GAP SERIES AND AN EXAMPLE TO MALLIAVIN'S THEOREM

Robert Kaufman

O. Malliavin's celebrated theorem of spectral nonsynthesis is based on a real function f of class A

$$
\begin{gathered}
f(t)=\sum_{n=1}^{\infty} a_{n} \cos n t+\sum_{n=1}^{\infty} b_{n} \sin n t, \\
\sum\left|a_{n}\right|+\sum\left|b_{n}\right|<\infty,
\end{gathered}
$$

for which $\int_{-\infty}^{\infty}|u|\left\|e^{i u f}\right\|_{\infty} d u<\infty$.
Here and in general $\|g\|_{\infty} \equiv \sup _{n}|\hat{g}(n)|$. This note presents a method for constructing a function f, based on a gap property and a method of estimation of Kahane.

Let $0<n_{1}<n_{2}<\cdots<n_{k}<\cdots$ be a sequence of integers with the property:

Whenever $\varepsilon_{k}=0, \pm 1$, and $\varepsilon_{1} n_{1}+\cdots+\varepsilon_{N} n_{N}=0$, then $\varepsilon_{1}=\varepsilon_{2}=$ $\cdots=\varepsilon_{N}=0$.

Let $\omega_{1}, \omega_{2}, \cdots, \omega_{k}, \cdots$ be independent random variables defined upon a probability space Ω, distributed uniformly upon $[0,2 \pi]$. For a number $0<b<1$ set

$$
f(t)=\sum_{k=1}^{\infty} b^{k} \cos \left(n_{k} t+\omega_{k}\right) .
$$

Then, for each integer $M \geqq 1$ there is a $b=b(M)<1$ such that

$$
\begin{equation*}
\int_{-\infty}^{\infty}|u|^{M}\left\|e^{i u \tau}\right\|_{\infty} d u<\infty \quad \text { for almost all } \omega \text { in } \Omega . \tag{1}
\end{equation*}
$$

Remarks. Choosing $n_{k}=2^{k}$, we obtain a function f of class $\operatorname{Lip}(-\log b / \log 2)$, and this shows that $b(M)$ must converge to 1 as $M \rightarrow \infty$. For if the integral in (1) is finite, there is a number ξ such that $(f-\xi)^{M}$ does not admit synthesis, and it must be false that

$$
|f(t)-\xi|^{2 M}=O\left(d\left(t, f^{-1}(\xi)\right)\right),
$$

[3, pp. 116, 122]. But then $f \notin \operatorname{Lip}\left(2^{-1 / M}\right)$. Functions f with the Lipschitz condition were first produced in [1], and an explicit examplethat is, nonprobabilistic-given in [2].

1. Let $0<r<1,0<\varepsilon, \quad 0<\eta<(1-r) \log 5-\log 4$. Define $B_{N}(s, t)$ for $0<s, t<2 \pi(N=1,2,3, \cdots)$ to be the number of integers k defined by

$$
1 \leqq k \leqq N, \quad\left|\cos n_{k} s-\cos n_{k} t\right| \geqq \varepsilon .
$$

Lemma. If $\varepsilon>0$ is small enough, the Lebesgue measure

$$
m\left\{B_{N}(s, t) \leqq r N\right\}=O\left(e^{-\eta, N}\right), \quad \text { as } \quad N \rightarrow \infty
$$

Proof. Set

$$
\xi_{k}(s, t)=5-\left(\cos n_{k} s-\cos n_{k} t\right)^{2}
$$

or

$$
\xi_{k}=4-\frac{1}{2} \cos 2 n_{k} s+2 \cos n_{k} s \cos n_{k} t-\frac{1}{2} \cos 2 n_{k} t
$$

The mean of the product $\xi_{1} \cdots \xi_{v}$ is 4^{N}. For the product is a sum of terms

$$
c \Pi^{\prime} \cos 2 n_{k} s \Pi^{\prime \prime} \cos n_{k} s \cos n_{k} t \Pi^{\prime \prime \prime} \cos 2 n_{k} t
$$

