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ALGEBRAS SATISFYING THE DESCENDING
CHAIN CONDITION FOR SUBALGEBRAS

THOMAS P. WHALEY

In this paper we give a partial solution to the following
problem of B. Jόnsson:

(*) For which cardinals m do there exist algebras of
power m having finitely many operations and satisfying the
descending chain condition for subalgebraβ?

Of course a necessary condition for the existence of such an algebra
is that there exist an algebra of power m having finitely many opera-
tions and having no proper subalgebra of power m. The first such
construction was by F. Galvin who constructed an algebra of power
ωt which satisfied the descending chain condition for subalgebras. It has
been shown by Erdos and Hajnal [1] that for neω there is an algebra
of power ωn which has finitely many operations and has no proper sub-
algebra of power ωn. Actually C. C. Chang [3] has shown that if an
algebra exists of power m having finitely many operations and having
no proper subalgebra of power m, then such an algebra exists of power
m+. In §2 we modify this construction to show that if there is an
algebra of power m with finitely many operations and satisfying the
descending chain condition, then there is such an algebra of power m+.

Erdos and Hajnal [1] also showed, under the assumption of the
generalized continuum hypothesis, that for any cardinal m there is a
locally finite algebra of power m+ having finitely many operations and
having no proper subalgebra of power m+. In § 3 we show that for
neω there is a locally finite algebra of power ωn having finitely many
operations and satisfying the descending chain condition for subalgebras.

2* General algebras* Before beginning the construction of the
algebras we note the following relevant theorem of W. Hanf.

THEOREM 2.1. (Hanf [2], [4]). The lattice of subalgebras of an
algebra with countably many operations is a compactly generated
lattice in which each compact element contains at most countably
many compact elements. Conversely, any such lattice can be realiz-
ed as the lattice of subalgebras of a commutative loop in which each
subalgebra is a subloop.

COROLLARY 2.2. The following are equivalent:
( i ) There exists a compactly generated lattice having m com-

pact elements in which each compact element contains at most countably
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many compact elements and which satisfies the descending chain con-
dition {for elements).

(ii) There is an algebra of power m having countably many
operations and satisfying the descending chain condition for subalge-
bras.

(iii) There is an algebra of power m having finitely many opera-
tions and satisfying the descending chain condition for subalgebras.

(iv) There is a commutative loop of power m satisfying the des-
cending chain condition for subalgebras.

THEOREM 2.3. If there is an algebra of power m having finitely
many operations and satisfying the descending chain condition for
subalgebras, then there is an algebra of power m+ having finitely
many operations and satisfying the descending chain condition for
subalgebras.

Proof. Suppose we have such an algebra of power m. Using
Corollary 2.2 we assume our algebra is of the form A = <m; /> (iden-
tifying the cardinal m with the set of all ordinals of cardinality less
than m). Actually we could take A to be a commutative loop, but
these properties are not needed here. For each ordinal ξ with m <£
<J < m+, let φξ be a one-to-one map of ξ onto m. We now define a
binary operation / on m+ by

ηύ if Vo, Vi < m >

φvo{Vi) if m g η, and η, < η0 ,

φ^(Vo) iΐ Vo<m^Vi,

,0 otherwise .

We show t h a t A' = <m + ; /)> has the desired properties.

If 2? is a subalgebra of A! ( B g s A) then it is clear t h a t B f]m

is a subalgebra of A. Furthermore, if m <̂  ζ e B we can see t h a t

m Π B = φζ(ζ Γ\B). To see this note t h a t if rj e ξ Π B then φζ{η) =

/(f, 7])em n B while if 7]'emf)B then φjι{ηf) = f(jj\ ζ)eξf]B.
We now show that if CczsBczsA', one of the following three

conditions must hold:
( i ) C f] masBn m,
(ii) ΣC<ΣB,
(iii) ΣBeB-C.

Assume that ΣC — ΣB and ΣB g ΰ — C. Suppose first that B has a
largest member, β. Then β = ΣB&B - C implying that βeC. Thus
C ΓΊ β c B Π β. We know that C n m - φβ(C Π /3) c 0^(5 n /5) - J5 n m.
This leaves only the case where B has no largest member. Take
ξ eB — C. If ξ < m, we have C ί l m c δ n w . Therefore we assume
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t h a t m£ξ <m+. Since ΣB = ΣC> £, there i s a f ' e C with ξ < £'.

