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MINIMAL URYSOHN SPACES

C. T. SCARBOROUGH

A topological space X is (1) £Γ(i), (2) H(iϊ), (3) R(ϊ), (4) jβ(ii)
if (1) Every open filter on X has nonvoid adherence, (2) Every
open filter on X with one-point adherence is convergent, (3)
Every regular filter on X has nonvoid adherence, (4) Every
regular filter on X with one point adherence is convergent.
These properties, which were investigated by Scarborough and
Stone in a recent paper, arose naturally from the study of
minimal Hausdorff, iJ-closed, minimal regular and iϋ-closed
spaces. This paper investigates similar properties for minimal
Urysohn and Urysohn closed spaces.

Urysohn filters are introduced and another characterization of
minimal Urysohn and Urysohn closed spaces is obtained. In connection
with product spaces, it is shown that in some sense open filters and
regular filters have more in common with each other than either has
with Urysohn filters, dispite the fact that Urysohn filters "lie between"
these first two types.

A topological space X is said to be Urysohn if every two distinct
points of X can be separated by disjoint closed neighborhoods. A
space (X, J7~) is said to be minimal Urysohn if J7~ is a Urysohn
topology on X and there is no strictly smaller Urysohn topology con-
tained in %$Γ. A space (X, J7~) is said to be Urysohn closed ([/-closed)
if ^ is a Urysohn topology and X is closed in every Urysohn space
in which it is embedded. Herrlich [5] has shown the existence of
noncompact minimal Urysohn spaces and also of [/-closed spaces which
are not minimal Urysohn.1 In what follows, we generalize the notions
of minimal Urysohn and [/-closed and extend them to spaces which
are not necessarily Urysohn (or even Hausdorff).

A filter base ^ on a space X is said to be an open filter if
each member of ^ is an open set. An open filter j ^ ~ is said to be
a Urysohn filter or a [/-filter if given any point x not in the adherence
of ^~, there exists a neighborhood U of x and an Fe^ such that
[/' n Ff = 0 {Af denotes the closure of the set .A). Using the same
techniques as in [1] or [3], we see that the following is true:

(1) A Urysohn space is [/-closed if and only if every [/-filter has
nonvoid adherence.

(2) A Urysohn space is minimal Urysohn if and only if every
[/-filter with one-point adherence converges to this point.

We say that a space X is a [/(i) space or is [/(i) if every [/-filter

1 The existence and characterizations of these spaces were also known to the author.
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on X has nonvoid adherence. We also say that a space X is a ?7(ii)
space or is [/(ii) if every [/-filter on X with one-point adherence con-
verges to this point. A space can be [/(ii) is two ways; it can satisfy
the condition [/(ii) vacuously or nonvacuously. Thus the statement
"X is [/(ii) vacuously" will mean that no [/-filter on X has a unique
adherent point, and the statement "X is [/(ii) nonvacuously" will mean
that X is U(ii) and also there is at least one [/-filter on X with one-
point adherence. This last requirement is certainly met if X is a non-
empty Urysohn space. Every minimal Urysohn space is [/-closed, and
by an argument analagous to that in [3, p. 98], it follows that a
space which is [/(ii) nonvacuously is also [/(i).

For an example of a countable T1 space which satisfies [/(ii) vacu-
ously but does not satisfy [/(i) see [7, Ex 2.2], and for an example of
a countable Tι space which satisfies [/(ii) nonvacuously, see [7, Ex 2.3].

If {Xa: a 6 A} is a family of spaces, we write πXa for the Cartesian
product of this family, and assume πXa is equipped with the product

topology. We also assume that no factor is empty. The notation and
definitions will be that of [7].

THEOREM 1. If X— πXa is [/(i), then each factor is [/(i).

This follows from the observation that the continuous image of
a [/(i) space is [/(i).

In particular, if πXa is [/-closed, then so is each Xa. It is unknown
whether the converse of the above theorem is true or not, even when
all the factors are [/-closed. However, in certain special cases we are
able to give an affirmative answer.

LEMMA 2. Let X be an H(ϊ) space and Y an arbitrary space.
If ^ is a U"filter on X x Y, then π2^ is a U-filter on Y.

If ygadπz^, then for each xeX, there exist neighborhoods Ux

and Vx of x and y respectively and an Fx e a?" such that

(Ux x V'Λ) Π Fx = 0 .

