ON (J, M, m)-EXTENSIONS OF ORDER SUMS OF DISTRIBUTIVE LATTICES

RAYMOND BALBES

In the first section of this paper a characterization of the order sum of a family $\{L_{\alpha}\}_{\alpha\in S}$ of distributive lattices is given which is analogous to the characterization of a free distributive lattice as one generated by an independent set. We then consider the collection Q of order sums obtained by taking different partial orderings on S. A natural partial ordering is defined on Q and its maximal and minimal elements are characterized.

Let J and M be collections of nonempty subsets of a distributive lattice L, and m a cardinal. We define a (J, M, m)-extension (ψ, E) of L, where E is a m-complete distributive lattice and $\psi \colon L \to E$ is a (J, M)-monomorphism. In the last section we define a m-order sum of a family of distributive lattices $\{L_{\alpha}\}_{\alpha \in S}$. The main result here is that the m-order sum exists if the order sum L of $\{L_{\alpha}\}_{\alpha \in S}$ has a (J, M, m)-extension, where J and M are certain collections of subsets of L. These results are analogous to R. Sikorski's work in Boolean algebras $(e,g_{-1}, [6])$.

- 1. Order sums. Let S be a fixed set and $\{L_{\alpha}\}_{\alpha \in S}$ a fixed collection of distributive lattices. From [2] it follows that for each poset $P = (S, \leq)$, there exists a pair $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P))$, where L(P) is a distributive lattice, and for each $\alpha \in S$, $\varphi_{\alpha} : L_{\alpha} \to L(P)$ is a monomorphism such that:
 - (1.1) L is generated by $\bigcup_{\alpha \in S} \varphi_{\alpha}(L_{\alpha})$.
 - (1.2) If $\alpha < \beta$ then $\varphi_{\alpha}(x) < \varphi_{\beta}(y)$, for all $x \in L_{\alpha}$ and $y \in L_{\beta}$.
- (1.3) If M is a distributive lattice and $\{f_{\alpha}: L_{\alpha} \to M\}_{\alpha \in S}$ is a family of homomorphisms such that $f_{\alpha}(x) \leq f_{\beta}(y)$ whenever $\alpha < \beta$, $x \in L_{\alpha}$ and $y \in L_{\beta}$, then there exists a homomorphism $f: L(P) \to M$ such that $f\varphi_{\alpha} = f_{\alpha}$ for each $\alpha \in S$.

The pair $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P))$ will be called an order sum of $\{L_{\alpha}\}_{\alpha \in S}$ over P.

Let P be the family of all posets of the form (S, \leq) and let $Q = \{(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P)) \mid P \in P\}$. For $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P))$ and $(\{\theta_{\alpha}\}_{\alpha \in S}, L(P'))$ in Q we write

- $(1.4) \quad (\{\varphi_{\alpha}\}_{\alpha \in S}, L(P)) \leq (\{\theta_{\alpha}\}_{\alpha \in S}, L(P')) \text{ provided:}$
- (1.5) there is a homomorphism $f: L(P') \to L(P)$ such that $f \theta_{\alpha} = \varphi_{\alpha}$ for each $\alpha \in S$.

Note that (1.5) implies f is an epimorphism. If f is an isomor-

phism, we say that $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P))$ is isomorphic with $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P'))$. Isomorphism in this sense is an equivalence relation \simeq , and [2, Th. 1.2] implies that any two order sums over P are isomorphic. By identifying isomorphs, (1.4) determines a partial ordering on the equivalence classes of Q/\simeq .

DEFINITION 1.1. Suppose $P \in P$ and $\{N_{\alpha}\}_{\alpha \in S}$ is a family of sublattices of a distributive lattices N. The family $\{N_{\alpha}\}_{\alpha \in S}$ is called P-independent if whenever $\alpha_1, \dots, \alpha_m$ are distinct elements of S, $\alpha_{m+1}, \dots, \alpha_n$ are distinct elements of S and $\alpha_i \in N_{\alpha_i}$ for $i = 1, \dots, n$ then

- $(1.6) \quad x_1 \cdot \cdots \cdot x_m \leq x_{m+1} + \cdots + x_n \text{ if and only if}$
- (1.7) for some i and j, either $\alpha_i < \alpha_j$ or $\alpha_i = \alpha_j$ and $x_i \le x_j$, where $1 \le i \le m$ and $m+1 \le j \le n$.