Then ζ'f)Cc:ξ'nBsomnC = φξr{ζ' n C ) c φξ,(ξ' f)B) = mpiB.
Suppose we have A! 3 S Bo 3 3 Bx 2 S . Clearly ΣB* ̂  2 ^ ^ .

There is some k0 e ω so that ΣBkQ = J?i?*0+i = . Also we know that

Since A satisfies the descending chain condition for subalgebras, there
is a kλ 2> &o so that 2?fcl Π m = Bkl+1 Π m = . Assume now that
nx<n2< and that i?fcl Z) Bkί+ni =) J3*1+%2 3 . Of the three con-
ditions listed above, only (iii) applies to J5 A l + l l 2 c β B Λ l + Λ l c, A'. Thus
ΣBkoeBkl+ni-Bki+n2. Similarly, we get ΣBkoeBh+n2 - £ fc l+%3. This
contradiction completes the proof.

COROLLARY 2.4. .For weα) ί/̂ βre is a commutative loop of power
ωn satisfying the descending chain condition for subalgebras.

3* Locally finite algebras* By a locally finite algebra we mean
an algebra in which each finite subset generates a finite subalgebra.
The following theorem characterizes the lattices of subalgebras of local-
ly finite algebras in a manner somewhat analogous to Hanf's theorem.

THEOREM 3.1. The lattice of subalgebras of a locally finite alge-
bra is a compactly generated lattice in which each compact ele-
ment contains only finitely many compact elements. Conversely, any
such lattice may be realized as the lattice of subalgebras of a locally
finite algebra having one commutative binary operation.

Proof. Since the compact elements in the lattice of subalgebras
of an algebra correspond to the finitely generated subalgebras and
since each finitely generated subalgebra of a locally finite algebra is
finite, it is clear that each compact element in the lattice of subalge-
bras of a locally finite algebra contains only finitely many compact
elements.

Conversely, suppose <X; +, •> is a compactly generated lattice in
which each compact element contains only finitely many compact ele-
ments. Let Lc be the semilattice of compact elements of L. We
know that L is isomorphic to the lattice of ideals of Lc. We now
define a commutative binary operation, /, on Lc so that the subalge-
bras of <XC; fy are precisely the ideals of <XC; +> with the finitely gener-
ated subalgebras just the principal ideals. This will clearly complete
the proof. For aeLc let {α0, alf , ania)} be the principal ideal of
<LC; +> generated by a with a = α0 and aζ Φ aβ if i Φ j . Define / by
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f(d, b) =

α i + 1 if 6 = aj with j < n(a)

bj+1 if a = δy with j < w(&)

a + b otherwise.

It is easy to check that the subalgebras of <77; / > are as described
above.

COROLLARY 3.2. For any m the following are equivalent:
( i ) There is a compactly generated lattice having m compact

elements in which each compact element contains only finitely many
compact elements and which satisfies the descending chain condition.

(ii) There is a locally finite algebra of power m which satisfies
the descending chain condition for subalgebras.

(iii) There is a locally finite algebra of power m having one
commutative binary operation and satisfying the descending chain
condition for subalgebras.

THEOREM 3.3. For neω there is a locally finite algebra of power
ωn which satisfies the descending chain condition for subalgebras.

Proof. The proof will be by induction on n. First we construct
AQ of power ω. For each meω define a unary operation fmt0 on ω by

n — m if m ^ n ,

(0 otherwise .

We then let Ao = <ω;fmr0>meω.

As an induction hypothesis we assume that we have

n = <ωn; fm,n, ωs

so that the following assertions are true of An:
( 1 ) fm,n is of rank r(n) where r(0) = 1 and r(l + 1) = 2r(l) + 1;
( 2 ) An is locally finite;
( 3 ) For any m e ω and for any ηQ,η^ , yru)-i β ω%, we have

Π

a n d fo,n(7]o, rjo, - ,Vo) = W
( 4 ) Given {f fc | /i: e co} a sequence of distinct members of ωn, there

exist an m e ω and kot kιy , fcr(w) eω so that fc0 < Π S } ^ a n ( i

where either ηk. — ξk. or else ηk. e {ωs \ s < n}.
It is clear that Ao satisfies these conditions with n — 0.
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Condition (3) will be used to obtain local finiteness, and condition
(4) will assure that we have the descending chain condition for subalge-
bras. To see this suppose

Take ξi e B{ — Bi+ί. Then applying (4) to {ξ< | i e ω) we find that there
is a koeω for which ξko e BkQ+1, a, contradiction.

