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ON (J, M, m)-EXTENSIONS OF ORDER SUMS OF
DISTRIBUTIVE LATTICES

RAYMOND BALBES

In the first section of this paper a characterization of the
order sum of a family {L,}..s of distributive lattices is given
which is analogous to the characterization of a free distribu-
tive lattice as one generated by an independent set, We then
consider the collection Q of order sums obtained by taking
different partial orderings on S. A natural partial ordering
is defined on @ and its maximal and minimal elements are
characterized.

Let J and M be collections of nonempty subsets of a dis-
tributive lattice L, and m a cardinal. We define a (J, M, m)-
extension (¥, E) of L, where £ is a m-complete distributive
lattice and v: L — E is a (J, M)-monomorphism. In the last
section we define a m-order sum of a family of distributive
lattices {L.}scs. The main result here is that the m-order sum
exists if the order sum L of {L.}.cs has a (J, M, m)-extension,
where J and M are certain collections of subsets of L. These
results are analogous to R. Sikorski’s work in Boolean alge-
bras (e.g., [6]).

1. Order sums. Let S be a fixed set and {L,},.s a fixed collec-
tion of distributive lattices. From [2] it follows that for each poset
P = (S, £), there exists a pair ({p.}acs, L(P)), where L(P) is a distribu-
tive lattice, and for each a€S, ¢,:L,— L(P) is a monomorphism
such that:

(1.1) L is generated by U ,cs®a(Ly).

(1.2) If a < B then @, (z) < ps(y), for all xe L, and y e L,.

(1.3) If M is a distributive lattice and {f.:L,— M},.s is a
family of homomorphisms such that f.(®) < f;(y) whenever a < B,
xeL, and ye L, then there exists a homomorphism f: L(P)— M
such that fp, = f, for each ae S.

The pair ({pa}ecs, L(P)) will be called an order sum of {L.}.cs
over P.

Let P be the family of all posets of the form (S, <) and let
Q = {({patacs, L(P)) [ Pe P}.  For ({pulecs, L(P)) and ({0u}acs, L(P’))
in @ we write

(L.4)  (Patecss L(P)) = ({Oa}aes, L(P’)) provided:

(1.5) there is a homomorphism f: L(P') — L(P) such that f6, =
@, for each e S.

Note that (1.5) implies f is an epimorphism. If f is an isomor-
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phism, we say that ({(pu}acs, L(P)) is isomorphic with ({p.}aes, L(P")).
Isomorphism in this sense is an equivalence relation ~, and [2, Th.
1.2] implies that any two order sums over P are isomorphic. By
identifying isomorphs, (1.4) determines a partial ordering on the
equivalence classes of Q/~.

DEFINITION 1.1. Suppose Pe P and {N,}..s is a family of sub-
lattices of a distributive lattices N. The family {N,},.s is called
P-independent if whenever «,, ---,«, are distinct elements of
S, @pyyy + -+, @, are distinct elements of Sand ;e N, fori=1,.-+,n
then

16) =z, -2, <2,.,+ -+ + 2, if and only if

(1.7) for some ¢ and j, either a; < a; or a;, = a; and zx; < x;,
where l1<i1<mand m +1<7 < n.

LEMMA 1.2. Suppose N and M are distributive lattices and
{N,}aes s @ collection of sublattices of N such that U,.sN, generates
N. A necessary and sufficient condition for a fomily {f.: No— M},cs
of homomorphisms to have a common extension on N s that if

a, -+, &, are distinct members of S, &1y, +--, &, are distinct mem-
bers of S, ;€ N,, for i=1, .-+, n and

1.8) 2+ v 2 EXpiy + -0 + 2z, then

(L) Fu@)  + + fun(@n) = Fup @) + o+ + Fur (@),

Proof. The necessity is clear. Now if x € N, N N; then by (1.9),
¢ < x implies that f.(x) = fi(x). So the function f: U,.sN.— M
defined by f(x) = f.(x) if xe L, makes sense and has the property
that if A and B are finite nonempty subsets of U,..sN. then
II,(A) < 3,(B) implies 11,f(A) < ¥,f(B). By [1, Lemma 1.7], f can
be extended to a homomorphism f’:N— M. This is the required
extension.

