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SEQUENCES OF CONTRACTIONS AND FIXED POINTS

SAM B. NADLER, JR.

Given a convergent sequence of contraction mappings, the
convergence of the sequence of their fixed points is inves-
tigated in § 1 of this paper. The results obtained lead to a
necessary and sufficient condition in order that a separable or
a reflexive Banach space be finite dimensional. An applica-
tion to differential equations is also included.

In § 2 we consider mappings defined on the cartesian pro-
duct of two metric spaces which are contraction mappings in
one variable or in each variable separately. Using some of
the results of § 1 we prove that, with certain restrictions,
such mappings have fixed point.

Let (X, d) be a metric space. A function A: X —+ X is said to be
a contraction mapping if and only if there is a real number α,
0 ^ a < 1, such that d(A(x), A(y)) ̂  ad(x, y) for all x,yeX. The
contraction mapping principle of Banach guarantees a unique fixed
point of each contraction mapping of a complete metric space into it-
self. A natural question to ask is the following: In a complete metric
space does the convergence of a sequence of contraction mappings to
a contraction mapping Ao imply the convergence of the sequence of
their fixed points to the fixed point of Ao? A partial answer to this
question appears as Theorem 1.2 of [1, p. 6] ("Let E be a complete
metric space, and let T and Tn(n = 1, 2, •) be contraction mappings
of E into itself with the same Lipschitz constant K < 1, and with
fixed points u and un respectively. Suppose that lim Tn(x) = T(x) for

n—>oo

every xeE. Then lim un = u.") The restriction in this theorem, that
n—>oo

all the contraction mappings have the "same Lipschitz constant K < 1",
is very strong; for one can easily construct a sequence of contraction
mappings from the reals into the reals which converges uniformly to
the zero mapping but whose Lipschitz constants tend to one.

In the next section two types of convergence of contraction map-
pings are considered uniform convergence and pointwise convergence.
The question posed above is answered affirmatively in the case of uni-
form convergence and in the case of pointwise convergence on locally
compact spaces.

1* Continuity of fixed points* We prove the following two
main theorems:

THEOREM 1. Let (X,d) be a metric space, let Ac.X—^X be a
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function with at least one fixed point a{ for each i = 1, 2, , and
let Ao: X-+X be a contraction mapping with fixed point α0. If the
sequence {AJΓ=1 converges uniformly to Ao, then the sequence {αjΓ î
converges to α0.

THEOREM 2. Let (X, d) be a locally compact metric space, let
As. X—> X be a contraction mapping with fixed point a{ for each i —
1,2, , and let Ao: X—* X be a contraction mapping with fixed point
α0. If the sequence {Ai}f=1 converges pointwise to Ao, then the sequence
{ai}Z=ι converges to α0.

Proof of Theorem 1. Let ε > 0 and choose a natural number N
such that i ^ N implies d(Ai(x), A0(x)) < ε(l — a0) for all x e X, where
a0 < 1 is a Lipschitz constant for Ao. Then, if

i :> N, d(a,i, α0) = d(Ai(a,i), A0(a0)) <£ d(Ai(a^, A0(α<))

,i), A0(a0)) < e(l - a0) + M ( ^ , α0) .

Hence, d(ai9 a0) < ε for all i ^ N. This proves that {αi}Γ=i converges
to α0 and completes the proof of Theorem 1.