LEMMA 1.2. Suppose N and M are distributive lattices and $\{N_{\alpha}\}_{\alpha\in S}$ is a collection of sublattices of N such that $\bigcup_{\alpha\in S}N_{\alpha}$ generates N. A necessary and sufficient condition for a family $\{f_{\alpha}:N_{\alpha}\to M\}_{\alpha\in S}$ of homomorphisms to have a common extension on N is that if $\alpha_1, \dots, \alpha_m$ are distinct members of $S, \alpha_{m+1}, \dots, \alpha_n$ are distinct members of $S, \alpha_i \in N_{\alpha_i}$ for $i=1, \dots, n$ and

- $(1.8) \quad x_1 \cdot \cdots \cdot x_m \leq x_{m+1} + \cdots + x_n \ then$
- $(1.9) \quad f_{\alpha_1}(x_1) \cdot \cdots \cdot f_{\alpha_m}(x_m) \leq f_{\alpha_{m+1}}(x_{m+1}) + \cdots + f_{\alpha_n}(x_n).$

Proof. The necessity is clear. Now if $x \in N_{\alpha} \cap N_{\beta}$ then by (1.9), $x \leq x$ implies that $f_{\alpha}(x) = f_{\beta}(x)$. So the function $f: \bigcup_{\alpha \in S} N_{\alpha} \to M$ defined by $f(x) = f_{\alpha}(x)$ if $x \in L_{\alpha}$ makes sense and has the property that if A and B are finite nonempty subsets of $\bigcup_{\alpha \in \alpha S} N_{\alpha}$, then $\Pi_{N}(A) \leq \Sigma_{N}(B)$ implies $\Pi_{M}f(A) \leq \Sigma_{M}f(B)$. By [1, Lemma 1.7], f can be extended to a homomorphism $f': N \to M$. This is the required extension.

THEOREM 1.3. The pair $(\{\theta_{\alpha}\}_{\alpha \in S}, L)$ is the order sum of $\{L_{\alpha}\}_{\alpha \in S}$ over $P \in P$ if and only if $\{\theta_{\alpha} : L_{\alpha} \to L\}_{\alpha \in S}$ is a family of monomorphisms such that:

- (1.10) $\bigcup_{\alpha \in S} \theta_{\alpha}(L_{\alpha})$ generates L, and
- (1.11) $\{\theta_{\alpha}(L_{\alpha})\}_{\alpha \in S}$ is P-independent.

Proof. For the sufficiency suppose first that $\alpha < \beta$. By (1.11) $\theta_{\alpha}(x) \leq \theta_{\beta}(y)$ for all $x \in L_{\alpha}$, $y \in L_{\beta}$. But if $\theta_{\beta}(y) \leq \theta_{\alpha}(x)$ then $\beta \leq \alpha$. Hence (1.2) is satisfied. Now assume the hypothesis of (1.3). It is sufficient to show that the family $\{f_{\alpha}\theta_{\alpha}^{-1}:\theta_{\alpha}(L_{\alpha})\to M\}_{\alpha\in S}$ has a common extension on L. So if

$$\theta_{\alpha_1}(x_1) \cdot \cdots \cdot \theta_{\alpha_m}(x_m) \leq \theta_{\alpha_{m+1}}(x_{m+1}) + \cdots + \theta_{\alpha_n}(x_n)$$

where $\alpha_1, \dots, \alpha_m$ are distinct and $\alpha_{m+1}, \dots, \alpha_n$ are distinct then by (1.11) there exists p, q such that $\alpha_p < \alpha_q$ or $\alpha_p = \alpha_q$ and $\theta_{\alpha_p}(x_p) \le \theta_{\alpha_q}(x_q)$, where $1 \le p \le m$ and $m+1 \le q \le n$. In any case $f_{\alpha_p}(x_p) \le f_{\alpha_q}(x_q)$ and so

$$\prod_{i=1}^m f_{\alpha_i} \theta_{\alpha_i}^{-1} \theta_{\alpha_i}(x_i) \leq \sum_{j=m+1}^n f_{\alpha_j} \theta_{\alpha_j}^{-1} \theta_{\alpha_j}(x_j).$$

The result now follows from Lemma 1.2. The converse is essentially [2, Th. 1.9].

The set P can be partially ordered as follows. If $P, P' \in P$ then $P \subseteq P'$ provided $P' \subseteq P$, as sets of ordered pairs. It is immediate that P has a greatest element—the trivial partial ordering on S. Also, it can be shown that P is minimal in P if and only if P is a chain.

Theorem 1.4. $P \cong Q/\simeq$.

Proof. It is sufficient to show that for $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P)), (\{\theta_{\alpha}\}_{\alpha \in S}, L(P')) \in Q$:

(1.12) $P \leq P'$

if and only if

 $(1.13) \quad (\{\varphi_{\alpha}\}_{\alpha \in S}, L(P)) \leq (\{\theta_{\alpha}\}_{\alpha \in S}, L(P')).$

If $P \subseteq P'$, then $\{\varphi_{\alpha}: L_{\alpha} \to L(P)\}_{\alpha \in S}$ is a family of homorphisms with the property that if $\alpha < \beta$ (in P') then $\varphi_{\alpha}(x) < \varphi_{\beta}(y)$ for all $x \in L_{\alpha}$, $y \in L_{\beta}$. So by (1.3), we have (1.13). Conversely, suppose (1.5) holds and $\alpha < \beta$ (in P'). Letting $x \in L_{\alpha}$ and $y \in L_{\beta}$, we have $\theta_{\alpha}(x) < \theta_{\beta}(y)$ so $\varphi_{\alpha}(x) = f \theta_{\alpha}(x) \le f \theta_{\beta}(y) = \varphi_{\beta}(y)$. Since $\{\varphi_{\alpha}(L_{\alpha})\}_{\alpha \in S}$ is P-independent, $\alpha \le \beta$ (in P). It follows that $P' \subseteq P$.

