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ALGEBRAS SATISFYING THE DESCENDING
CHAIN CONDITION FOR SUBALGEBRAS

THOMAS P. WHALEY

In this paper we give a partial solution to the following
problem of B, J6nsson:

(*) For which cardinals m do there exist algebras of
power m having finitely many operations and satisfying the
descending chain condition for subalgebras?

Of course a necessary condition for the existence of such an algebra
is that there exist an algebra of power m having finitely many opera-
tions and having no proper subalgebra of power m. The first such
construction was by F. Galvin who constructed an algebra of power
, which satisfied the descending chain condition for subalgebras. It has
been shown by Erdos and Hajnal [1] that for » € @ there is an algebra
of power w, which has finitely many operations and has no proper sub-
algebra of power w,. Actually C. C. Chang [3] has shown that if an
algebra exists of power m having finitely many operations and having
no proper subalgebra of power m, then such an algebra exists of power
m*. In §2 we modify this construction to show that if there is an
algebra of power m with finitely many operations and satisfying the
descending chain condition, then there is such an algebra of power m*.

Erdos and Hajnal [1] also showed, under the assumption of the
generalized continuum hypothesis, that for any cardinal m there is a
locally finite algebra of power m* having finitely many operations and
having no proper subalgebra of power m+*. In §3 we show that for
n € w there is a locally finite algebra of power w, having finitely many
operations and satisfying the descending chain condition for subalgebras.

2. General algebras. Before beginning the construction of the
algebras we note the following relevant theorem of W. Hanf.

THEOREM 2.1. (Hanf [2], [4]). The lattice of subalgebras of an
algebra with countably many operations is a compactly generated
lattice in which each compact element contains at most countably
many compact elements. Conversely, any such lattice can be realiz-
ed as the lattice of subalgebras of a commutative loop in which each
subalgebra is a subloop.

COROLLARY 2.2. The following are equivalent:
(1) There exists a compactly generated lattice having m com-
pact elements in which each compact element contains at most countably
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many compact elements and which satisfies the descending chain con-
dition (for elements).

(ii) There is an algebra of power m having countadbly many
operations and satisfying the descending chain condition for subalge-
bras.

(iii) There ts an algebra of power m having finitely many opera-
tions and satisfying the descending chain condition for subalgebras.

(iv) There is a commutative loop of power m satisfying the des-
cending chain condition for subalgebras.

THEOREM 2.3. If there is an algebra of power m having finitely
many operations and satisfying the descending chain condition for
subalgebras, then there is an algebra of power m* having finitely
many operations and satisfying the descending chain condition for
subalgebras.

Proof. Suppose we have such an algebra of power m. Using
Corollary 2.2 we assume our algebra is of the form A = {m; f) (iden-
tifying the cardinal m with the set of all ordinals of cardinality less
than m). Actually we could take A to be a commutative loop, but
these properties are not needed here. For each ordinal & with m <
g < m*, let ¢, be a one-to-one map of & onto m. We now define a
binary operation f on m* by

S0, ) i 7, <M,

$r,(1) if m = 7, and 7, <7, ,
Gy (o) If B <m =7,

0 otherwise .

ﬂ770y 771) =

We show that A’ = {m*; f> has the desired properties.

If B is a subalgebra of A’ (B &, A’) then it is clear that BN m
is a subalgebra of A. Furthermore, if m < £e¢B we can see that
mN B =¢.(6NB). To see this note that if ne&N B then ¢.(y) =
F(&,p)em N B while if 77em N B then ¢7'(¥') = f(y', §) &N B.

We now show that if Cc,Bc, A’, one of the following three
conditions must hold:

(i) Cnmc,BNm,

(ii) 2C < 2B,

(iiiy YBeB - C.

Assume that 3C = 3B and B¢ B — C. Suppose first that B has a
largest member, 8. Then 8 = YB¢ B — C implying that 8¢ C. Thus
CNnBcCBNB. Weknowthat CNnm =¢,(CNL)CTg:(BNB)=BNm.
This leaves only the case where B has no largest member. Take
EeB—~C. If £ < m, we have CNm c BN m. Therefore we assume
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that m < & < m*. Since B = 3C > &, there is a & eC with £ < &,

Then #NCcé&@NBsomNC=¢,(NC)C¢.(NB)=mnNB.
Suppose we have A'2,B,2,B,2,-+--. Clearly B, = 3B, = ---.

There is some k, € w so that ¥B, = ¥B,,, = ---. Also we know that

A2, B, Nm2, B, Nm=2, -+

Since A satisfies the descending chain condition for subalgebras, there
is a k, =k, so that B, Nm =B, ,,Nm = ... Assume now that
n, <My < +-- and that B, DBy n DBy 4n,D--. Of the three con-
ditions listed above, only (iii) applies to B, i., C, Bi+n, C. 4. Thus
3B, € By 4n, — By tn,. Similarly, we get B, €B; ., — Bi ., This
contradiction completes the proof.

