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OSCILLATION CRITERIA FOR ELLIPTIC EQUATIONS

V. B. HEADLEY AND C. A. SWANSON

Conditions on the coefficients of a linear elliptic partial
differential equation will be obtained which are sufficient for
the equation to be oscillatory in certain unbounded domains.
The criteria obtained in the first three theorems involve in-
tegrals of suitable majorants of the coefficients while the
criterion in Theorem 4 involves limits of these majorants at
infinity. We also obtain a nonoscillation criterion involving
similar limits.

Oscillation criteria of both limit type and integral type will be
obtained for the linear elliptic partial differential equation

( 1 ) k = Σ DίicLijDjU) + bu = 0

in unbounded domains R in -^-dimensional Euclidean space En. Our
theorems constitute extensions of several well-known one-dimensional
oscillation theorems of Kneser-Hille [6] (limit type), Leigh ton [8],
Moore [10], and Wintner [13] (integral type). A special case of
Theorem 4 below was obtained by Glazman [4, 5] when L is the
Schrbdinger operator and R coincides with En. Analogues of Theorem
1 were obtained by Kreith [7] and Swanson [12] in the case that one
variable is separable and R is limit cylindrical, i.e., contains an in-
finitely long cylinder.

Points in En are denoted by x = (a;1, x2, , xn) and differentiation
with respect to x* is denoted by Di9 i = 1, 2, , n. The functions
a{j and b involved in (1) are assumed to be real-valued and continuous
on R (J dR, and the matrix {aiά) is supposed to be symmetric and positive
definite in R (ellipticity condition). A "solution" of (1) is defined in
the usual way [1, 12].

We assume that R contains the origin and that R is large enough
at co in the xn direction to contain the cone Ca = {x e En : xn ^ | x | cos a}
for some a, 0 < a ^ π. The boundary dR of R is supposed to have
a piece wise continuous unit normal vector at each point. The follow-
ing notations will be used:

Rr = R Π {x 6 En : I x I > r} Sr - {x e R U dR : | x \ = r} .

A bounded domain NdR is said to be a nodal domain of a
nontrivial solution u of (1) if and only if u = 0 on dN. The differen-
tial equation (1) is said to be oscillatory in R if and only if there
exists a nontrivial solution ur of (1) with a nodal domain in Rr for
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all r > 0. It follows from the ^-dimensional analogue of Sturm's
separation theorem [1] that every solution of an oscillatory differential
equation vanishes at some point in Rr for all r > 0.

Let A(x) denote the largest eigenvalue of the matrix (ai3 (x)),
xeR. A major ant of (aiά) is a positive-valued function /eC^O, oo)
such that

f(r) ^ max Λ (x) (0 < r < oo) .
X 6 Sγ

The function g defined by

( 2 ) g(r) = min b(x) (0 < r < oo)

is called a majorant of b(x).
Let 4̂, JB be the functions in R defined by the equations A(x) — f(\ x |),

!?(#) = ^(|x[), respectively. We shall obtain oscillation theorems for
equation (1) by comparing (1) with the separable equation

( 3 ) Σ Di(ADiV) + Bv = 0 .

Let r, θu θ2, , 0W_! denote hyperspherical polar coordinates [9, p. 58],
defined as follows:

Xi = r Π sin #i , a;w = r cos î ,

x. = r cos θn_i+1 Π sin ^ , i — 2, 3, , n - 1 .

By writing (3) in terms of these coordinates, we find that (3) has
solutions (in particular) of the form

(4) v(x) = ρ

where p and φ satisfy the ordinary differential equations

( 5) A Γ r - i / ( r A Ί + r-\g(r) - Xar~*f{r)}p - 0 ,
dr L drJ

( 6 ) ^.Γsin-V A ] + λα^ s in-^ - 0 ,

respectively. For 0 < α < π, we choose λα to be the smallest number
for which (6) has a nontrivial solution ^ on 0 fg θγ rg a satisfying
φ(μ) = 0. It is well-known [2] that λα exists as the smallest eigen-
value of a singular Sturm-Liouville problem. To be specific, we shall
suppose that the corresponding eigenfunction has been normalized by
the condition φ(Q) = 1. For a = π, we choose Xa = 0 and ^( ί j = 1.



OSCILLATION CRITERIA FOR ELLIPTIC EQUATIONS 503

THEOREM 1. Equation (1) is oscillatory in R if R contains a
cone Ca (a > 0), and (α^ ), b have majorants f,g, respectively, such
that

Γ
Ji

TJ7T

THEOREM 2. Equation (1) is oscillatory in R if R contains a
cone Ca(a > 0), and (a^), b have majorants f,g, respectively, such
that

< 8 ) Γ^ΓTTTT < °° α π d f V- '/CM^r) ~ λ^~2/(r)]dr = + oo ,
Ji rn j (r) Ji

/or some number m > 1, where hn(r) = I dt/t^fit).

THEOREM 3. Suppose that R contains the cone Cafor some a > 0,
<md ίfcαί Λ(ίc) is bounded in R. Then equation (1) is oscillatory in
R for n = 2 if

( 9 ) ^r[9(r) - Xar~2f(r)]dr = + oo ,

/or 7t ^ 3 i/ ί/^βre exists a number δ > 0 s^c/

- λαr- 2/(r)]dr - + oo ,

where g(r) is given by (2).

In the case n = 1, (1) is oscillatory if (10) holds with 5 = 1
{Leighton-Wintner theorem).

THEOREM 4. Suppose that R contains the cone Ca for some a > 0,
and that Λ(%) is bounded in R, say A(x) ^ Λi, xeR. Then equa-
tion (1) is oscillatory in R if

<11) lim inf r2g(r) > Λi[λβ + (n - 2)2/4] .

