, X, k), the local ring of A -rational functions on X defined at
x. Since x is simple on X, Cohen's Theorem [7, p. 307] assures us
that the completion o of o is isomorphic to k[[t19 , td]\, where
d = d i m X Without loss then each x3- is a power series ξjfa, , td)
with constant term xά. Now choose power series θU' ,θd in a
single variable t which are algebraically independent over k and satisfy
θh(0) = 0. Then the required ιc5 are given as Kj(t) = ζjiθ^t), , θd(t)).
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(B) This was noted in [2, p. 85], Let X * - + X be the usual

normalization. Then as above we have k[x] a subalgebra of o =

o(a?*, X*, k) where x* is any point over x. Since X* is simple in

codimension one, o is isomorphic to k[[t]] and the lemma follows.
(C) By modifying the Theorem of the Primitive Element as given

in [4, p. 126], we have without loss k[x\ — k[xu •• ,%d][y] with d —
dim (x, k). Let tc19 , tcd be algebraically independent complex power
series in a variable τ satisfying tCj(O) = xά. Since k = C, the Puiseaux
Theorem [5, p. 98] yields a ά-algebra isomorphism k[xly —,xd][v]"-*
k[/cu

 m ',/cd][θ] where θ is a power series in τlln for some n. Replace
τ by tn and the result follows.

In conjunction with case (B) above, the following intuitive result
will be useful.

LEMMA 2. Let X be an affine k-variety in Ωm and Z a proper
k-closed subset containing a k-rational point x. Then there exists a
k-closed curve Γ in X through x such that Γ Π Z is finite.

One may prove this by restricting to a suitable A -hypersurface in
X and applying induction.

An immediate application: let ^ 0 be a component of ^ . Let
c e ^ 0 be λ -rational and A — alg (c, k). Then it is standard that the
orbit GΆ( = G c) is locally closed (open in its closure) in the Zariski
topology on ^ 0 . Let kQ be the minimal field of definition for ^ 0 .
(It is thought that k0 = F, the prime field, but this has not been
established.).

PROPOSITION 3. Let the subfield k contain k0. Then the k-algebra
A is rigid over k in the sense of Gerstenhaber if and only if its
orbit GΆ is open in the Zariski topology on ^ 0 .

REMARK. Nijenhuis-Richardson [3] use "open orbit" to define
rigidity; their concern is almost entirely with £?-algebras. Proposi-
tion 3 implies:

COROLLARY 4. Let k, k0 be as above. Then A is rigid over k if
and only if the algebra Ak, is rigid over kf', where k' is any exten-
sion of k in Ω.

Proof of Proposition 3. First let A be rigid over k and let Z
denote the closure of GΆ in ^ 0 . If Z = ^ 0 , we are done. Assume
not; then Lemma 2 allows us to run a curve Γ through c whose k-
generic point c is not in Z. The fc-specialization c"—> c yields, by
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Lemma 1, a nontrivial deformation of A into the algebra determined
by c, contradicting rigidity. Thus Z = ^ 0 .

Conversely, if GΆ is open, then it is A -open since c is λ>rational.
But any deformation of A over k will induce a fc-specialization c—+c.
Thus ceG i and the deformation is trivial, completing the proof of
the theorem.

2* Open sets of algebras* Now we offer a preliminary answer
to the question "Does every component of ^ carry an open orbit?"
In what follows we will express an algebra A as a semi-direct sum
N φ S of its radical N and a separable Wedderburn factor S.

THEOREM 5. Let ^ 0 be a component of ^ with field of defini-
tion k0. Then ^ 0 contains a kQ-open subset 3%l consisting of non-
singular points which is either the orbit of a rigid algebra or an
infinite union of orbits of Ω-algebras A, A!, with the following
properties: if A = Nφ S and A' = N' φ S' then

( i ) S and S' are isomorphic as Ω-algebras,
(ii) dim N = dimΛΓ' and this is minimal for algebras on ^Q,
(iii) nilindex N — nilindex N' and this is maximal for algebras

on ^ 0 ,
(iv) the two-sided regular actions of S and S' on N and Nr

respectively are equivalent,
(v ) dim Hq(A, A) = dim Hq{A'', Af) (Hochschild cohomology) for

a specified set of indices q and, moreover, these dimensions are
minimal on ^ 0 ,

(vi) the orbits G A,G-A', ••• all have the same dimension.

REMARK. The algebras A, A', must have nonisomorphic rad-
icals N, Nf, . In § 3 we shall exhibit a component ^ 0 which does
in fact carry such a family of algebras.