COROLLARY 2.4. For m e w there is a commutative loop of power
w, satisfying the descending chain condition for subalgebras.

3. Locally finite algebras. By a locally finite algebra we mean
an algebra in which each finite subset generates a finite subalgebra.
The following theorem characterizes the lattices of subalgebras of local-
ly finite algebras in a manner somewhat analogous to Hanf’s theorem,

THEOREM 3.1. The lattice of subalgebras of a locally finite alge-
bra is a compactly generated lattice in which each compact ele-
ment contains only finitely many compact elements. Conversely, any
such lattice may be realized as the lattice of subalgebras of a locally
finite algebra having one commutative binary operation.

Proof. Since the compact elements in the lattice of subalgebras
of an algebra correspond to the finitely generated subalgebras and
since each finitely generated subalgebra of a locally finite algebra is
finite, it is clear that each compact element in the lattice of subalge-
bras of a locally finite algebra contains only finitely many compact
elements.

Conversely, suppose {L; +, -> is a compactly generated lattice in
which each compact element contains only finitely many compact ele-
ments. Let L° be the semilattice of compact elements of L. We
know that L is isomorphic to the lattice of ideals of L°. We now
define a commutative binary operation, f, on L° so that the subalge-
bras of <L°; f are precisely the ideals of (L°; + > with the finitely gener-
ated subalgebras just the principal ideals. This will clearly complete
the proof. For ac L® let {a, a,, +--, a,.} be the principal ideal of
{L*; +) generated by a with ¢ = a, and a; # a; if 1 # j. Define f by
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a;., if b =a; with j < n(a)
fla, b) = 4b;,, if @ = b; with j < n(b)
a + b otherwise.

It is easy to check that the subalgebras of (L‘; f)> are as described
above.

COROLLARY 3.2. For any m the following are equivalent:

(1) There is a compactly generated lattice having m compact
elements in which each compact element contains only finitely many
compact elements and which satisfies the descending chain condition.

(i1) There is a locally finite algebra of power m which satisfies
the descending chain condition for subalgebras.

(iii) There is a locally finite algebra of power m having one
commutative binary operation and satisfying the descending chain
condition for subalgebras.

THEOREM 3.3. For nc w there ts a locally finite algebra of power
w, which satisfies the descending chain condition for subalgebras.

Proof. The proof will be by induction on n. First we construct
A, of power w. For each m e @ define a unary operation f,, on @ by

n—mif m<n,
f

fm,(](n) = l

0 otherwise .

We then let A, = <w; fr,)meo-
As an induction hypothesis we assume that we have

An = <wn; fm,n’ a)s>me<u
s<n

so that the following assertions are true of A,:
(1) fun. is of rank »(n) where »(0) =1 and »( + 1) = 2r() + 1;
(2) A, is locally finite;
(3) For any mew and for any 7, 1, *+*, Yym_1 € ®,, We have

fm,n(nov M) 771-(%)—1) =N ({771 | ) = 1"(1’1/) - 1} - {ws | s < %})
and fo,n(UOy 770! D) 770) = 770;

(4) Given {&, | k € w} a sequence of distinct members of w,, there
exist an mew and k, k,, -+, k.,, €@ so that k, < M™% k; and

fm,n(‘}?kly ) 7714,,(,,”) = Eko

where either 7,, = &, or else 7, e{w,|s < n}.
It is clear that A, satisfies these conditions with n = 0.
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Condition (3) will be used to obtain local finiteness, and condition
(4) will assure that we have the descending chain condition for subalge-
bras. To see this suppose

A, D, B,D>,B,D,---.

Take &€ B; — B;;,. Then applying (4) to {§; |7 € w} we find that there
is a k,e @ for which &, € B, ,, a contradiction.

We now proceed to construct A,., which satisfies conditions (1)—
(4) with n replaced by n + 1. For each ¢ with w, < & < w,,, we let
¢ map & onto @, in a one-to-one manner with ¢, just the identity
map on ®,. For each mew we define f, .., as follows: If o, <
Niw—¢&; if 9, <& for t=0,1, .-+, 7r(n) — 1; if w, <v; and if

¢7_1(fm,n(¢€o(7]0)! R} ¢$r(n)_1(7]r(n)—-1)))
=N ({7]07 ety Drtwr—1y EO’ Tty Er(n)—l}
- {ws l S é n});

we define

fm.n+1(507 cc ey ér(n)—ly 7707 ccy 777'(”)—1: 7)
= ¢;1(fm,n(¢€0(770)9 t ¢ér(n)_1(7]r(n)~1))) .