THEOREM 1.3. The pair ({0.}aes, L) is the order sum of {L.}qes
over PeP if and only if {0.: L,— L},.s ts a family of monomor-
phisms such that:

(1.10) U g,es 0u(L,) generates L, and

(1.11) {8 (L)}aes ts P-independent.

Proof. For the sufficiency suppose first that o« < 8. By (1.11)
0, (x) < 0,(y) for all xe L,, ye L,. But if 6,(y) < 0,(x) then B = a.
Hence (1.2) is satisfied. Now assume the hypothesis of (1.3). It is
sufficient to show that the family {f.0;"': 0.(L,) — M}..s has a common
extension on L. So if

Ooy () =+ o 2 00, () = Oaypy (@nsr) + 00 + 0o, ()
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where «,, --.,a, are distinet and «,,,, +--, @, are distinet then by
(1.11) there exists p, ¢ such that a, < a, or @, = a, and 0, (x,) < 6, (v,),

where 1<p=<=m and m +1=<=¢=<=mn. In any case S, () = Jo (@)
and so

I fo; 02 0a)(%:) S Z5opii fu;0;0a,(25)

The result now follows from Lemma 1.2. The converse is essentially
[2, Th. 1.9].

The set P can be partially ordered as follows. If P, P’e P then
P < P’ provided P’ < P, as sets of ordered pairs. It is immediate
that P has a greatest element—the trivial partial ordering on S.
Also, it can be shown that P is minimal in P if and only if P is a
chain,

THEOREM 1.4. P = Q/=.

Proof. It is sufficient to show that for ({p.lecs, L(P)), ({Oa}acs,
L(P") e Q:

(1.12) P< P’
if and only if

(L.13)  ({Palacs, L(P)) = ({Outucs, L(P")).
If P< P, then {p,: L,— L(P)}.s is a family of homorphisms with
the property that if &« < 8 (in P’) then @,(x) < @s(y) for all zeL,,
ye L;. So by (1.8), we have (1.13). Conversely, suppose (1.5) holds
and a < B (in P’). Letting v €L, and ye L;, we have 0,(x) < 0,(y)
S0 P (%) = fO.(x) = f0:(y) = ps(y). Since {@,(Le)}acs is P-independent,
a < B (in P). It follows that P’ & P.

COROLLARY 1.5. ({@a}acs, L(P))/= 1is the greatest element in Q)=
iof and only if L(P) ts the free product of {L. xcs. Furthermore,
(Patacs, L(P))/ = ts minimal in Q= if and only if L(P) is an
ordinal sum of {L.}acs.

Proof. The definitions of free product and ordinal sum can be
found in [7, §9] and [2, Definition 1.3]. The result then follows
from Theorem 1.4 and the remark following Theorem 1.3.

For the remainder of this section, let ({pu}acs, L(P)) be a fixed
member of Q.

A lattice L is said to be conditionally implicative if for each
pair x, ye L such that x £ y there is an element x—y with the
property that ¢-z < v if and only if 2 <  — y. Note that conditionally
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implicative lattices are distributive. The following theorem, which
we stated without proof in [2], is the converse of [2, Th. 2.5].

THEOREM 1.6. If L(P) is conditionally implicative then L, is
conditionally implicative for each ae S.

Proof. Let ®,yeL, and  £y. Then ¢, (x)— @.(y) exists in
L(P) and equals a sum of m products, each of the form

Pry(®) oo @y () .

We can assume v; £ v; for 1 # j. Now

@a(w) (@71(931) tret @T”(xn)) é gz)a(x) (@a(x) - @a(y)) é <Pa(?/) .

By (1.11) there exists p such that v, <a or v, =« and zz, < ¥.
But in any case p.(x)®; (¥,) = pa.(y). Hence

(L14) @, (,) = Pul) — Pult)-
Choosing an element ¢, (y;), that satisfies (1.14), from each of the m
summands of ¢, (z) — p.(y), we have:

3 05,(05) = Pul®) = 2u0) = 3 25,(0)

and s0 () — Pu(y) = 25-p5,(y;), where B; £ 8; for ¢+ j. For each
Js Pul@)Ps;(¥;) = Po@)(Pu(®) = oY) = Pu(y), and since x £ y, we have:
Bisafor j=1,.--,p. But p.(y) £ @) = Puly) = Ps,(¥) + -+ +
#5,(4,). Hence there exists j, such that o < ;. Since a = 8;, and
a > B; for j +# j,, we have ¢, (%) — p.(¥) = @.(x;). From the fact that
@, is a monomorphism, it is now easy to show that x —y = w;,.