Proof of Theorem 2. Let ε > 0 and assume ε is sufficiently small
so that K(aQ, ε) = {x e X \ d(a0, x) ^ ε} is a compact subset of X. Then,
since {A<}r=i is an equicontinuous sequence of functions converging
pointwise to Ao and since K(a0, ε) is compact, the sequence {AJJLi con-
verges uniformly on K(aOJ e) to Ao. Choose N such that if i ^ N,
then d(Ai(x), A0(x)) < (1 - ao)ε for all x e K(a0, ε), where a0 < 1 is a
Lipschitz constant for Ao. Then, ifi^>N and x G iΓ(α0, s), d(Ai(a;), α0)
^ dίiliίaj), A0(x)) + d(A0(ίc), A0(α0)) < (1 - ao)ε + M ( ^ , aQ) ^ (1 - α:0)ε +
αoε = ε. This proves that if i ^ N, then A^ maps iΓ(α0, ε) into itself.
Letting Bt be the restriction of A< to iΓ(<Xo, £) for each i ^ N we see
that each f̂  is a contraction mapping of K(a0, ε) into itself. Since
K(a0, ε) is a complete metric space, Bι has a fixed point for each i ^> N
which must, from the definition of B{ and the fact that A< has only
one fixed point, be a{. Hence, a{ G K(a0, ε) for each i ^ N. It follows
that the sequence {αJΓ=1 of fixed points converges to α0. This com-
pletes the proof of Theorem 2.

We now give an example which shows that, in non-locally compact
spaces, a sequence of contraction mappings may converge pointwise
to a contraction mapping without the sequence of their fixed points
converging. In fact, the example is a construction in any infinite dimen-
sional separable or reflexive Banach space of a sequence of contraction
mappings which converges pointwise to the zero mapping but such
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that the sequence of their fixed points has no convergent subsequence.
The following lemma will be useful in this example.

LEMMA. Let (X,d) be a metric space, let A{\ X —>X be a con-
traction mapping with fixed point aι for each i — 1, 2, , and let
AQ: X—>X be a contraction mapping with fixed point α0. If the
sequence {A^X=ι converges pointwise to Ao and if a subsequence {α, .}7-i
of {α;}Γ=i converges to a point xQ e X, then x0 — α0.

Proof. Let ε > 0. Then there is a positive integer N such that
j ^ N implies d(aij9 x0) < (ε/2) and d(Ai.(x0), A0(x0)) < (ε/2). Therefore,
d(aij9 A0(x0)) = d(Ai.(ai.), A0(x0)) ^ d(A{.(α,.), A,.(x0)) + d(Ai.(x0), A0(x0)) <
d(ai., xQ) + d(Ai.(x0), A0(x0)) < ε for all j ^ N. This proves that the
sequence {α l^i converges to A0(x0). Hence, A0(x0) = xQ and it follows
that x0 = α0.

EXAMPLE 1. Let B be an infinite dimensional separable or re-
flexive Banach space. Let B* be the first conjugate of B and let T =
{/eJ3*| | | / | | ^ 1 } . Then T is weak* sequentially compact. In the
separable case this follows from the metrizability of the weak* topo-
logy for Γ[2, p. 426]; in the reflexive case the weak compactness of
T implies, by the Eberlein-Smulian Theorem [2, p. 430], that T is
weakly sequentially compact and, therefore, weak* sequentially com-
pact. Since B is infinite dimensional, there is a sequence {̂ Λ}"=1 of
linear functionals in T which has no norm convergent subsequence.
Let {gk$Z=i be a weak* convergent subsequence of {gk}ΐ^ and let g be
the weak* limit of {gk.}?=1. For each i = 1,2, ••• let

f =
\gki-g\

The sequence {/JΓ=i is weak* convergent to the zero linear functional
and | |/, || = 1 for all i = 1, 2, .

For each i = 1, 2, , let a{ eB such that 11 α< 11 = 1 and
> 1 - (1/i2). For each i = 1, 2, . . . , define A,: B-+B by

for all x e B. Since

\A(χ)-My)\
Λ(α<) ~ \ i
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for all x and y in J5, A< is a contraction mapping for each ΐ = 1, 2, .
Since the sequence {/<}Γ=i is weak* convergent to the zero linear func-
tional and the sequence {/»(<&<)}£=! is bounded away from zero, it fol-
lows that the sequence {Ai}T=i converges pointwise to the zero mapping.
It is easy to verify that, for each i = 1, 2, , a{ is the unique fixed
point of Aim Since || a{ || = 1 for all i = 1, 2, , it follows from the
lemma that the sequence {αJΓ=i of fixed points has no convergent
subsequence. Hence, {AJJLi is a sequence of contraction mappings
which converges pointwise to the zero mapping and such that the
sequence {αJΓ=i of fixed points has no convergent subsequence. This
example may be slightly modified so that the sequence of fixed points
is unbounded [5]. Also it is clear that this type of construction may
be done in any infinite dimensional Banach space in which the unit
ball of the first conjugate is weak* sequentially compact.

