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AN EXTENDED FORM OF THE
MEAN-ERGODIC THEOREM

LynN C. KurTz AND DoN H. TUCKER

Suppose X is a reflexive Banach space and V is a con-
tinuous linear operator in X such that || V*|| < M for some
M(n=0,1,2,...). If N is the null space of I— V and R is
the closure of the range of I— V, then the mean-ergodic
theorem states that

limLE VA oo & Vi
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=P,

where P is the projection associated with N and R; the con-
vergence is in the norm of X. This is pointwise C,-summability
of the sequence {V*};_, to P, and it suggests a similar theorem
for more general Hausdorff summability methods. The pur-
pose of this note is to demonstrate a wide class of operator-
valued Hausdorff summability methods which contain the

oo

sequence {V*};_, in their wirkfelder and sum it to certain
transforms of the projection operator P, This result shows
much more clearly the sense in which convergence actually
has meaning for such a sequence {V*};_,.

Denote by C(X) the space of X-valued continuous functions on
[0,1] and by T, the bounded linear transformation from C(X) into X

given by T\(f) = S f(®)dt. The mean-ergodic theorem states that

T<§0< " )(t"(l _ gk w) ——— T(P-2).

In this setting, the main theorem of this paper states a much
stronger type of convergence; namely, that for any bounded linear
operator T from C(X) into a Banach space Y such that the generat-
ing function for T is continuous at 0 and 1, it is true that

T(}”;(Z’)tk(l - t)""‘V"-x) . T(Pw).
k=0 n—ro0

In general one cannot expect much in the way of further relaxa-
tions on the operators T, i.e., on the functions which generate such
operators. For example if the condition of continuity at 1 is removed,
then this allows a generating function K(t) =0 for ¢t <1, K1) =1
and this generates the Hausdorff method corresponding to ordinary
convergence. In general the sequence {V*.x} does not converge.

A nice presentation of the mean ergodic theorem as stated above
is to be found in Lorch [2, pp. 54-56]. Suppose Y is a Banach space
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and p = {4}, is a sequence of elements of B[X, Y| such that the
Hausdorff method H = pyto generated by x is regular relative to some
LeB[X,Y]. (See [1] for notation and terminology. Reference 8 in
[1] is reference [3] of this paper.) It follows from [1] that there
exists a function K on [0,1] with values in B*[X, Y] such that K
satisfies the Gowurin w-property,

K0)=0,K1) = L and s, — SldK(t)-t" for m=0,1,2, -
0

THEOREM. If K is continuwous at t = 0 and ¢t = 1, then {V¥ir,
18 pointwise H-summable to LP, i.e., H{V"}-x converges in the norm
of Y to LPx for each x¢e X.

The essential ingredient of the proof of the theorem is the follow-
ing lemma,

LEMMA. If {si}r=s @S a bounded sequence of elements of a linear
normed space S and 0 < a =t b <1, then
\

Proof of the lemma.' Suppose ||s,||=< N’ for £=0,1,2, ...
then set

i(g)t’c(l — )" (8K — Sita)

k=0

converges uniformly to zero for tela, bl.

a0 =51 )ra - 06 - )
=E[(F)ra o= (2 yJema— o
+ (1 - t)nso — 1"Sp4s
2 A VN R .l—t]
=5 (% Jra - o1 n—k+1 &t I°
-+ (1 - t)"so — "8yt
P
— L S k n—r n n+1 _4n
- té( e - —i 18,00 -
n n+1
r_ k. _n
1 < k n—k| n n + 1 n |
1Al = 5| 5 (3 e - o) —3 i)+t 8unl
n n+1

N

1 The proof presented here is incorrect. See part 2 for a corrected proof.
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where 0 < a £t <b <1, and hence

k n
t —
14 s =5 (e gl
t k=0 1_& "
n n+1

Let f.(z, t) be given by

Fulw, ) = @ = t-—

nl‘/<l— n1>

and C,(t) by
C.(t) = %Bn[fnw, 1.,

where B, denotes the n-th Bernstein polynomial. The above inequality
may now be written

1A.@lls = N'[C.()| + t"-N’

and the second term converges uniformly to zero for ¢¢|a, b].

The first term is treated as follows. By a direct calculation it
can be shown that for each xz¢|0, b], the collection {f,(z,¢)} is equi-
uniformly continuous in ¢ for ¢ € [0, d], that is to say, if ¢ > 0, then
there exists ¢ > 0 such that | f,.(z, s) — f.(x, ¢)| < ¢/2 for all s,te]0, d]
such that |s — t| < 0 and for all =.

Consider a fixed ¢t€[0,b] and set A = {k:|k/n — t| < 6} and B =
{0,1, ---,n} — A. Then

&
=@+ 3| (3 )ra - j eI £, )
) B 1_ ﬁ
e
<V k i, & _ &
s=E(Rra-og =3
Set @ = max,q, <, fo(2, ) for » =0,1,2, --. and the second term

can be treated as follows:

W\ __ f\n—k (k _ nt)z k n—Fk -
> s2@3(} Jra - oot o 2322< YL = £ — mty
which, as is well known, converges uniformly to zero for te[0,1].
Hence, there exists an integer N, such that 3, < ¢/2 for n > N,
and further such that |B,[f.(z,t)] — f.(x,t)| <& for n > N, both
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inequalities holding uniformly for 0 < ¢ < b. Collecting all these items
together yields

=0

lim C,(t) =

n—oo

1|t —t]
t 11—t

uniformly for ¢e€[a, b], and hence || 4,(¢)||s — 0 uniformly on [a, b].