COROLLARY 1.5. $(\{\varphi_{\alpha}\}_{\alpha\in S}, L(P))/\simeq$ is the greatest element in Q/\simeq if and only if L(P) is the free product of $\{L_{\alpha}\}_{\alpha\in S}$. Furthermore, $(\{\varphi_{\alpha}\}_{\alpha\in S}, L(P))/\simeq$ is minimal in Q/\simeq if and only if L(P) is an ordinal sum of $\{L_{\alpha}\}_{\alpha\in S}$.

Proof. The definitions of free product and ordinal sum can be found in [7, § 9] and [2, Definition 1.3]. The result then follows from Theorem 1.4 and the remark following Theorem 1.3.

For the remainder of this section, let $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P))$ be a fixed member of Q.

A lattice L is said to be *conditionally implicative* if for each pair $x, y \in L$ such that $x \not \leq y$ there is an element $x \to y$ with the property that $x \cdot z \leq y$ if and only if $z \leq x \to y$. Note that conditionally

implicative lattices are distributive. The following theorem, which we stated without proof in [2], is the converse of [2, Th. 2.5].

THEOREM 1.6. If L(P) is conditionally implicative then L_{α} is conditionally implicative for each $\alpha \in S$.

Proof. Let $x, y \in L_{\alpha}$ and $x \nleq y$. Then $\varphi_{\alpha}(x) \to \varphi_{\alpha}(y)$ exists in L(P) and equals a sum of m products, each of the form

$$\varphi_{\gamma_1}(x_1) \cdot \cdots \cdot \varphi_{\gamma_n}(x_n)$$
.

We can assume $\gamma_i \nleq \gamma_j$ for $i \neq j$. Now

$$\varphi_{\alpha}(x)(\varphi_{\gamma_1}(x_1)\cdot\cdots\cdot\varphi_{\gamma_n}(x_n)) \leq \varphi_{\alpha}(x)(\varphi_{\alpha}(x)\to\varphi_{\alpha}(y)) \leq \varphi_{\alpha}(y)$$
.

By (1.11) there exists p such that $\gamma_p < \alpha$ or $\gamma_p = \alpha$ and $xx_p \leq y$. But in any case $\varphi_{\alpha}(x)\varphi_{\gamma_p}(x_p) \leq \varphi_{\alpha}(y)$. Hence

$$(1.14) \quad \varphi_{\gamma_n}(x_p) \leq \varphi_{\alpha}(x) \to \varphi_{\alpha}(y).$$

Choosing an element $\varphi_{\beta_j}(y_j)$, that satisfies (1.14), from each of the m summands of $\varphi_{\alpha}(x) \to \varphi_{\alpha}(y)$, we have:

$$\sum_{j=1}^{m} \varphi_{\beta_{j}}(y_{j}) \leq \varphi_{\alpha}(x) \longrightarrow \varphi_{\alpha}(y) \leq \sum_{j=1}^{m} \varphi_{\beta_{j}}(y_{j}),$$

and so $\varphi_{\alpha}(x) \to \varphi_{\alpha}(y) = \sum_{j=1}^{p} \varphi_{\beta_{j}}(y_{j})$, where $\beta_{i} \nleq \beta_{j}$ for $i \neq j$. For each j, $\varphi_{\alpha}(x)\varphi_{\beta_{j}}(y_{j}) \leqq \varphi_{\alpha}(x)(\varphi_{\alpha}(x) \to \varphi_{\alpha}(y)) \leqq \varphi_{\alpha}(y)$, and since $x \nleq y$, we have: $\beta_{j} \leqq \alpha$ for $j = 1, \dots, p$. But $\varphi_{\alpha}(y) \leqq \varphi_{\alpha}(x) \to \varphi_{\alpha}(y) = \varphi_{\beta_{1}}(y_{1}) + \dots + \varphi_{\beta_{p}}(y_{p})$. Hence there exists j_{0} such that $\alpha \leqq \beta_{j_{0}}$. Since $\alpha = \beta_{j_{0}}$ and $\alpha > \beta_{j}$ for $j \neq j_{0}$, we have $\varphi_{\alpha}(x) \to \varphi_{\alpha}(y) = \varphi_{\alpha}(x_{j_{0}})$. From the fact that φ_{α} is a monomorphism, it is now easy to show that $x \to y = x_{j_{0}}$.

The following property of φ_{α} will be needed in § 3. Note that the power of a set H is denoted by |H|.

DEFINITION 1.7. Let L and M be distributive lattices and m a cardinal. A homomorphism $h: L \to M$ is called a m - homomorphism provided:

If $H \subseteq L$, $0 < |H| \le m$, and $\Sigma_L(H)$ exists then $\Sigma_M h(H)$ exists and equals $h(\Sigma_L(H))$; and similarly for products. The homomorphism is *complete* if it is a m-homomorphism for each cardinal m.