The next theorem is a characterization of those separable Banach
spaces which are finite dimensional in terms of pointwise convergent
sequences of contraction mappings and the convergence of their fixed
points.

THEOREM 3. A separable or reflexive Banach space B is finite
dimensional if and only if whenever a sequence of contraction map-
pings of B into B converges pointwise to a contraction mapping Ao,
then the sequence of their fixed points converges to the fixed point
of Ao.

Proof. Since a finite dimensional Banach space is locally compact,
half of the theorem follows from Theorem 2. The proof of the other
half of the theorem is obtained by supposing B is not finite dimen-
sional and applying Example 1.

It is not known by the author whether or not the statement of
Theorem 3 remains valid if the condition, "separable or reflexive," is
removed.

As an application of Theorem 2 we give the following proposition
due to Professor J. R. Dorr oh.

PROPOSITION. Let D be an open subset of the plane, let (α, b) e D,
let M > 0 be a real number, and let {iQΠo be a bounded sequence of
strictly positive real numbrs. For each i = 0,1, 2, , let f{ be a real
valued continuous function defined on D such that \fi(x,y)\ ^ M for
all (x, y)eD and | /,(&, y) - fix, z) | g Ki | y - z \ for all (x, y), (x, z) e D.
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Suppose also that the sequence {/JΓ=i converges pointwise on D to /0.
Let h be such that 0 < k{ h < 1 for alii = 0,1, 2, , and such that the
s e t W — {(x, y)\\x — a\ ^ h a n d \y — b\ <^ M\x — a\} i s a s u b s e t of
D. Then the sequence {y%)™=ι converges uniformly on / = [a — h, a + h]
to y0 where, for each i = 0,1, 2, , y{ is the unique solution on I
of the initial value problem

V(a) = b

Proof. Let X be the set of all real valued functions defined on
I with graph lying in W and with Lipschitz constant less than or
equal to M. Then X, with the supremum metric p, is a compact
metric space. For each i — 0,1, 2, and each g e X, define AXg) at

fi(t, g(t))dt. It is easy to verify that,
a

for each ί = 0,1, 2, , A{ is a contraction mapping from X into X
with Lipschitz constant less than or equal to K{*h. For each #eX,
xel, and ΐ = 1, 2, ,

- [A0(g)](x) = ("[/,(*, 0(*)) - /o(ί,

Since the sequence of integrands converges pointwise to zero and is
uniformly bounded by 2M, the Lebesgue bounded convergence theorem
guarantees that the sequence of integrals goes to zero as i tends to
infinity. Therefore, the sequence {A^g)}?^ converges pointwise on /
to A0(g). This implies, by the equicontinuity of {A^g)}"^ on the com-
pact set I, that the sequence {A^g)}?^ converges uniformly on / to
A0(g). Hence, the sequence {AJ Li converges pointwise on I to i 0 .
By Theorem 2 the sequence {i/jΓU, where y{ is the unique fixed point
of Ai for each i = 1,2, •••, converges to the fixed point y0 of Ao.
The result follows since these fixed points are the unique solutions of
the initial value problem.

The restriction in this proposition that each of the mappings f19

f2, satisfy the type of Lipschitz condition given above can be
significantly weakened. This and related matters will be considered
for a later article.

2* A fixed point theorem for product spaces* A number of
mathematicians have investigated the problem of determining what
kinds of mappings defined on the cartesian product of two spaces have
fixed points (for an historical survey see [6]). In 1930, K. Kuratowski
asked [3] if the cartesian product of two Peano continua, each with
the fixed point property, had the fixed point property. Recently, W.
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Lopez [4] gave an example of a finite polyhedron with the fixed point
property whose cartesian product with the unit interval failed to have
the fixed point property.