Proof of the theorem. Let

T, = HAVr, = 3 (}’j)m—wmk - S:dK(t)-[ﬁ‘,<Z>t"(1—t)"""V"] .

k=0 k=0

Since N, R is a complementary pair in X, it is sufficient to inves-
tigate the behavior of T, on each of these sets.
Suppose fe N, i.e., Vf = f, then

7.f = | ako-| S (7 )ea-tr-+ver| = {ako [ 5 (7 )ea-o—)

=0 k=0

= | dK@®)-f = [KQ) - KOIf = Lf = LPf .

Now suppose fe R and ¢ > 0, then there exists g and % such that
f=9— Vg+ h where ||| <e¢/4[l + W K]|M. For this f,

n

7,7 =\ a3 () - or1vg — Viig]
+ gldK(t)-i (F)ra—o=vin=1+11.
Iy < WiK- max |3

0st<1

< WiK-M-¢/4[1 + WiK|M < % for all n .

S (7 ) —oe

k=0

max || V*h || x
0=k=n

Yk

a b 1
1l = 12 lhewe = |+ 1+
0 a b
a b 1
SO Sa Sb
It is necessary to regard the norms on the right as Y ** norms because

these integrals may exist only as elements in Y ** and not as elements
in Y (see the remarks following Theorem 1 [3, p. 950].)

=

+

Yk

_’_

Yk

.
Yk

[axe [ £ (F)ra — o 1vie — veogl|se, < WeK-2M-(lg |

and

HS:dK(t)[i <Z>tk(1—t)"”k[V"g — Vg

k=0

= WeK-2M- || g|lx .

Y%
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Since K is assumed continuous at ¢ = 0 and ¢ = 1, there are values
for a and b sufficiently near, but distinet from 0 and 1 respectively,
such that each of W¢K and WK less than ¢/8M[1 + || g|]]. With
these values of a and b, there is » sufficiently large, by the above
lemma, that

max
ast<h

,i_o(’;ﬁ)t"(l — )"V — V] |X < ¢/2[1 + W!K].
Collecting all this together yields
IT.flly=e
for all »n sufficiently large. Thus
lim || 7,y = lim || T'.f — LPf|| = 0
since
LPf =6,

and this completes the proof.

In case that Y = X and H is regular relative to I, then H sums
{V#r_, to P. In particular, any regular scalar-valued Hausdorff method
whose generating function K is continuous at t =0 and ¢t = 1 will
sum {V*}7_, to P. The case treated in [2], corresponds to the case
here where K(t) = tI,i.e., the C, method. The following example
illustrates the theorem for a nonscalar-valued Hausdorff method.

Suppose X = Y = H, a Hilbert space. Suppose also that K is a
bounded resolution of the identity such that K(0) = 0, K(1) = I, K is
continuous at 0 and 1 in the operator norm, and K satisfies the
Gowurin w-property. The approximating sums for integrals of the

1

form S t"dK(t) converge to the integral in the operator norm [2], hence
0

they converge in the sense given by Tucker [3]. Consider the moment

sequence {¢,}7-, given by x, = Lt"dK(t). As shown in [2], ¢, is a self-
0

adjoint operator in H, and if we denote it by A, it follows that

U, =A"(mn=0,1,2,--.) where p¢,=KQ1)=A4A"=1. If {V"}3., is a

sequence of operators as given in the theorem, and H(y) is the Haus-

dorff summability method generated by {z,} = {4"}, then

lim 3, <Z)(A”—"A")V"x — Po

n—oo k=0

for all ¢ e H, the limit being taken in the norm of H.
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PART 2

It has been pointed out that the proof of the lemma given above

is incorrect. It can be corrected in the following manner. As given,

k

N’ M \ik1 _ pyn—k n+1 n N’
el s XS (Fea - gty

k=0 1_
n+1
Proceed as follows. For 0 <a=t=b<1
ik
4wl s 5 (e - el Ll e
a k=0 1_ k
n+ 1

Suppose ¢ >0 and pick o such that 0 <o < {(1 — b)e/2/(1 + ¢2)}.
For tela, b], set

At:{k:’t——nil’<5} and Btz{k:’t—nillgﬁ}.
Then
Lk
n+1
M \1k n_kt__nfc{-l“
=<%+%><k>t(l~t) . {
n+ 1

Consider the sums separately.

% < Azt' (’Z/)tk(l _ t)'n—k__—B__ < é(g)tk(l _ t)n—k% — % .

1—-b—9
1 n n+ 1 s k
— *tkl_ n—k+1 .
%‘ l—tgt'(k)n—i—l—k - g n+ 1
For ke B,,
’ k _t‘glg((n+1)t—k)2
n+1 T fm+ 1)

SO
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1 n n+1 E(1 _ 4yn—k+1 AT
Btg(l—t)az(n+1)2:§<k>mt(l O D~ ]

1 n+41
1 — )& (n + 1) =
1 nkl n+1 k n—k+1 k g
I e E— A0 R A K W A
1 — t)o® l;::é( k ) ( ) ( n+]_>
1 1=t b
A—0¢ n+l — (m+ Do’

("% et — =+ n + 1t —

Collecting this together gives

N'/e b
A, =2 (L +——2 __ 1N, foro0 <t<b<l,
40l = (5 + e * r0<astsb<

which proves the lemma.
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