Since X is £Γ(i), there exist xl9 •• , H ; , G I such t h a t

U{UXk:l^k^n}z)X;

see [6, p. 132]. Thus

( X x Π{VXk: l^k^n})Π (f){FXk: 1 ̂  k ̂  n}) = 0 ,

and it follows from [7, 2.17] that

( Π { V X k : l ^ k ^ n } ) f ] ( π 2 f ) {FX]c: l ^ k £ n})' = 0 .
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We have produced a closed neighborhood n {V'Xk: 1 ^ k <: n) ofy which
fails to meet the closure of π2 Π {FX]c: 1 ^ k ^ n}; whence π2^ is a
17-filter.

LEMMA 3. Let X be an H(i) space and Y be an arbitrary space.
If ^ is an open filter on X x Y and if y e adK2j^~', then there exists
an xeX such that (x, y) e

The proof is essentially that of [7, 3.13] and is omitted.

THEOREM 4. If X is H(ϊ) and Y is U(ϊ), then X x Y is U(ϊ).

The proof follows immediately from Lemma 2 and 3.

COROLLARY 5. The product of a compact Hausdorff space (or
equivalently, a regular U-closed space) with a Ό-closed space is U-
closed.

We now consider the question as to whether theorems similar to
2.9 and 3.8 of [7] also hold for U(ii) spaces. In view of these theorems
and the fact that every regular filter is a J7-filter and every £7-filter
is an open filter, it might be conjectured that a corresponding theorem
is also valid for ί7(ii) spaces. The following theorem and example
completely resolve this question.

THEOREM 6. If X = πXa1 and X satisfies Z7(ii) vacuously, then
at least one Xa does so.

If no Xa satisfies ?7(ii) vacuously, then there exists a [/-filter
on each Xa with a unique adherent point xa. The product filter
is a [/"-filter on X with the unique adherent point πxa. This is a
contradiction.

Next we present an example of a product space Xx x X2 in which
X2 is J7(ii) vacuously while Xx x X2 is not Z7(ii) vacuously (it is not

EXAMPLE 7. Let I be the positive integers. Let Xx be the
Urysohn subspace of X (described in [3, p. 98]) consisting of the points
aih a where i, j e I.

We next describe X2. Let S be the set of all functions from I
into I. Let

X2 - K , b'ij9 c'iJf d'iS, el //: i, j e 1} U {α', V) ,

Ain = {a'ij9 Vi5\ j ^ n} and Bin = {c'ih df

id: j ^ n}
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where all the symbols a'ih k'iά, c
f

ijΊ d
f

ij9 e\,ίl, α', V are assumed to repre-
sent distinct points. If we let

& = {{<•, ViS), {c'id, d'iS}: i, jeI}U {{e'u //} U Ain U Bim: i, n,mel}

U {{a'} U U {Aifii): i ^ n}: ne I, f e S}

U {{6'} U U {Bif{i): i^n}:neI,feS} ,

then <S§ is a base for a topology on X2 which is Z7(ii) vacuously.
We will show that Xx x X2 is not ί/(ii) by exhibiting a [/-filter

on Xί x X2 with a unique adherent point to which it does not converge.
For each nel, let

Fn = U {{α<y} x {αj-y, 6{y}: i e i, i ^ ^} .

Clearly ^ = {Fn: ne 1} is an open filter on X1 x X2 with (α, a') as its
only point of adherence. Since Fl — Fn{j {(a, α')}, ^ is a [/-filter on
Xx x X2 with a unique adherent point to which it does not converge.
Thus X1 x X2 is not £7(ii), but is R(ii) vacuously by Theorem 3.8 of
[7] in view of the fact that every regular filter base is a [/-filter.

Because of the above example, it is not possible to use the same
technique as was employed in Theorem 3.9 of [7] to prove the follow-
ing conjecture: If X = πXa is J7(ii) nonvacuously, then each Xa is U7(ii)
nonvacuously. Using the same idea as in Theorem 6, it is easy to see
that some Xa must be Z7(ii), but the above conjecture as well as its
converse remain unsolved problems. Indeed, it is not known whether
or not the product of minimal Urysohn spaces is minimal Urysohn.
However, in certain special cases we were able to obtain the following
results.

THEOREM 8. If X xY is U(ύ) and if Y has a Urysohn filter
*& with a unique adherent 'point y, then X is U(ii).