LEMMA 1.8. Each monomorphism $\varphi_{\alpha}: L_{\alpha} \to L(P)$ of $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P))$ is complete.

Proof. Let $H \subseteq L_{\alpha}$ and suppose $x = \Sigma_{L_{\alpha}}(H)$ exists. Clearly $\varphi_{\alpha}(y) \leq \varphi_{\alpha}(x)$ for all $y \in H$. Now suppose that $\Sigma_{L(P)}(H_1) \cdot \cdots \cdot \Sigma_{L(P)}(H_n)$ is an upper bound for $\varphi_{\alpha}(H)$, where $H_i \subseteq \bigcup_{\alpha \in S} \varphi_{\alpha}(L_{\alpha})$ for $i = 1, \dots, n$.

We can assume $H_1 = \{ \varphi_{\alpha_1}(x_1 \cdot \cdots \cdot \varphi_{\alpha_m}(x_m) \}$ where $x_i \in L_{\alpha_i}$ and $\alpha_k \neq \alpha_j$ for $k \neq j$. Suppose:

- (1.15) there exists $j \in \{1, \dots, m\}$ such that $\alpha < \alpha_j$. Then $\varphi_{\alpha}(x) < \varphi_{\alpha_j}(x_j)$ so
 - $(1.16) \quad \varphi_{\alpha}(x) \leq \Sigma_{L(P)}(H_1).$

Now suppose that (1.15) does not hold. Since $\varphi_{\alpha}(y) \leq \varphi_{\alpha_1}(x_1) + \cdots + \varphi_{\alpha_m}(x_m)$ for each $y \in H$, and $\alpha_j \neq \alpha_k$ for $j \neq k$, there exists α_j such that $\alpha = \alpha_j$ and $\varphi_{\alpha}(y) \leq \varphi_{\alpha_j}(x_j)$ for all $y \in H$. Hence $x_j \in L_{\alpha}$ and $y \leq x_j$ for all $y \in S$. So $x \leq x_j$ and therefore (1.16) is valid regardless of the validity of (1.15). Applying this argument to each H_i , we have $\varphi_{\alpha}(x) \leq \Sigma_{L(P)}(H_1) \cdot \cdots \cdot \Sigma_{L(P)}(H_n)$, and so $\varphi_{\alpha}(\Sigma_{L_{\alpha}}(H)) = \Sigma_{L(P)}\varphi_{\alpha}(H)$. Similarly for products.

- 2. (J, M, m)-extensions. Throughout this section, let L be a distributive lattice, and m a fixed infinite cardinal. Also let J and M be collections of nonempty subsets of L such that
 - (2.1) $|H| \leq m$ for each $H \in J$ and each $H \in M$.
 - (2.2) $\Sigma_L(H)$ exists for each $H \in J$ and $\Pi_L(H)$ exists for each $H \in M$.

DEFINITION 2.1. If L' is a distributive lattice then a homomorphism $f: L \to L'$ is a (J, M)-homomorphism provided:

- (2.3) If $H \in J$ then $\Sigma_{L'} f(H)$ exists and equals $f(\Sigma_L(H))$.
- (2.4) If $H \in M$ then $\Pi_{L'} f(H)$ exists and equals $f(\Pi_L(H))$.

DEFINITION 2.2. The pair (ψ, E) is called a (J, M, m)-extension of L provided:

- (2.5) E is a m-complete distributive lattice.
- (2.6) $\psi: L \to E$ is a (J, M)-monomorphism.
- (2.7) $\psi(L)$ m-generates E (i.e., E is the smallest m-complete sublattice of E that contains $\psi(L)$).

Every distributive lattice has a (ϕ, ϕ, m) -extension: the smallest m-ring of subsets of the Stone space X of L that contains all of the compact-open sets of X, together with the correspondence that associates elements of L with compact-open sets of X. If J(M) is the collection of all subsets of L of power $\leq m$ which have a sum (product) in L then a (J, M, m)-extension of L is called a m-regular extension. Note that in this case, ψ is a m-homomorphism. In [5], Crawley has constructed an example of a distributive lattice which can not be regularly imbedded in any complete distributive lattice. In this example if we take I to be countable then L will have no \mathbf{x}_0 -regular extension.

A sufficient condition for L to have a (J, M, m)-extension is that L be conditionally implicative. Indeed, it is easily verified that the MacNeille completion [3, p.58] of such a lattice is also conditionally implicative and hence distributive. Note that the category of condi-

tionally implicative lattices includes the categories of Boolean algebras, chains, free and finite distributive lattices, and pseudo Boolean algebras. Another sufficient condition for L to have a (J, M, m)-extension is that

$$(2.8) y \sum_{i \in I} x_i = \sum_{i \in I} y x_i \text{ and } y + \prod_{i \in I} x_i = \prod_{i \in I} (y + x_i)$$

whenever the left sides exist and $|I| \leq m$. This follows from [4, Lemma 2].