The following property of ¢, will be needed in §3. Note that
the power of a set H is denoted by | H|.

DEFINITION 1.7. Let L and M be distributive lattices and m a
cardinal. A homomorphism h: L — M is called a m — homomorphism
provided:

If HS L, 0<|H|<m, and XY,(H) exists then X, h(H) exists
and equals A(X,(H)); and similarly for products. The homomorphism
is complete if it is a m-homomorphism for each cardinal m.

LemmaA 1.8. Each monomorphism @, : L,— L(P) of ({Pa}acs, L(P))
1s complete.

Proof. Let H< L, and suppose & =X, (H) exists. Clearly
Pa(Y) = po(@) for all y e H. Now suppose that 3, p(H) + « -+ + Iy 5 (H,)
is an upper bound for ¢,(H), where H; & U espa(L,) for ¢t =1, .-+, n,
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We can assume H, = {p, (2, * +++ + @, (¢,)} where «;e L,, and a, # «;
for & # j. Suppose:
(1.15) there exists je{l, ---, m} such that a <a«;. Then

Pul) < P (@;) 50
(1.16)  @a(®) = Iy p(H)).

Now suppose that (1.15) does not hold. Since @, (y) < @q (x) + «-+ +
P, (€n) for each ye H, and a; # «, for j # k, there exists a; such
that a = a; and @.(y) = @.;(x;) for all ye H. Hence z;€ L, and
y <z, for all yeS. So x =< z; and therefore (1.16) is valid regardless
of the validity of (1.15). Applying this argument to each H;, we
have p.(¢) < Zyp(H) « -+ - Jpp)(H,), and 80 @ (3, (H)) = I pPo(H).
Similarly for products.

2. (J, M, m)-extensions. Throughout this section, let L be a
distributive lattice, and m a fixed infinite cardinal. Also let J and
M Dbe collections of nonempty subsets of L such that

(2.1) |H|Zm for each HeJ and each He M.

(2.2) X,(H) exists for each He J and I1,(H) exists for each He M.

DEFINITION 2.1. If L’ is a distributive lattice then a homomor-
phism f: L— L' is a (J, M)-homomorphism provided:

(2.3) If HeJ then %, f(H) exists and equals f(Z.(H)).

(2.4) If He M then I1, f(H) exists and equals f(/1,.(H)).

DEFINITION 2.2. The pair (v, E) is called a (J, M, m)-extension
of L provided:

(2.5) FE is a m-complete distributive lattice.

2.6) +: L— K is a (J, M)-monomorphism.

(2.7 (L) m-generates E (i.e., E is the smallest m-complete
sublattice of E that contains +(L)).

Every distributive lattice has a (¢, ¢, m)-extension: the smallest
m-ring of subsets of the Stone space X of L that contains all of the
compact-open sets of X, together with the correspondence that asso-
ciates elements of L with compact-open sets of X. If J(M) is the
collection of all subsets of L of power < m which have a sum (product)
in L then a (J, M, m)-extension of L is called a m-regular extension.
Note that in this case, 4 is a m-homomorphism. In[5], Crawley has con-
structed an example of a distributive lattice which can not be regularly
imbedded in any complete distributive lattice. In this example if
we take I to be countable then L will have no Y,regular extension.

A sufficient condition for L to have a (J, M, m)-extension is that
L be conditionally implicative. Indeed, it is easily verified that the
MacNeille completion [3, p. 58] of such a lattice is also conditionally
implicative and hence distributive. Note that the category of condi-
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tionally implicative lattices includes the categories of Boolean algebras,
chains, free and finite distributive lattices, and pseudo Boolean algebras.
Another sufficient condition for L to have a (J, M, m)-extension is that

(2.8) Y= 2} yx; and y + Ha; =11y + @)

whenever the left sides exist and |I| <m. This follows from [4,
Lemma 2].