Let ^ be a [/-filter on X with a unique adherent point x. Then
&~ x 2^ is a [/-filter o n l x Γ with a unique adherent point (x,y).
Since X x Y is [/(ii), J^ x & converges to (x, y); whence J^~ con-
verges to x. Thus X is [/(ii).

COROLLARY 9. If X — πXa is minimal Urysohn, then each factor
is minimal Urysohn.

Let Xb be a factor and write Y for the product of the rest. Then
Y is a nonempty Urysohn space (whenever we write πXaJ we assume
that each Xa Φ 0 ) . Let yeY and ^/Γ{y) be the open neighborhood
system of y. By the preceding theorem, Xb is [/(ii); thus Xb is minimal
Urysohn.
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THEOREM 10. If X is H(ii) nonvacuously and Y is £7(π), then
X xY is J7(ii).

Let &~ b e a [/-filter on 1 x 7 with a unique adherent point
(x, y). By Lemma 2, π2^ is a ϊ7-filter on Y and by Lemma 3, /̂ is
the only adherent point of π2^. Thus π2j?

r converges to y. If
weadπ1^"', then (w,y)ead^r, so w — x. Hence π1%^~ is an open
filter on an iϊ(ii) space with a unique adherent point x to which it
must converge. Thus J^ converges to (x, y), so X x Y is Ϊ7(ii).

COROLLARY 11. If X is compact Hausdorff and Y is minimal
Urysohnf then X x Y is minimal Urysohn.

The proof is immediate from the preceding theorem.
Next we show that there are large numbers of Z7-closed spaces

which are not minimal Urysohn and also large numbers of minimal
Urysohn spaces which are not compact. Corresponding theorems for
the Hausdorff and regular cases are found in [7].

THEOREM 12. There exist U-closed spaces of every infinite cardi-
nality which are not minimal Urysohn.

Let X1 be the Urysohn subspace of X (described in [3, p. 98])
consisting of the points aii9 cif a, i, j e I. XL is a countable absolutely
closed Urysohn space which is not minimal Urysohn. Thus Xι is in-
closed. Given an infinite cardinal K, let Z be a compact Hausdorff
space of cardinality if—for instance let Z be the one point compacti-
fication of a discrete space of cardinal K. By Corollary 5, Xλ x Z is
[/-closed and obviously has cardinal K. By Corollary 9, Xx x Z is
not minimal Urysohn, although this is easy to verify directly.

THEOREM 13. There exist minimal Urysohn spaces of every un-
countably infinite cardinality which are not compact.

By Corollary 11 and the proof of Theorem 12 it suffices to exhibit
a noncompact minimal Urysohn space with cardinality equal to the
first uncountable cardinal. Such a space is found in [5, p. 289],

Every countable ϋJ-closed space is compact [7, p. 137], so every
countable minimal regular space is compact. There exist countable
absolutely closed spaces which are not minimal Hausdorff (see the
proof of 12) and also noncompact minimal Hausdorff spaces which are
countable; see [3, p. 98]. Do there exist noncompact minimal Urysohn
spaces which are countable?
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Berri [4] has shown that every minimal Hausdorff space which is
countable has an isolated point. The same reasoning also shows that
every countable absolutely closed space has an isolated point. With
trivial modifications of this proof the following theorem results.

THEOREM 14. Every countable U-closed space has an isolated
point.

COROLLARY 15. Every countable minimal Urysohn space has an
isolated point.

It is well known [6] that absolutely closed plus semiregular is
equivalent to minimal Hausdorff. The relation of semiregularity to
the corresponding properties in the Urysohn case is given in the
following.

THEOREM 16. A minimal Urysohn space X is semiregular.

If X is not semiregular at some point x e X, then

^ {(NY:Ne^r(x)}

is a £7-filter on X having a unique adherent point to which it does
not converge. This is a contradiction.

COROLLARY 17. Every minimal Urysohn space can be embedded
densely in a minimal Hausdorff space.

The result follows immediately from the fact that a space is semi-
regular if and only if it can be densely embedded in a minimal Haus-
dorff space; see [2].

It is not true that semiregularity plus [/-closure implies minimal
Urysohn as the following example shows.

EXAMPLE 18. Let X be the subspace consisting of {a} U Rt U R2 in
the notation of [5, Ex 4]. Then X is [/-closed and semiregular but
not minimal Urysohn.
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