SIMULTANEOUS INTERPOLATION IN H_{2}, II

J. T. Rosenbaum

Let $\left\{z_{n}\right\}$ denote a fixed sequence of complex numbers in the unit disc satisfying $\left(1-\left|z_{n+1}\right|^{2}\right) /\left(1-\left|z^{n}\right|^{2}\right) \leqq \delta<1$ for some δ. Let M be a nonnegative integer, and let m be generic for integers between 0 and M inclusive. We define the linear functionals $L_{n}^{[m]}$ on H_{2} by $L_{n}^{[m]} f=f^{(m)}\left(z_{n}\right)$. Given $M+1$ sequences $w^{[0]}, \cdots, w^{[M]}$ in l_{2}, can there be found a function f in H_{2} which solves the simultaneous weighted interpolation problem

$$
f^{(m)}\left(z_{n}\right)=\left(w^{[m]}\right)_{n}\left\|L_{n}^{[m]}\right\| ?
$$

Shapiro and Shields considered this problem for $M=0$. Their results were generalized by the author to the case $M=1$. The purpose of this paper is to extend this generalization to arbitrary M.

The technique which we used for $M=1$ would suggest that to proceed to arbitrary M, we should let $w^{[0]}, \cdots, w^{[M]}$ be prescribed in l_{2} and then try to find f_{0}, \cdots, f_{M} in H_{2} satisfying

$$
\left\{\begin{array}{l}
f_{m}^{(m)}\left(z_{n}\right)=\left(w^{[m]}\right)_{n}\left\|L_{n}{ }^{[m]}\right\| \tag{A}\\
f_{m}^{(i)}\left(z_{n}\right)=0 \quad(0 \leqq i \leqq M, i \neq m)
\end{array}\right.
$$

Then, $f_{0}+\cdots+f_{M}$ could serve as the desired interpolating function. However, the computational difficulties which would be involved in such a program can be glimpsed even in the case $M=1$. We found the following modification to be effective.

The work of Shapiro and Shields assures us that we can interpolate when $M=0$. Fixing M and assuming the result for lesser values, let $w^{[0]}, \cdots, w^{[M]}$ be chosen from l_{2}. The induction hypothesis furnishes us with a function f_{M-1} corresponding to $w^{[0]}, \cdots, w^{[M-1]}$. We would like to alter f_{M-1} by finding a function g_{M-1} in H_{2} for which the sum $f_{M} \equiv f_{M-1}+g_{M-1}$, together with its first M derivatives, assumes appropriate values on $\left\{z_{n}\right\}$. This is equivalent to demanding that

$$
\left\{\begin{array}{l}
g_{M-1}^{(M)}\left(z_{n}\right)=\left[\left(w^{[M]}\right)_{n}-\left\|L_{n}^{[M]}\right\|^{-1} f_{M-1}^{[M)}\left(z_{n}\right)\right]\left\|L_{n}^{[M]}\right\| \\
g_{M-1}^{\prime m)}\left(z_{n}\right)=0 \quad(m<M) .
\end{array}\right.
$$

By proving that the quantity in brackets is in l_{2}, we reduce the problem to that of finding a function g, once m and $w^{[m]}$ have been prescribed, which satisfies

$$
\left\{\begin{array}{l}
g^{(m)}\left(z_{n}\right)=\left(w^{[m]}\right)_{n}\left\|L_{n}^{[m]}\right\| \tag{B}\\
g^{(i)}\left(z_{n}\right)=0 \quad(i<m) .
\end{array}\right.
$$

(B) is simpler to solve than (A) because the restriction $i \neq m$ has been changed to $i<m$. This accounts for why, although we now deal with abitrary M, our work is even less computational than when we only treated the case $M=1$.