If (ψ, E) and (ψ', E') are (J, M, m)-extensions of L, then we write

(2.9)
$$(\psi, E) \leq (\psi', E')$$

provided there is a m-homomorphism $h: E' \to E$ such that $h\psi' = \psi$. Clearly h is onto. If h is an isomorphism we say (ψ, E) is isomorphic with (ψ', E') . Isomorphism in this sense is an equivalence relation \cong , and by identifying isomorphs, (2.9) determines a partial ordering on the equivalence classes of K/\cong where K is the set of (J, M, m)-extensions of L.

By generalizing the method in [6, p.166], we now investigate the class K.

DEFINITION 2.3. A congruence relation R on a m-complete lattice M is called a m-congruence relation on M if whenever I is an index set of power \leq m and $(x_i, y_i) \in R$ for each $i \in I$ then

$$(\Sigma\{x_i\mid i\in I\},\ \Sigma\{y_i\mid i\in I\})\in R$$
 and $(\Pi\{x_i\mid i\in I\},\ \Pi\{y_i\mid i\in I\})\in R$.

For a m-congruence relation R on a m-complete lattice M, let $[x]_R$ be the equivalence class containing $x \in M$, and let

$$M/R = \{[x] \mid x \in M\} .$$

The following theorem is easily verified.

THEOREM 2.4. If R is a m-congruence relation on a m-complete lattice M then M/R is partially ordered as follows: $[x]_R \leq [y]_R$ provided there exists x', $y' \in M$ such that $(x, x') \in R$, $x' \leq y'$ and $(y', y) \in R$. Furthermore, M/R is a m-complete lattice such that if $H \subseteq M$ and $0 < |H| \leq m$ then $\Sigma_{M/R}\{[x]_R \mid x \in H\} = [\Sigma_M(H)]_R$ and $\Pi_{M/R}\{[x]_R \mid x \in H\} = [\Pi_M(H)]_R$. If M is distributive so is M/R.

Let n be the power of the distributive lattice L and let F be the free m-complete distributive lattice with n generators. That is, F satisfies:

- (2.10) F is a m-complete distributive lattice and is m-generated by a subset G of power n.
 - (2.11) If $h: G \to M$ is a function, where M is a m-complete

distributive lattice, then h can be extended to a m-homomorphism on F.

By (2.11), G has the property that if G_1 , G_2 are finite nonempty subsets of G and $\Pi_F(G_1) \leq \Sigma_F(G_2)$, then $G_1 \cap G_2 \neq \phi$. So the sublattice F' generated by G is freely generated by G, and there is an epimorphism $g \colon F' \to L$. Let R be the set of \mathfrak{m} -congruence relations R on F such that:

- (2.12) If $x, y \in F'$ then $(x, y) \in R \Leftrightarrow g(x) = g(y)$.
- (2.13) If $H\subseteq F'$, $\mid H\mid \leq \mathfrak{m},\ g(H)\in J,\ x\in F',\ \text{and}\ g(x)=\varSigma_Lg(H)$ then $(x,\varSigma_F(H))\in R$.
- (2.14) If $H \subseteq F'$, $|H| \le \mathfrak{m}$, $g(H) \in M$, $x \in F'$ and $g(x) = \prod_L g(H)$ then $(x, \prod_F (H)) \in R$.

For each $R \in \mathbb{R}$, let F'_R be the sublattice $\{[x]_R \mid x \in F'\}$ of F/R. By (2.12), the mapping $g_R : F'_R \to L$ defined by:

- (2.15) $g_{\scriptscriptstyle R}([x]_{\scriptscriptstyle R})=g(x)$ for each $x\in F'$ is an isomorphism. Define $\psi_{\scriptscriptstyle R}:L\to F/R$ by $\psi_{\scriptscriptstyle R}=i_{\scriptscriptstyle R}g_{\scriptscriptstyle R}^{-1}$ where $i_{\scriptscriptstyle R}:F'_{\scriptscriptstyle R}\to F/R$ is the inclusion map. We have
 - (2.16) $\psi_R g(x) = [x]_R$ for each $x \in F'$.

THEOREM 2.5. For each $R \in \mathbb{R}$, the pair $(\psi_R, F/R)$ is a (J, M, m)-extension of L.

Proof. First F/R is \mathfrak{m} -complete by Theorem 2.4. Let $G \in J$, then $|G| \leq \mathfrak{m}$ and $\Sigma_L(G)$ exists. Since g is onto L there exists $\{x\} \cup H \subseteq F'$ such that $|H| \leq \mathfrak{m}$, g(H) = G and $g(x) = \Sigma_L g(H)$. By (2.13), $(x, \Sigma_F(H)) \in R$ so

$$egin{align} \psi_{\scriptscriptstyle R}(\Sigma_{\scriptscriptstyle L}(G)) &= [x]_{\scriptscriptstyle R} = [\Sigma_{\scriptscriptstyle F}(H)]_{\scriptscriptstyle R} = \Sigma_{\scriptscriptstyle F/R}\{[y]_{\scriptscriptstyle R} \mid y \in H\} \ &= \Sigma_{\scriptscriptstyle F/R}\psi_{\scriptscriptstyle R}g(H) = \Sigma_{\scriptscriptstyle F/R}\psi_{\scriptscriptstyle R}(G) \; . \end{split}$$

A similar argument for $G \in M$ implies that ψ_R is a (J, M)-monomorphism. Finally since

$$\psi_{\scriptscriptstyle R}(L) = \psi_{\scriptscriptstyle R} g(F') = F'_{\scriptscriptstyle R}$$

and F' m-generates F, we have $\psi_R(L)$ m-generates F/R.