In particular, (11) reduces to Glazman's criterion [5]

lim inf r2g(r) > (n - 2)2/4
r—>oo

if — L is the Schrodinger operator — V2 — b(x), xe En. For n — \
and αn(α;) = 1, Theorem 4 reduces to the classical Kneser-Hille theo-
rem [6].
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THEOREM 5. Suppose that L is uniformly elliptic in Rs for some
s > 0, i.e., there exists a number Λo > 0 such that Σ aij(x)zίzi ^ Λ0|z|2

for all x e Rs, z e En. Let go(r) denote the maximum of b(x) for x e Sr,
0 < r < oo. Then equation (1) is nonoscillatory in R if

(12) lim sup r2g0(r) < (n - 2)2Λ0/4 .
r—»oo

Proofs. The hypotheses (7) imply that the ordinary differential
equation (5) is oscillatory in 0 < r < oo by the Leighton-Wintner
oscillation theorem [8, 13]. Let p(r) be a nontrivial solution of (5)
with zeros at r = δlf δ2, « , where δk \ oo. If φ is an eigenfunction
of (6) with boundary condition φ(a) — 0 corresponding to the eigen-
value λα, the function v defined by (4) is a solution of the comparison
equation (3) with nodal domains in the form of "truncated cones"

Cak = {xeEn:xn > | α | c o s α , δk < \x\ <δk+ι} ,

0 < a< π, k = 1,2, . . . ,

with piece wise smooth boundaries.
Thus v has a nodal domain Cak c Rp for all p > 0; in fact, for

arbitrary p > 0, choose k large enough so that δk ^ p, and clearly
x e Cak implies that \x\ > δk ^ p and x e Ca c R, so that xeRp. Since

Σ aiS(x)z^ ^ Λ (x) Iz|2 ^ f(r) \z|2 = A(x) \z\\ zeEn ,

and b(x) ̂  sr(|a;|) = B(x), equation (1) majorizes equation (3). It then
follows from a known comparison theorem [11, p. 514] that the smallest
eigenvalue μ of the problem

— Lw — μw in Cak , w — 0 on dCak

satisfies μ <̂  0. Let Makt = {xe Cak: δk < \x\ < t}, δk < t ^ δk+1, and

let μ(t) denote the smallest eigenvalue of the problem

— Lw = μ(t)w in Makt , n; = 0 on dMakt .

Since μ(t) is monotone nonincreasing in δk < t <, 3k+1 [3], and since
μ(δk+ι) g 0 and lim μ(£) = +oo, there exists a number Γ in (δk9 δk+ί]

t->δk+

such that μ(T) — 0. This means that Makτ is a nodal domain of a
nontrivial solution uk of (1), and since MakτdCakczRp for arbitrary
p > 0 provided k is sufficiently large, equation (1) is oscillatory in R.
This completes the proof of Theorem 1.

To prove Theorem 2, we use Moore's oscillation theorem [10,
p. 127] to deduce that the ordinary differential equation (5) is oscil-
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latory in 0 < r < oo on account of the hypotheses (8). The remainder
of the proof follows that of Theorem 1 without change.

If A(x) is bounded in R, say A(x) ^ Λi, x e R, we can choose
/(r) = Λi, 0 ^ r < oo. Then, for n = 2, the first condition (7) is
fulfilled and hence the first statement of Theorem 3 follows from
Theorem 1. For n ^ 3, the first condition (8) is fulfilled, and hn(r) =
r2~n/(n — 2) Λi. By hypothesis there exists a number δ > 0 such that
(10) holds. Let m = 1 + S/(w — 2). Then one easily checks that the
condition (10) implies the second condition (8), and hence the second
statement of Theorem 3 follows from Theorem 2.

The hypothesis (11) of Theorem 4 implies that there exist con-
stants r0 and 7 such that

r2g(r) > 7 > A, [K + (n - 2)2/4]

provided that r > r0. We then compare (5) with the Euler equation

(13) jLJAίr*->&\ + (7 - Λxλjr-V = 0 ,
dr L dr Λ

with solutions p = r<3, where β satisfies

(n - 2)β + 7/Λ1 - λβ = 0 .β2

Since 7 > Λi(Λα + (n — 2)2/4], equation (13) is oscillatory in (r0, 00).
Then also (5) is oscillatory by Sturm's comparison theorem on account
of the hypotheses

f(r) = Λi , rn~\g{r) - λαr~2/(r)] > (7 - Λiλα)r"~3 .

The proof of Theorem 4 is now completed in the same way as that
of Theorem 1.

To prove Theorem 5, suppose to the contrary that (1) is oscillatory
in R. Under the stated hypotheses, it is easily checked that (1) is
majorized by the equation

(14) Σ ΛoD\v + B0(x)v = 0 (B0(x) = gb(\x\)f xeR) ,

and hence there exists a nodal domain NrczRr of some nontrivial
solution of (14) for all r > 0 (by an argument similar to that used
in the proof of Theorem 1). Then every solution of (14) vanishes at
some point of Nr U dNr by the ^-dimensional analogue of Sturm's
separation theorem [1], However, (14) has radial solutions v(x) = p(r)
(r — \x\), where p satisfies the ordinary differential equation (the
analogue of (5))
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(15) Λo-f- ίV- 1 ^) + r^go(r)p = 0 .
dr \ dr J

The hypothesis (12) implies that there exist constants r0 and 7 such
that

Ύ<(n- 2)2Λ0/4

for r > r0. Thus the Euler equation

dr V dr J

is nonoscillatory, and also (15) is nonoscillatory by Sturm's comparison
theorem. This means that there exists a solution v(x) = p(r) of (14)
and a number r0 such that v(x) is free of zeros in Rr for all r > rOf

and the contradiction establishes Theorem 5.
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