2. Preliminary results.

2.1 In [1], Bari proved the following: Let $\left\{x_{n}\right\}$ be a sequence of elements in a separable Hilbert space H. Then $\left\{\left(x, x_{n}\right)\right\}$ belongs to l_{2} for all x in H if and only if the infinite matrix with elements (x_{i}, x_{j}) determines a bounded operator on l_{2}.
2.2 In [3], Schur showed that for any infinite matrix ($a_{i j}$), if $\sum_{i}\left|\alpha_{i j}\right| \leqq N_{1}$ for all j, and $\sum_{j}\left|\alpha_{i j}\right| \leqq N_{2}$ for all i, then

$$
\left|\Sigma_{i j} a_{i j} x_{i} \bar{x}_{j}\right| \leqq\left(N_{1} N_{2}\right)^{1 / 2} \Sigma_{i}\left|x_{i}\right|^{2}
$$

2.3 Let δ_{n} denote $\left(1-\left|z_{n}\right|^{2}\right)^{-1 / 2}$. We say that $\left\{z_{n}\right\}$ approaches the boundary exponentially, provided that

$$
\delta_{n} / \delta_{n+1} \leqq \delta<1 \quad(n=1,2, \cdots)
$$

for some δ.
We say that $\left\{z_{n}\right\}$ is a Carleson sequence if

$$
\prod_{k \neq n}\left|\frac{z_{k}-z_{n}}{1-z_{n} \bar{z}_{k}}\right|>\sigma>0 \quad(n=1,2, \cdots)
$$

for some σ.
If a sequence approaches the boundary exponentially then it is a Carleson sequence (see [4]).
2.4 The functionals $L_{n}^{[m]}$ are continuous with Riesz representatives

$$
K_{n}^{[m]}(z)=\frac{m!z^{m}}{\left(1-\bar{z}_{n} z\right)^{m+1}}
$$

Their norms satisfy $\delta_{n}^{2 m+1} \leqq\left\|L_{n}^{[m]}\right\|=0\left(\delta_{n}^{2 m+1}\right)$ (for M fixed).
This is suggested by applying $\partial^{m} / \partial z_{n}^{m}$ to both sides of

$$
f\left(z_{n}\right)=\frac{1}{2 \pi i} \lim _{r \uparrow 1} \oint \frac{f(z)}{z} \frac{d z}{1-z_{n} \bar{z}} \quad(|z|=r)
$$

and then formally bringing the operator past the limit and the integral sign. The result is more readily established by hindsight by finding the Taylor expansion of $m!\left(1-\bar{z}_{n} z\right)^{-m-1}$ and then raising the exponents by m to get the expansion of $K_{n}^{[m]}$. The identity

$$
\left(\Sigma a_{n} z^{n}, \Sigma b_{n} z^{n}\right)=\Sigma a_{n} \bar{b}_{n}
$$

(for functions in H_{2}) then yields

$$
\left(f, K_{n}^{[m]}\right)=f^{(m)}\left(z_{n}\right) .
$$

The norm can be computed easily by noting that

$$
\left\|K_{n}^{[m]}\right\|^{2}=\left(K_{n}^{[m]}, K_{n}^{[m]}\right)=\left[\frac{d^{m}}{d z^{m}} K_{n}^{[m]}(z)\right]_{z=z_{n}}
$$

3. Simultaneous interpolation. We will prove that if $\left\{z_{n}\right\}$ approaches the boundary exponentially, then simultaneous weighted interpolation can be done with an H_{2} function and its first M derivatives for M arbitrary.