THEOREM 2.6. For each (J, M, \mathfrak{m}) -extension (ψ, E) of L, there exists $R \in R$ such that $(\psi, E) \simeq (\psi_R, F/R)$.

Proof. By (2.11), the mapping $\psi g: F' \to E$ can be extended to a m-homomorphism k of F onto E. Define a relation R on F by $(x, y) \in R$ if k(x) = k(y). It is easily verified that $R \in R$ so that by Theorem 2.5, $(\psi_R, F/R)$ is a (J, M, m)-extension of L. Next, define $h: F/R \to E$ by $h([x]_R) = k(x)$ for each $x \in F$. Then h is an isomorphism. Let $y \in L$, then there is an $x \in F'$ such that g(x) = y, so

$$h\psi_{R}(y) = h\psi_{R}g(x) = h([x]_{R}) = k(x) = \psi g(x) = \psi(y)$$
.

It follows that $(\psi, E) \simeq (\psi_R, F/R)$.

Theorem 2.7. If $(\psi_R, F/R)$ and $(\psi_{R'}, F/R')$ are (J, M, m)-extensions of L then

$$(\psi_R, F/R) \leq (\psi_{R'}, F/R')$$

if and only if

$$R' \subseteq R$$
.

Consequently, K/\simeq is isomorphic with R (partially ordered by the converse of inclusion).

Proof. Suppose there is a m-epimorphism $h: F/R' \to F/R$ such that $h\psi_{R'} = \psi_R$. For each $x \in F'$, $h([x)]_{R'}) = h\psi_{R'}g(x) = \psi_Rg(x) = [x]_R$. But, in fact, $\{x \in F \mid h([x]_{R'}) = [x]_R\}$ is a m-sublattice of F containing F'. So $h([x]_{R'}) = [x]_R$ for each $x \in F$. Thus if $(x, y) \in R'$ then $[x]_R = h([x]_{R'}) = h([y]_R, i.e., R' \subseteq R)$. For the converse, define $h: F/R' \to F/R$ by $h([x]_{R'}) = [x]_R$ for each $x \in F$. The hypothesis implies h is a m-homomorphism. Since $h\psi_{R'} = \psi_R$, the result follows.

COROLLARY 2.8. The intersection $\rho = \bigcap_{R \in \mathbb{R}} R$ is an element of R and hence the equivalence class containing $(\psi_{\rho}, F/\rho)$ is the greatest element in K/\simeq . Here it is assumed $R \neq \varnothing$.

Proof. Conditions (2.12), (2.13), and (2.14) are satisfied by ρ .

DEFINITION 2.9. A (J, M, m)-extension (ψ, E) of L is said to be free provided that for each m-complete distributive lattice L' and each (J, M)-homomorphism $f: L \to L'$, there exists a m-homomorphism $h: E \to L'$ such that $f = h \psi$.

The main result of this section is then:

THEOREM 2.10. If L has a (J, M, m)-extension then L has a free (J, M, m)-extension: $(\psi_{\rho}, F/\rho)$.

Proof. As in the proof of Theorem 2.6, the mapping $fg: F' \to L'$ can be extended to a m-homomorphism $h': F \to L'$. Define a relation R' on F' by $(x,y) \in R'$ if h'(x) = h'(y). We first show that $R' \cap \rho \in R$. Clearly $R' \cap \rho$ is a m-congruence relation. For (2.12), (2.13), and (2.14), first let $x, y \in F'$. Since $\rho \in R$, $(x,y) \in R' \cap \rho$ implies g(x) = g(y). Conversely if g(x) = g(y) then fg(x) = fg(y) so $(x,y) \in \rho \cap R'$. If

 $H \subseteq F', \mid H \mid \leq m, \ g(H) \in J, \ x \in F' \ \text{and} \ g(x) = \Sigma_L g(H) \ \text{then since} \ \rho \in R, \ (x, \Sigma_F(H)) \in \rho.$ But f is a (J, M)-homomorphism so $fg(x) = f(\Sigma_L g(H)) = \Sigma_L fg(H)$. Hence $h'(x) = \Sigma_L h'(H) = h'(\Sigma_F(H))$, i.e., $(x, \Sigma_F(H)) \in \rho \cap R'$. Similarly for (2.14). Now $\rho \cap R' \in R$ so $\rho \subseteq R'$. Hence we can define $h: F/\rho \to L'$ by $h([x]_\rho) = h'(x)$ for each $x \in F$. It follows that h is a m-homomorphism and $f = h\psi_\rho$.