Otherwise we define

fm,n+1(50y 0ty E'r(n)—l’ Doy =%y Detmi—ny 7)
=N {7]Oy sy Vrtwr—1y 507 Yy Sr(n)—-n ’7} .

We let An+1 = <wn+1; fm.n+1, wl>1ln§ew-
n

It is clear that A,., satisfies conditions (1) and (3) of the induc-
tion hypothesis.

We now show that A,., is locally finite. Suppose B is a finite
subset of w,,,. Let

B,=BU{w,|s < n},

Bk+1 = {fm,n+l(50, Ty E'r(n+1)—1) I mew and EO! 0y sr(n+l)—1 € Uigk Bz} .

Then [B] = Uieo Bi. In showing that [B] is finite, we first show that
each B, is finite. This is true for & = 0. Assume that it is true for
k <1l. Then U B; is finite. Fix &, «++, & 11 € Uit Bi. Now we
have

{fm,n+1(50’ Tty Er(n+1)—»1) , m e Cl)}
S ¢_E-;(,,,+1)_1{fm,n(¢eo(5r(n))’ M) ¢E,(ﬂ)_1($r(n+1)_1)) l me Cl)}
U {50 ARERNE Er(n+1—1)} .
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However, this set is finite since A, is locally finite. Hence B,., is
finite, and by induction each B, is finite. Now let C, = B, and

Ck+1 = Bk+1 - Bk .

Then [B] = Uico Cx, and each C,., is finite. If 1 <k <k and if
C., C.. # @, then using (3) and the fact that {w,|s < n} = B,, we see
that max C,, < max C,. Thus there are only finitely many C, # ©&.
Hence [B] is finite.

Finally we show that A,,, satisfies condition (4). Suppose we
have {£,| ke w} a sequence of distinct elements of w,.,. We consider
two cases.

Case 1. There are infinitely many k's for which ¢, € w,: Without
loss of generality we assume that {¢,|kecw}Sw,. We then invoke
the induction hypothesis to get an mew and k, k,, «--, k,,) €@ SO
that & < NEY ks and  fo,a(iys =+ +5 i,i,) = i, Where either 7, = &,
or else 7, €{w,|s < n}. But then we have

Sminer( @y v 2oy @y Miyy =0y Diop 15 @)
= Pur(FmalB0, (1), * 5 D, (D)
= SnDiegs ** %5 Viepi)
= Sko .

This completes the proof in this case.

Case 2. At most finitely many of the &,’s are less than w,:
Without loss of generality we assume that {§,|kco}lSw,., — ©,.
We pick k, <k, < --- so that &, < &, < ---. For each icw, we let
T = 6e,,, (r). Now consider {r;|7¢c w}. If for some 7,5 e ® we have
1 < j and 7; = 7;, then

fO,n+1($kj+1y tty Ekjﬂy Ekjy M) §kjy Skiﬂ)
= ¢E;§i+1(fo,n(¢ekj+1(5kj): ) ¢ekj+1(5kj)))
= 658, (foul®s, -+, T)
= ¢f_kl¢r+1(7rj)
= 95—5—;1“1(7%)
= ¢Z;i+1¢eki+1(5ki)
=&

(1

and we’re through. Thus we may assume that {7; |7 € ®} is a sequence
of distinct elements of w,. Applying the induction hypothesis again,
we get an mew and 7, 1, +++, b, € ® 80 that 7, < N3™ ¢; and

fm,n(’?ily ) vir(n)) = Tcio
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where either 7;, = 7;; or else 9, e{w,|s < n}.
Now let

B, =

J

Ekij if Ni; = Wiy
{77% otherwise ,
and let

JEkiJ._H if Bij = Ek,;. ’

;. J
’ |, otherwise .
Then ¢aij(3i,~) =, in any case. This gives

fm,n+1(ai1’ et O.'i.,.(”)) Bil) ] Bir('ﬂ)’ Eki0+1)
5k +1(fm,n(¢a (B'Ll)’ ] ¢air(n)(18i’(”))))

5k +1(fmyn(v1«1’ M) 77’5,(,,”))
= ¢5k10 ( io)
= ¢;]ti0+1¢5k (Ekz())

i9+1
= Sk’;o .

Since each o;, 8;; is a &, with ¢ >4, or is in {w,|s < n}, this is the
desired result. This completes the proof of Theorem 3.3.

COROLLARY 3.4. For mecw there is a locally finite algebra of
power w, which has one commutative binary operation and satisfies
the descending chain condition for subalgebras.
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