Proof. To obtain (ii), (iii) and (v) we will employ the upper-
semi-continuity principle illustrated in [2, p. 90]. Then (i) and (iv)
will be derived using the results of the last section.

We will use upper semi-continuity in the following form: let
/: X—•> Y be a dominant morphism of varieties, and let Yq be the set
of y in f(X) such that dim f~\y) < q. Then YQ is open in Y.

We restrict consideration to the open subset of nonsingular points
on ^ 0 The upper semi-continuity argument of [2] showed that the
subset Y of structures in ^ 0 with minimal dimensional radical is open,
giving (ii). Now we deal similarly with the nilindex of the radical.
For a natural number v, form the product Y x {Ωn)\ Let X' denote
the subset of points (c, zly , #„) where each z{ is an element of N(c),
the radical of alg(c, Ω), here identified with Ωn. There is a poly-
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nomial map μ: X' —* Ωn given by (c, z19 , zu) —> zL zυ with the
multiplication determined by c. Denote by x the closed subset /^(O)
of X''. Let π: X —> Y be the projection (c, ̂ , , zu) —• c. We note
that if nilindex N(c) <̂  v, then dim TΓ^C) — v dimiV(c), while if nil-
index N(c) > v, then dimπ-^c) < v - dim N(c). By upper semi-continui-
ty the set Yj of structures c which determine radicals N(c) of nilindex
larger than v is open in Y, giving (iii).

Now we obtain an open subset Y2 of Y by considering Hochschild
cohomology. For q ^ 0, let C* = Cq(Ωn, Ωn) denote the ί2-space of q-
cochains; this is isomorphic with (Ωn)q+1. Proceeding as above we form
Yj. x Cq and define a polynomial map δ: Yι x Cq —> Cq+1 by (c, φ) —• δc<̂
where <?c denotes the ^ fλ coboundary operator for alg (c, i3). Let X be
the subset ^(O) of Y1 x Cg and let τr:X—> Yx be the projection
(c,φ)—>c. Then the fiber π~\c) is isomorphic with Z9(c), the i2-space
of g-cocycles for alg (c, Ω). Since dim Zq~\c) determines ά\mBq(c), it
is clear that there is an open subset Y2 of Y1 consisting of those
structures c for which dim Hq(c) is minimum on Yf. in fact, this is
true for any specified finite set of indices q. Thus we have established
(v). Our work thus far underscores the fact that a rigid algebra
(open orbit) on ^ 0 would have the "smallest" radical and second
cohomology among nearby algebras.

Now we return to the methods of deformation theory to obtain
(i) and (iv). We show in fact that all algebras which live on Y1 above
have isomorphic Wedderburn factor S and isomorphic actions of S on
the radical. Let c, c' be structures in Yu k a common field of defini-
tion for c, cf and ^ 0 , and c a fc-generic point for ^ 0 . Then c is in
the Λ-open set Y1 and by § 1 we may deform both alg (c, k) and
alg(c',/c) into the algebra determined by c. Now one may consider
the Wedderburn factor of an algebra to be rigid under deformations
of the algebra, and similarly for the actions of the factor on the
radical (cf. Theorem 1 of [1]). It follows after extension of scalars
to Ω that the Wedderburn factors determined by c and & are each
subalgebras of alg (c, Ω). But on Yι all Wedderburn factors have the
same dimension and hence all are isomorphic, giving (i). Statement
(iv) follows from the rigidity of the actions of the Wedderburn factors.

It is standard that there is an open subset Y3 of the transform-
ation space CS^O on which all orbits have the same maximal dimension.
Putting J?o"= Y2Γl Y3 gives the theorem.

3* A component without open orbit• Now we demonstrate
that the second alternative of Theorem 5 does occur in nature. Let
<g-" = ^ ( 3 , Ω) be the algebraic set of structures for three-dimensional
algebras over an arbitrary universal domain Ω, and let ^V be the
closed subset consisting of nilpotent structures. We shall see that
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is the union of two components and that one of these is in fact
a component of ^ .

First we catalog the algebras in ^ K Let k denote Ω or an alge-
braically closed subfield, and let v ek. Let Nv be the A -algebra with
basis xl9 x2, x3 and multiplications xxx2 = xz, x2xx = vx3, with xhxi = 0
otherwise. One has iVv isomorphic to Nμ if and only if v = μ-1; cf.
[2, p. 91], By a direct computation, one sees that all but four of
the three-dimensional nilpotent algebras over k are of the form N».
The exceptions are (here uuu2, uz is a A>basis and products not listed
or implied are zero):

• : satisfying •* = (0) ("square-zero")

C: ul = uifuϊ = u, ("cyclic")

Jo: v>\ = uz

By computing the automorphism groups of the various algebras, one
sees dimG iV, = 5 (v Φ —1) while dimG iV^ = 3; also dimG C = 6,
dimG Jo = 4, dimG Ji = 5. Further, if vek and τ is transcendental
over k, one may deform Nv over k into Nτ.