3. m-order sums. In this section $\{L_{\alpha}\}_{{\alpha}\in S}$ is a fixed set of distributive lattices, m is a fixed infinite cardinal and P is a partial ordering on S.

DEFINITION 3.1. The pair $(\{\psi_{\alpha}\}_{\alpha\in S}, E)$ is said to be a m-order sum of $\{L_{\alpha}\}_{\alpha\in S}$ over P provided E is a m-complete distributive lattice, and for each $\alpha\in S$, $\psi_{\alpha}:L_{\alpha}\to E$ is a m-monomorphism such that:

- (3.1) E is m-generated by $\bigcup_{\alpha \in S} \psi(L_{\alpha})$.
- (3.2) If $\alpha < \beta$ then $\psi_{\alpha}(x) < \psi_{\beta}(y)$ for each $x \in L_{\alpha}$ and $y \in L_{\beta}$.
- (3.3) If L' is a m-complete distributive lattice and $\{f_{\alpha}: L_{\alpha} \to L'\}_{\alpha \in S}$ is a collection of m-homomorphisms such that whenever $\alpha < \beta$ then $f_{\alpha}(x) \leq f_{\beta}(y)$ for all $x \in L_{\alpha}$, $y \in L_{\beta}$, then there exists a m-homomorphism $f: E \to L'$ such that $f\psi_{\alpha} = f_{\alpha}$ for each $\alpha \in S$.

It follows that the m-order sum is essentially unique—if it exists. Note also that if P is the trivial ordering on S and $|L_{\alpha}| = 1$ for each $\alpha \in S$ then E is the free m-complete distributive lattice with |S| generators. We now investigate the existence question.

Let $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P))$ be the order sum of $\{L_{\alpha}\}_{\alpha \in S}$ over P. Let J be the class of all sets of the form $\varphi_{\alpha}(H)$ where

(3.4) $\alpha \in S$, $H \subseteq L_{\alpha}$, $|H| \leq m$, $H \neq \phi$ and such that $\Sigma_{L_{\alpha}}(H)$ exists. Let M be the class of all sets of the form $\varphi_{\alpha}(H)$ satisfying (3.4) and such that $\Pi_{L_{\alpha}}(H)$ exists. Note that since φ_{α} is a complete monomorphism (Lemma 1.8), conditions (2.1) and (2.2) of § 2 are satisfied.

THEOREM 3.2. If L(P) has a (J, M, m)-extension then $\{L_{\alpha}\}_{{\alpha} \in S}$ has a m-order sum over P.

Proof. By Theorem 2.10, L(P) has a free (J, M, m)-extension (ψ, E) . We, will show that $(\{\psi \varphi_{\alpha}\}_{\alpha \in S}, E)$ is the required m-order sum. Let $H \subseteq L_{\alpha}$, $0 < |H| \le m$ and suppose that $\Sigma_{L_{\alpha}}(H)$ exists. Then $\varphi_{\alpha}(H) \in J$. Since ψ is a (J, M)-monomorphism and φ_{α} is complete,

$$\psi arphi_{lpha}(\Sigma_{{\scriptscriptstyle L}_{lpha}}\!(H)) = \Sigma_{{\scriptscriptstyle E}} \psi arphi_{lpha}\!(H)$$
 .

Similarly for products. So $\psi \varphi_{\alpha}$ is a m-monomorphism. Since $\bigcup_{\alpha \in S} \varphi_{\alpha}(L_{\alpha})$ generates L(P) and $\psi(L(P))$ m-generates E, it follows that

 $\bigcup_{\alpha \in S} \psi \varphi_{\alpha}(L_{\alpha})$ m-generates E. Finally, let L' be a m-complete distributive lattice and $\{f_{\alpha}: L_{\alpha} \to L'\}_{\alpha \in S}$ a family of m-homomorphisms with the property that $\alpha < \beta$ implies $f_{\alpha}(x) \leq f_{\beta}(y)$ for all $x \in L_{\alpha}$, $y \in L_{\beta}$. By (1.3) three exists a homomorphism $f': L(P) \to L'$ such that $f'\varphi_{\alpha} = f_{\alpha}$ for each $\alpha \in S$. Since φ_{α} is complete, f' is a (J, M)-homomorphism. But (ψ, E) is a free-(J, M)-extension, so there exists a m-homomorphism $f: E \to L'$ such that $f' = f\psi$. Thus $f\psi \varphi_{\alpha} = f_{\alpha}$ for each $\alpha \in S$.

COROLLARY 3.3. If $\{L_{\alpha}\}_{{\alpha} \in S}$ is a collection of conditionally implicative lattices (or lattices satisfying (2.8)), then $\{L_{\alpha}\}_{{\alpha} \in S}$ has a morder sum over P for each partial ordering P on S.

Proof. This is immediate from Theorem 3.2 and the remarks following Definition 2.2.