Theorem 1. If $\left\{z_{n}\right\}$ approaches the boundary exponentially and if f is in H_{2} then

$$
\left.f^{(m)}\left(z_{n}\right) /\left\|K_{n}^{[m]}\right\|\right\}
$$

is in l_{2} for arbitrary m.
Proof. By a method similar to that used for the computation of $\left\|K_{n}^{[m]}\right\|$, we find that $\left|\left(K_{n}^{[m]}, K_{p}^{[m]}\right)\right|=0\left(\left|1-\bar{z}_{n} z_{p}\right|^{-2 m-1}\right)$. Let $k_{n}^{[m]}$ denote the normalization of $K_{n}^{[m]}$. Since $1 /\left|1-\bar{z}_{n} z_{p}\right|$ is less than both $2 \delta_{n}^{2}$ and $2 \delta_{p}^{2}$ thus $\left|\left(k_{n}^{[m]}, k_{p}^{[m]}\right)\right|$ is dominated by both $\left(\delta_{n} / \delta_{p}\right)^{2 m+1}$ and $\left(\delta_{p} / \delta_{n}\right)^{2 m+1}$ and thus by $\left(\delta^{2 m+1}\right)^{|n-p|}$. This, together with Schur's result, allows us to conclude that the matrix whose elements are ($k_{n}^{[m]}, k_{p}^{[m]}$) determines a bounded operator in l_{2}. Bari's theorem then applies to complete the proof.

Theorem 2. If $\left\{z_{n}\right\}$ approaches the boundary exponentially and if M is any nonnegative integer then, corresponding to any choice of $M+1$ sequences $w^{[0]}, \cdots, w^{[M]}$ in l_{2}, there can be found an f in H_{2} for which

$$
f^{(m)}\left(z_{n}\right)=\left(w^{[m]}\right)_{n}\left\|L_{n}^{[m]}\right\| \quad(0 \leqq m \leqq M ; n=1,2, \cdots) .
$$

Proof. The proof is by induction on M. As we've noted, the case $M=0$ has been treated by Shapiro anc Shields. Let $M>0$ and assume the result for lesser values. If $w^{[0]}, \cdots, w^{[M]}$ are in l_{2}, let f_{M-1} be a function in H_{2} corresponding to $w^{[0]}, \cdots, w^{[M-1]}$. We let $B(z)$ denote the Blaschke product for $\left\{z_{n}\right\}$ and let $B_{n}(z)$ denote $B(z)$ with the factor $\bar{z}_{n}\left(z-z_{n}\right) / z_{n}\left(1-\bar{z}_{n} z\right)$ deleted. By Theorem 1 ,

$$
\left(w^{\prime}\right)_{n} \equiv\left(w^{[M]}\right)_{n}-\left\|L_{n}^{[M]}\right\|^{-1} f_{M-1}^{[M]}\left(z_{n}\right)
$$

determines a sequence in l_{2}. Then, since $\left\{z_{n}\right\}$ is a Carleson sequence,

$$
\left(w^{\prime \prime}\right)_{n} \equiv \frac{\left(w^{\prime}\right)_{n}\left\|L_{n}^{[M]}\right\|\left|z_{n}\right|^{M M}}{B_{n}^{M}\left(z_{n}\right) \delta_{n}^{2 M+1} M!}
$$

also determines a sequence in l_{2}. Again using the results of Shapiro and Shields, we can find a function φ in H_{2} for which $\varphi\left(z_{n}\right)=\left(w^{\prime \prime}\right)_{n} \delta_{n}$. We define f_{M} to be $f_{M-1}+B^{M} \varphi$. Clearly, f_{M} is in H_{2} and a simple computation shows that it solves our interpolation problem.

References

1. N. Bari, Biorthogonal systems and bases in Hilbert space, Uceniye Zapinski, Moskovskii Ordena Lenina Gosurdarstvennyi Univeritet imeni M. V. Lomonosova, vol. 148 Matematika 4 (1951), 69-107 (Russian); Math. Reviews 14 (1953), 289.
2. J. T. Rosenbaum, Simultaneous interpolation in H^{2}, Michigan Math. J. 14 (1967), 65-70.
3. I. Schur, Bermerkungen zur Theorie der beschrankten Bilinearformen, Angewandte Mathematik 140 (1911), 1-28.
4. H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions Amer. J. Math. 83 (1961), 513-532.
5. A. E. Taylor, Introduction to Functional Analysis, Wiley, New York, 1958.

Received July 24, 1967.