Let ^ ς be the union of all orbits of the form G-Nv for veΩ
and let ,yγ\ denote its closure. We shall proceed as follows:

LEMMA 6. /̂//J is a subvariety of

LEMMA 7. ^/^ is the union of the orbits G-Nv with v e Ω together
with the three orbits G \Z\, G JQ and G-Jλ.

LEMMA 8. ^K is a reducible algebraic set with two components
Λϊ and Λ^'Π^Όm, where ^ c m denotes the component of commutative
structures in c&'. The intersection of ^V"% and ^V Π ̂ c m is the union
of the orbits G Π> G NUG JO (and, in characteristic two, G-JJ.

By combining the results of §1 with some "nondeformability"
computations, we shall obtain finally:

THEOREM 9. Λl is a component of the algebraic set rtf — ^ ( 3 , Ω);
moreover ^Yl carries no open orbit.

We prove these results in turn.

Proof of Lemma 6. It suffices to prove <yK* irreducible. But
this follows from the fact that ^/^ contains a subvariety isomorphic
with Ω which intersects every orbit G NU, namely the subvariety of
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points c = (chij) with entries c123 = 1, c213 = v and chij = 0 otherwise.
To obtain Lemma 7 we will apply the following observation,

whose proof is straightforward:

LEMMA 7a. Let A and B be k-algebras and let A deform into
B in the sense of [2] (that is, there is a generic element At of a
one-parameter family of deformations of A which is K-isomorphic
with BK1 where K~ k((t))). Then the orbit GΆ is contained in the
closure (= k-closure) of the orbit G'B.

Proof of Lemma 7. (i) We show that Π and Jo with scalars in
a field k deform into some Nv, v ek, and then appeal to Lemma 7a.
First, it is well-known that • deforms into any yfe-algebra. Now let
Jo have A -basis uu u2, u3 and deform as follows: u1^u1 = u1u1 = u3,
u2*u2 — u2u2 = 0, uy*u2 — tu3, u2^u1 = u2u1 = 0, other products zero.
This multiplication gives a iί-algebra (J0)t. Then the if-linear map
tu1 — u2 —* xly u2 —> x2, t2u3 —+x3 is a if-algebra isomorphism (J0)t —> (N0)κ.

By Lemma 7a, G J0 c ^ # .

(ii) To show G Jx c Λ/#, we deform Jγ over k into iVv with v
transcendental over k and then argue geometrically. If the charac-
teristic is not two, deform as follows: u^u^, = u^ = u^u^^ =
(1 + t)u3iu2^u1 = ( —1 + t)us, other products zero as before. Then
the map ux — (2t)~ιu2 —* xu u2 —> x2, u3 —• x3 determines a iί-algebra
isomorphism {Jι)t—+ Nv where veK equals (t — l)/(t + 1). In charac-
teristic two we define u2^ui — (1 + t)z and uh*Ui — uhUi otherwise.
In this case the map t~ιu1 + t~2u2 —> xίy u2 —> x2t t~ιu2 —> x3 determines a
if-algebra isomorphism with Nv where v = 1 + t.

Now in any characteristic each λ -embedding k(t) —> Ω determines
a structure c related to the above multiplication and the basis uu u2, uB.
In each case c is an element of some G-N^ The set of all such c
determines a A:-rational curve in ^ which contains the structure c
determined by the original multiplication (t = 0) and the basis u19 u2, u3.
But since Λ^ is a transformation space for G, it contains the entire
orbit G Ji.

(iii) Finally, one sees that G C is not a subset of ^ x # as follows:
since dim G C = 6, the orbit is open in ^ J , and so the algebras iVv

would deform into C over suitable fields k. But only commutative
algebras deform into C, a contradiction. Lemma 7 is proved.

Proof of Lemma 8. From Lemma 7 we see that ^ ~ is the union
of the irreducible ^/Vl and ^/ Π^cm But the latter is the closure
of the orbit G'Cf since one can deform • , Jυ, Nλ (and, in characteristic
two, Λ) into C over k and then apply Lemma 7a. Thus ^/~ Π ctfcm

is irreducible, giving the lemma.