A necessary condition for the m-order sum $(\{\psi_{\alpha}\}_{\alpha\in S}, E)$ over P of $\{L_{\alpha}\}_{\alpha\in S}$ to exist is that each L_{α} have a free m-regular extension (consider the smallest m-complete sublattice of E that contains $\psi_{\alpha}(L_{\alpha})$). A case in which an m-order sum has a rather simple structure is obtained in the next theorem. For the definition of ordinal sum, see [2, Definition 1.3].

THEOREM 3.4. Suppose S is finite and P is a chain in P. If $(\psi_{\alpha}, E_{\alpha})$ is a free m-regular extension of L_{α} for each $\alpha \in S$, then $(\{i_{\alpha}\psi_{\alpha}\}_{\alpha \in S}, E)$ is the m-order sum of $\{L_{\alpha}\}_{\alpha \in S}$ over P, where E is the ordinal sum of $\{E_{\alpha}\}_{\alpha \in S}$ and $i_{\alpha}: E_{\alpha} \to E$ is the inclusion map for each $\alpha \in S$.

Proof. We can assume that $S=\{1,2,\cdots,n\}$ with the usual ordering and $\{E_{\alpha}\}_{\alpha\in S}$ is a pair-wise disjoint family. Clearly, for $H\subseteq E$, $0<|H|<\mathfrak{m}$, we have $\Sigma_E(H)=\Sigma_{E_{\beta}}(H\cap E_{\beta})$ where $\beta=\max\{\alpha\in S\mid H\cap E_{\alpha}\neq \phi\}$. It is evident that E is a m-complete distributive lattice, m-generated by $\bigcup_{\alpha\in S}i_{\alpha}\psi_{\alpha}(L_{\alpha})$. Now assume the hypothesis of (3.3). Since $(\psi_{\alpha},E_{\alpha})$ is a m-regular extension of L_{α} , there exists a m-homomorphism $g_{\alpha}:E_{\alpha}\to L'$ such that $g_{\alpha}\psi_{\alpha}=f_{\alpha}$ for each $\alpha\in S$. The function $g:E\to L'$ defined by $g(x)=g_{\alpha}(x)$ for $x\in E_{\alpha}$ has the property $g\psi_{\alpha}=f_{\alpha}$ for each $\alpha\in S$. To show g preserves order, suppose $\alpha<\beta,x$ is a fixed element in L_{α} and let $F=\{y\in E_{\beta}\mid g_{\alpha}\psi_{\alpha}(x)\leq g_{\beta}(y)\}$. Then

- (i) $\psi_{\beta}(L_{\beta}) \subseteq F$ and
- (ii) F is a m-complete sublattice of E_{β} . It follows that $F=E_{\beta}$ and

$$g_{\alpha}\psi_{\alpha}(x) \leq g_{\beta}(y)$$
 for $x \in L_{\alpha}, y \in E_{\beta}$.

Now let y be a fixed element of E_{β} and let $G = \{z \in E_{\alpha} \mid g_{\alpha}(z) \leq g_{\beta}(y)\}$. Then

- (iii) $\psi_{\alpha}(L_{\alpha}) \subseteq G$ and
- (iv) G is a m-complete sublattice of E_{α} .

It follows that $G=E_{\alpha}$ and that for $x\in L_{\alpha}$, $y\in L_{\beta}$, $g(x)\leq g(y)$. Finally, to show g is a m-homomorphism, let $H\subseteq E$, 0<|H|<m, and set $\beta=\max{\{\alpha\in S\mid H\cap E_{\alpha}\neq \phi\}}$. Then

$$egin{aligned} \varSigma_{{\scriptscriptstyle L'}} g(H) & \leq \mathrm{g}(\varSigma_{{\scriptscriptstyle E}}(H)) = g(\varSigma_{{\scriptscriptstyle E}_eta}(H\cap E_eta)) = g_eta(\varSigma_{{\scriptscriptstyle E}_eta}(H\cap E_eta)) \ & = \varSigma_{{\scriptscriptstyle L'}} g_eta(H\cap E_eta) \leq \varSigma_{{\scriptscriptstyle L'}} g(H) \;. \end{aligned}$$

So $\Sigma_{L'}g(H)=g(\Sigma_{E}(H))$.

I wish to thank Dr. A. Horn and the referee for their valuable comments concerning this paper.

References

- R. Balbes, Projective and injective distributive lattices, Pacific J. Math. 21 (1967), 405-420.
- 2. R. Balbes and A. Horn, Order sums of distributive lattices, Pacific J. Math. 21 (1967), 421-435.
- 3. G. Birkhoff, Lattice theory, Amer. Math. Soc. 25, (1964).
- 4. C. C. Chang and A. Horn, On the representation of α -complete lattices, Fund. Math. 51 (1962), 253-258.
- 5. P. Crawley, Regular embeddings which preserve lattice structure, Proc. Amer. Math. Soc. 13 (1962), 748-752.
- 6. R. Sikorski, Boolean Algebras, Academic Press, 1964.
- 7. ——, Products of abstract algebras, Fund. Math. 39 (1952).

Received July 10, 1967.

UNIVERSITY OF MISSOURI AT ST. LOUIS