We now proceed to construct An+1 which satisfies conditions (1)—
(4) with n replaced by n + 1. For each ζ with ωn <; ξ < ω n + 1 we let
φξ map ξ onto ωn in a one-to-one manner with φωn just the identity
map on ωn. For each meα) we define fm,n+1 as follows: If o)n ^
Πίlo*-1 £i\ if 27* < ί< for ΐ = 0,1, . , r(n) - 1; if ωn ^ 7; and if

we define

Jm,n+l\ζθf * * Ί fr(»)-l>

= ΦT\fmΛΦt$*

Otherwise we define

* * # y ίr(«)-l> ^0* * * # , Vr(n)-U T)

We let An+ι = <ω1l+1; /W f Λ + 1, ωz>m6tt>.

It is clear that An+1 satisfies conditions (1) and (3) of the induc-
tion hypothesis.

We now show that An+ί is locally finite. Suppose B is a finite
subset of ωn+1. Let

Bo = B U {ω81 s ^

e ft> and f0,

Then [B] = \JkeωBk. In showing that [B] is finite, we first show that
each Bk is finite. This is true for k — 0. Assume that it is true for
k^l. Then Uίsi ^ i s finite. Fix £0, , ir(n+«-i e Uisi ^ Now we
have

{/«,n+i(f0, , f r(»+D-i) I m e ω}

S ^u+iϊ- i ίΛ . ί^oίfro), , ̂ ^j^ίfrc+i)-i)) I m e ω)

u {ί0 n n frc+i-i)}.
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However, this set is finite since An is locally finite. Hence Bι+1 is
finite, and by induction each Bk is finite. Now let Co = BQ and

Then [B] = U*e«C*, and each Ck+ί is finite. If 1 ^ k < k! and if
Ck9 Ck, Φ 0 , then using (3) and the fact that {ωs \ s ^ n}^B0, we see
that maxCfc, < max CA. Thus there are only finitely many Ck Φ 0 .
Hence [B] is finite.

Finally we show that An+1 satisfies condition (4). Suppose we
have {ξk I k e ω} a sequence of distinct elements of a)u+ι. We consider
two cases.

Case 1. There are infinitely many fe's for which ξkeωn: Without
loss of generality we assume that {ξk \ ke ω}Qωn9 We then invoke
the induction hypothesis to get an meω and kOy kl9 -*'fkr{n)ea) so
that k0 < DiLV h and fm,n(ηkl, , ηkr{n)) = ξko where either ηh. = ξk.
or else ηk. e {cos \ s < n}. But then we have

This completes the proof in this case.

2. At most finitely many of the f/s are less than ωn:
Without loss of generality we assume that {ξk \ ke ω}Qωn+1 — ωn.
We pick k0 < k1 < so that ξko < Sk±< * * For each ieω, we let
7Γ; = Φek (ξki). Now consider {7rf | ί e ώ). If for some ί,jeω we have
i < j and 7r4 = π y , then

and we're through. Thus we may assume that {πi\ie ω} is a sequence
of distinct elements of ωn. Applying the induction hypothesis again,
we get an meω and i0, iίf , ΐ r ( n ) e ω so that i0 < ΠJ^ί ^
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where either -ηi. = π{. or else vim e {ωs \ s < n).
3 3 3

Now let

(ξk. if Vi. = π,. .
βim = I τJ 3 °

v [rji. otherwise ,

and let

v (ωn otherwise .

Then φoi.(βij) = r/i in any case. This gives

Since each σ, ., β€. is a f&i with i > iQ or is in {ωs | s ^ w}, this is the

desired result. This completes the proof of Theorem 3.3.

COROLLARY 3.4. For neco there is a locally finite algebra of

power ωn which has one commutative binary operation and satisfies

the descending chain condition for subalgebras.
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