If (v, E) and (', E') are (J, M, m)-extensions of L, then we
write

(2.9 (v, E) = (v, E")
provided there is a m-homomorphism h: E’— E such that hy' = .
Clearly & is onto. If % is an isomorphism we say (v, E) is isomorphic
with (v', E’). Isomorphism in this sense is an equivalence relation
~, and by identifying isomorphs, (2.9) determines a partial ordering
on the equivalence classes of K/~ where K is the set of (J, M, m)-
extensions of L.

By generalizing the method in [6, p.166], we now investigate
the class K.

DEFINITION 2.3. A congruence relation R on a mi-complete lattice
M 1is called a m-congruence relation on M if whenever [ is an index
set of power < m and (z;, ¥;) € R for each 7¢I then

(Sl |iel), S{y;|ie}) e R and (I{x;|iel}, I{y:|icI})eR .

For a m-congruence relation R on a m-complete lattice M, let
[x]z be the equivalence class containing x e M, and let

M/R = {[«] |z e M} .

The following theorem is easily verified.

THEOREM 2.4. If R is a m-congruence relation on a m-complete
lattice M them M|R s partially ordered as follows: [x]z = [¥]z
provided there exists «,y' € M such that (z,2)eR,2' <y and
(v, y)e R. Furthermore, M/R is a m-complete lattice such that tf
HS M and 0<|HI=m then ZXyplzlzlrcecH}=[2y(H)]z and
Oyilx)z | xe HY = [Ty (H)]z. If M is distributive so is M/R.

Let n be the power of the distributive lattice L and let F be
the free m-complete distributive lattice with n generators. That is,
F satisfies:

(2.10) F is a m-complete distributive lattice and is m-generated
by a subset G of power 1.

2.11) If h: G— M is a function, where M is a m-complete
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distributive lattice, then % can be extended to a m-homomorphism on F'.

By (2.11), G has the property that if G,, G, are finite nonempty
subsets of G and II1,(G) < XY.(G,), then G, N G, = ¢. So the sublattice
F'’ generated by G is freely generated by G, and there is an epimor-
phism ¢g: F'— L. Let R be the set of m-congruence relations R on
F such that:

(2.12) If z, ye F' then (x, y) e R = g(z) = 9(y).

213) If HS F', |H|=m, glH)eJ, xcF’, and ¢g(x) = Z,9(H)
then (x, 3,(H)) € R.

214) If HS F', |H|£m,g(H)eM, xc F' and g(x) = II,g(H)
then (z, 11,(H)) € R.

For each ReR, let F';, be the sublattice {[x];|x<c F’} of F/R.
By (2.12), the mapping g, : F,— L defined by:

(2.15) gzx(z]z) = 9(x) for each xe F’ is an isomorphism. Define
Yrp: L — FIR by ¥, = 1z9%" where 1, : F,— F/R is the inclusion map.
We have

(2.16) +rrg(x) = [x]r for each xe F".

THEOREM 2.5. For each Re R, the pair (v, FIR) is a (J, M, m)-
extension of L.

Proof. First F/R is m-complete by Theorem 2.4. Let G e J, then
|Gl £m and ¥,(G) exists. Since g is onto L there exists {x} U H & F’
such that |H|=<m, g(H)=G and g¢g(x) = X,9(H). By (2.13),
(x, Y.(H))e R so

V(ZU@) = [2]e = [Z(H)]z = Zpallyle | ¥y € H}
= Zpie¥rd(H) = Zpip¥z(G) .

A similar argument for Ge M implies that «+, is a (J, M)-mono-
morphism. Finally since

Va(l) = rg(F') = Fj

and F’ m-generates F, we have (L) m-generates F/R.

THEOREM 2.6. For each (J, M, m)-extension (v, E) of L, there
exists Re R such that (v, E) = (v, F/R).

Proof. By (2.11), the mapping +¢:F’'— E can be extended to
a m-homomorphism k of F onto E. Define a relation R on F' by (¢, y) e R
if k(x) = k(y). It is easily verified that Re R so that by Theorem
2.5, (vr, F/R) is a (J, M, m)-extension of L. Next, define »: F/R— E
by h([#]z) = k(x) for each € F.. Then & is an isomorphism. Letye L,
then there is an x e F”’ such that g(x) = v, so
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" e(y) = hyprg(e) = h([x]z) = k() = ¥9(x) = ¥ (y) .
It follows that (v, E) =~ (¥, F/R).