Throughout this section (X, dx) and (Y, dγ) will be metric spaces
and (X x Y, d) will denote their cartesian product with the product
metric d given by d((xu y,), (x2, y2)) = [(dx(xu x2))2 + (dr(yί9 y2))ψ2 for
all (x19 2/i), (x2, y2) e X x Y. A function /: X x Y—*Xx Y is said to
be a contraction mapping in the first variable if and only if for each
ye Y there is a real number a(y), 0 ^ a(y) < 1, such that d(f(xu y)9

f(x2, y)) < a(y)d((xlf y), (x2, y)) for all x19 x2 e x. We define a contrac-
tion mapping in the second variable in an analogous fashion and we
say that a function is a contraction mapping in each variable sepa-
rately provided it is a contraction mapping in the first variable and
in the second variable.

It is worthwhile noting that, even if (X, dx) and (Y, dγ) are com-
pact, there may be mappings from X x Y into X x Y which are
contraction mappings in each variable separately but which are not
themselves contraction mappings. The function /: [0,1] x [0,1]—* [0,1]
x [0,1] given by f(x, y) = {{x + y)/2, (x + y)/2} for all (x, y) e [0,1] x [0,1]
is an example of such a mapping.

THEOREM 4. Let (X,dx) be a complete metric space, let (Y,dγ)
be a metric space with the fixed point property, and let f be a func-
tion from X x Y into X x Y.

(1) If f is uniformly continuous on X x Y and a contraction
mapping in the first variable, then f has a fixed point.

(2) // (X, dx) is locally compact and f is continuous on X x Y
and a contraction mapping in the first variable, then f has a fixed
point.

Proof. W e p r o v e (1) a n d (2) s i m u l t a n e o u s l y . ItyeY, t h e n l e t
f y : X - + X b e d e f i n e d b y fy(x) = π i o f(χy y) f o r a l l x e X w h e r e π ι i s
the natural projection of X x Y onto X. For each y e Y, fy is a con-
traction mapping of X into X and, therefore, has one and only one
fixed point. Let F: Y—>X be given by F(y) is the unique fixed point
of fy. Now let yQe Y and let {i/jjli be a sequence of points of Y
which converges to y0. Under the assumption of 1, the sequence
{ΛJili converges uniformly to fVQ and hence, by Theorem 1, the
sequence {F(yi)}?=1 converges to F(y0). Under the assumptions of 2,
we may apply Theorem 2 to conclude that the sequence {Fiy^Z^ con-
verges to F(yQ). Hence, in either case, this proves that F is continu-
ous on Y. Next let G: Y—•> Y be the continuous function defined by
G(y) = π2of(F(y), y) for each yeY where π2 is the natural projection
of X x Y onto Y. Since Y has the fixed point property, there is a
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point peY such that G(p) = p. It follows that (F(p),p) is a fixed
point of /, which proves Theorem 4.

A special class of functions satisfying the conditions of (1) are
Lipschitz functions which are contraction mappings in the first varia-
ble. Theorem 4, therefore, gives a class of Lipschitz mappings of
X x Y into X x Y which have fixed points. Along these lines we
have the following:

COROLLARY. Let (X,dx) be a complete metric space and let (Y,
dγ) be a metric space with the fixed point property. If f: X x Y —>
X x Y is a contraction mapping in each variable separately, then f
has a fixed point.

It may seem that the type of restriction placed on / in the corol-
lary above would enable us to replace the condition "(Y, dγ) has the
fixed point property" by the condition "(Y,dγ) is complete." However,
the function /: R1 x R1 —> R1 x Rι (where R1 denotes the real numbers)
defined by f(x, y) = {(x + y)/2 + 1, (x + y)β + 1)} for all (x, y) e Rι x
R1 shows that this is not the case. For it is easy to see that / is a
contraction mapping in each variable separately and has no fixed point.

REMARK: It is clear from the proof of Theorem 4 that less
restrictive topological conditions could have been assumed about Y (for
example, in part 2, Y need only be first axiom with the fixed point
property).

The author wishes to express his appreciation to the referee for
his valuable suggestions concerning the material in this paper.
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