78 F. J. FLANIGAN

Proof of Theorem 9. First we must consider the nonnilpotent
algebras on ^ . One computes directly that over an algebraically
closed k there are sixteen nonisomorphic nonnilpotent three-dimensional
algebras. Of these, seven are rigid, whence the set ^ has at least
seven components. Three of these seven components have dimensions
3, 3 and 5 and hence cannot contain the six-dimensional ^Y\. The
other four rigid fc-algebras are these: S = k φ k 0 k, semi-simple;
U = the 2 x 2 upper-triangular matrices; B, consisting of those 3 x 3
matrices generated by the standard matrices en, e22, e18; and the opposite
B' of B, generated by en, e22, β31. One computes that dimG S = 9,
dim G'B = dimG S' = 8 and dimG ί 7 = 7; these, therefore, are the
dimensions of their components as well.

To show that ^//J is not contained in any of these four com-
ponents, it suffices by § 1 to show that Λi carries algebras which do
not deform into the rigid algebra dominating that component. Thus
^Yi is not a subset of ^'cm ='<^(S), the component carrying semi-
simple S, since only commutative algebras deform into S. On the
other hand, it is known that the algebra No can be deformed into U
(see [1] for the formula). Thus the variety ^4^ intersects the com-
ponent ^(U) nontrivially (that is, away from their common vertex)
and might perhaps be contained in ^(U). This possibility, and the
possibility that Λ^ is contained in the components C^(B) or ^{B'), is
ruled out by the following "nondeformation" result.

LEMMA 9a. Let k be any field. If v Φ 0, — 1, then Nv does not
deform into U, B or Br.

Proof. Assume first that iVv deforms into U; deformation into
B will be considered in (iii) below, (i) By Theorem 1 of [1], we may
suppose that the deformed algebra (Nu)t has a if-basis

Ui = al{xx + a2ίx2 + azixz (i = 1, 2)

and us = #3 with ahi e K such that the map ux —> en, u2 —> e22i u3 —> e12

gives a iί-algebra isomorphism (N»)t —> Uκ.
We shall construct an equivalent deformation in which a2ί= 0;

this will simplify the computations of (ii) below. We may write
an = a^il + . . -), α21 = a2t

r(l + •) in K = k((t)). We first claim
qφ r. For assume that q = r, and note that u[ = ux — a31xs is idem-
potent. Thus t-qu[*t-qu[ = t~2qu[. But a direct computation shows
that this product is of the form αxα2(l + v)x3 + (higher powers of t
with coefficients in Nu), a contradiction unless v = — 1. Without loss
then, q < r.

The promised equivalence can now be obtained as follows: let Φt
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denote the if-linear automorphism of the underlying i£-space of (Nu)t

given by Φτ\xλ) = x1 + a21a^x2, Φτ\x^ = xi9 Φϊ\x*) = α8. Because q < r,
(?t is of the form Φt(x) = x + (higher powers of t). Thus the multi-
plication (x, y) —• Φt(Φj1(x)*Φι{y)) gives a deformation of iVv equivalent
(see [2, p. 65]) to the * multiplication. Moreover with this equivalent
product the algebra (Nv)t admits the basis uu u2, u3 with a21 = 0 and
multiplication table listed above.

(ii) In this equivalent product one now observes that u^u3 = u3

implies x^x3 = a^ιx3, u3*uγ = 0 implies x3^xι = 0, ut idempotent im-
plies xλ*xx — ocTiXy and u2*u3 — 0 implies x2*x3 = — α12(α:11α22)~1cc3.

Using these, one has 0 = u2^u1 — a12x1 + ana22(vx3 + (higher powers
of t with coefficients in N»)). This must be contradictory unless
v = 0. Thus Nv cannot be deformed into U.

(iii) Now we show Nu cannot be deformed into B (nor, similarly,
into Bf). Exactly as in (i) we would have a basis for (Nu)t of the
form {Ui} with a21 = 0 and a if-algebra isomorphism (Nu)t —•> £ x given
by ux —> en, u2 —• e22, ̂ s —* β13. One now observes that all the conclusions
of (ii) hold verbatim in the present case, since the product u3*u2 is
not considered there. Thus the deformations are impossible as claimed,
and Theorem 9 is established.

REMARK. The Nu (v ^ 0 , - 1 ) are examples of semi-rigid alge-
bras, that is, algebras whose radicals cannot decrease in size under
deformation. See [1]. Deformation behavior on the component ^V^ of
W illustrates the fact that every finite-dimensional algebra deforms
into a semi-rigid algebra, but not necessarily into one which is rigid.
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