THEOREM 2.7. If (Yrz, F/R) and (vrz,, F/R') are (J, M, m)-extensions
of L then

(Ve FIR) < (Y, F/R')
if and only if
RSR.

Consequently, K/~ 1is tsomorphic with R (partially ordered by the
converse of inclusion).

Proof. Suppose there is a m-epimorphism 4 : F/R’' — F/R such
that kv = yop. For each we F', h([2)]x) = h{rg(®) = v9(2) = [2]z-
But, in fact, {xe F|h(x]z) = (2]} is a m-sublattice of F' containing
F'. So h(lzle) = [#]; for each x e F. Thus if (2, y) € R’ then [2], =
h(x]z) = A(Y]z = [¥]z, i.e., R" = R. For the converse, define & : F/R’
— F/R by h([®]z) = [x]z for each z ¢ F. The hypothesis implies % is
a m-homomorphism. Since A+, = +r,, the result follows.

COROLLARY 2.8. The intersection p = Nzer B s an element of
R and hence the equivalence class containing (vr,, F/p) is the greatest
clement in Kj=. Here it is assumed R = .

Proof. Conditions (2.12), (2.13), and (2.14) are satisfied by p.

DEFINITION 2.9. A (J, M, m)-extension (v, &) of L is said to be
Sfree provided that for each m-complete distributive lattice L’ and
each (J, M)-homomorphism f: L — L', there exists a m-homomorphism
h: E— L' such that f = kv

The main result of this section is then:

THEOREM 2.10. If L has a (J, M, m)-extension then L has a free
(J, M, m)-extension: (., F/p0).

Proof. As in the proof of Theorem 2.6, the mapping fg: F'— L'
can be extended to a m-homomorphism 4’ : F— L’. Define a relation
R on F by (x,y)e R if W'(x) = h'(y). We first show that " N pcR.
Clearly R’ N p is a m-congruence relation. For (2.12), (2.13), and (2.14),
first let «,yeF’. Since peR, (z,y)eR Np implies g(x) = g(y).
Conversely if g(x) = g(y) then fg(z) = fg(y) so (x,y)epNR. If
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HSF',|H|=m, glH)edJ, xe F’' and g(x) = Z,9(H) then since pe R,
(x, -(H)) e p. But fisa (J, M)-homomorphism so fg(x) = f(X,9(H)) =
X, fo(H). Hence h'(x) = X, ' (H) = W(Z,(H)), i.e., (z, ¥(H))epo N K.
Similarly for (2.14). Now pN R’ e€R so p< R’. Hence we can define

h:Flo— L' by h(x],) = h'(x) for each z e F. It follows that & is a
m-homomorphism and f = hvr,.

3. me-order sums. In this section {L,}..s is a fixed set of dis-
tributive lattices, m is a fixed infinite cardinal and P is a partial
ordering on S.

DErFINITION 3.1. The pair ({Vi}acs, £) is said to be a m-order
sum of {L,}q.cs over P provided E is a m-complete distributive lattice,
and for each a«e S, +,:L,— E is a m-monomorphism such that:

(8.1) FE is m-generated by U.cs v(La)-

(8.2) If a < B then v, (x) < ¥4(y) for each 2¢ L, and y e L;.

(8.3) If L’ is a m-complete distributive lattice and {f,: L, — L'}acs
is a collection of m-homomorphisms such that whenever a < 8 then
fu(@) < fo(y) for all we L,, y € L;, then there exists a ni-homomorphism
f:E— L’ such that fy, = f, for each e S.

It follows that the m-order sum is essentially unique—if it exists.
Note also that if P is the trivial ordering on S and |L,| =1 for
each we S then E is the free ni-complete distributive lattice with
| S| generators. We now investigate the existence question.

Let ({@a}acs, L(P)) be the order sum of {L,},.s over P. Let J
be the class of all sets of the form ¢, (H) where

(8.4) aeS, HSL,, |H|l=m, H+ ¢
and such that ¥, (H) exists. Let M be the class of all sets of the
form ¢, (H) satisfying (3.4) and such that /7, (H) exists. Note that
since @, is a complete monomorphism (Lemma 1.8), conditions (2.1)
and (2.2) of § 2 are satisfied.

THEOREM 3.2. If L(P) has a (J, M, m)-extension then {L,}..s has
a m-order sum over P.

Proof. By Theorem 2.10, L(P) has a free (J, M, m)-extension
(v, E). We. will show that ({yp.eecs, £) is the required m-order
sum. Let HE L, 0<|H|<m and suppose that I, (H) exists.
Then ¢ (H) e J. Since v is a (J, M)-monomorphism and ¢, is complete,

VPl (H)) = Ze¥rpH) .

Similary for products. So o, is a m-monomorphism. Since [Jues
Po(L,) generates L(P) and +(L(P)) m-generates E, it follows that
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Uwes v@o(L,) m-generates E. Finally, let L' be a m-complete dis-
tributive lattice and {f,: L,— L'},.s a family of m-homomorphisms
with the property that a < 8 implies f. (%) =< fu(y) for all x € L, y € L,.
By (1.3) three exists a homomorphism f’: L(P)— L’ such that f'p, =
S« for each e S. Since ¢, is complete, f’ is a (J, M)-homomorphism.
But (v, E) is a free-(J, M)-extension, so there exists a m-homomor-
phism f: E— L’ such that f’ = fy. Thus fyp, = f, for each a e S.

COROLLARY 3.3. If {L,}.,es %28 a collection of conditionally im-
plicative lattices (or lattices satisfying (2.8)), then {L,}..s has a m-
order sum over P for each partial ordering P on S.

Proof. This is immediate from Theorem 3.2 and the remarks
following Definition 2.2.

A necessary condition for the m-order sum ({yo}scs, &) over P of
{Laaes to exist is that each L, have a free m-regular extension
(consider the smallest m-complete sublattice of E that contains +r,(L,)).
A case in which an m-order sum has a rather simple structure is
obtained in the next theorem. For the definition of ordinal sum, see
[2, Definition 1.3].

THEOREM 3.4. Suppose S is finite and P is a chain in P. If
(Yo, B 18 a free m-regular extension of L, for each a€ S, then
{taValaes, B) 1s the m-order sum of {L,}e.s over P, where E is the
ordinal sum of {E.}..s and t,: E,— E is the inclusion map for each
aecS.

Proof. We can assume that S =1{1,2,.--,n} with the usual
ordering and {FE,},.s is a pair-wise disjoint family. Clearly, for HS E,
0<|H|<m, we have Xy(H) = 3 (H N Ep) where 5 =max{aeS|
HNE,+ ¢}. Itis evident that FE is a m-complete distributive lattice,
m-generated by U.cstavo(L.). Now assume the hypothesis of (3.3).
Since (v, E,) is a m-regular extension of L,, there exists a m-homo-
morphism g, : E, — L’ such that gy, = f, for each ¢ € S. The function
g: E— L' defined by g(z) = g.(x) for x € E, has the property gv. = fe
for each «¢eS. To show g preserves order, suppose a < B, is a
fixed element in L, and let F = {y € E; | 9.9(2) < gs(y)}. Then

(1) s(Lp) S F and

(ii) F is a m-complete sublattice of E,.

It follows that F' = E; and

IuVo(@) = 9s(y) for welL, yek,.
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Now let y be a fixed element of E; and let G = {ze E, | 9.(?) < 9;(¥)}.
Then

(1) Yo(L) &G and

(iv) G is a m-complete sublattice of E,.
It follows that G = E, and that for x € L,, y € L;, g(®) < g(y). Finally,
to show ¢ is a mni-homomorphism, let HS FE, 0 < |H| <m, and set
B =max{aeS|HNE,+ ¢}. Then

2p9(H) = g(Zx(H)) = 9(35,(H N Ep) = 95(2e,(H N Ky))
=2u9(HNEy) = 2.9(H) .

So 2p9(H) = 9(Zx(H)) .

I wish to thank Dr. A. Horn and the referee for their valuable
comments concerning this paper.
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