where the symbols Π^{\prime}, etc., refer to products over mutually disjoint subsets of $\{1,2, \cdots, N\}$. If such a sum has mean $\neq 0$, it is trivial, for there are integers $\varepsilon_{k}= \pm 1, \delta_{k}= \pm 1$, defined for every exponent n_{k} present, such that $2 \Sigma^{\prime} \varepsilon_{k} n_{k}+\Sigma^{\prime \prime} \varepsilon_{k} n_{k}=\Sigma^{\prime \prime} \delta_{k} n_{k}+2 \Sigma^{\prime \prime \prime} \hat{o}_{k} n_{k}=0$. But $\Sigma^{\prime} \varepsilon_{k} n_{k}+\frac{1}{2} \Sigma^{\prime \prime}\left(\varepsilon_{k}+\delta_{k}\right) n_{k}+\Sigma^{\prime \prime \prime} \delta_{k} n_{k}=0$, where $\frac{1}{2}\left(\varepsilon_{k}-\delta_{k}\right)=0$, ± 1. Thus Π^{\prime} and $\Pi^{\prime \prime \prime}$ must be trivial, and so finally $\Pi^{\prime \prime}$ is trivial.

Now

$$
\left\{B_{N} \leqq r N\right\} \cong\left\{\xi_{1} \cdots \xi_{N} \geqq\left(5-\varepsilon^{2}\right)^{(1-r) N}\right\}
$$

so

$$
m\left\{B_{N} \leqq r N\right\} \leqq 4 \pi^{2}\left[4 /\left(5-\varepsilon^{2}\right)^{1+r}\right]^{N}
$$

and we need only choose $\varepsilon>0$ so that $\eta<(1-r) \log \left(5-\varepsilon^{2}\right)-\log 4$. We now choose $\varepsilon>0, \eta>0,1>r>0$, once and for all.
2. Following [1] we observe that for g in L^{2}

$$
\begin{gathered}
g(t)=\sum_{-\infty}^{\infty} c_{n} e^{i n t} \\
(g * g)(t)=(2 \pi)^{-1} \int g(t-s) g(s) d s=\sum_{-\infty}^{\infty} c_{n}^{2} e^{i n t} \\
\|g * g\|_{2}^{2}=(2 \pi)^{-1} \iiint g(t-s) g(s) g(\overline{t-p}) g(\bar{p}) d s d t d p=\sum_{-\infty}^{\infty}\left|c_{n}\right|^{4} \geqq\|g\|_{\infty}^{4}
\end{gathered}
$$

Set

$$
\begin{aligned}
& P(x, y, z, \omega) \\
& \quad=\cos (x-y+\omega)+\cos (y+\omega)-\cos (x-z+\omega)-\cos (z+\omega) .
\end{aligned}
$$

For fixed x, y, z, P is a trigonometric monomial in ω, say $\tau \sin (\omega+c)$, and τ can be estimated by setting

$$
z^{\prime}=z-\frac{1}{2} x, \quad y^{\prime}=y-\frac{1}{2} x
$$

We find that $\tau^{2}=4\left|\cos z^{\prime}-\cos y^{\prime}\right|^{2}$. Now

$$
\begin{aligned}
& \exp i u[f(t-s)+f(s)-f(t-p)-f(p)] \\
& \quad=\exp i u \sum_{k=1}^{\infty} b^{k} P\left(n_{k} t, n_{k} s, n_{k} p, \omega_{k}\right)
\end{aligned}
$$

To obtain an upper bound for the expectation of $\left\|e^{i u f}\right\|_{\infty}^{4}$ we integrate this formula, first with respect to $\omega_{1}, \omega_{2}, \cdots$ and then with respect to s, p, t. Note the estimation

$$
\begin{gathered}
J_{0}(R)=(2 \pi)^{-1} \int_{0}^{2 \pi} e^{i R \sin \omega} d \omega \leqq C(1+|R|)^{-1 / 2}, \quad-\infty<R<\infty \\
(2 \pi)^{-3} \iiint_{k=1}^{\infty}\left|J_{0}\left(2 u b_{k} \cdot\left|\cos n_{k} y^{\prime}-\cos n_{k} z^{\prime}\right|\right)\right| d x d y d z \\
\leqq(2 \pi)^{-2} \iint \prod_{1}^{N(u)}\left|J_{0}\left(2 u b^{k} \cdot\left|\cos n_{k} y-\cos n_{k} z\right|\right)\right| d y d z
\end{gathered}
$$

Here $N(u)$ is the integral part of $-\frac{1}{2} \log u / \log b$. If $B_{N(u)}(y, z) \geqq r N(u)$ the product in the integral is at most $\left(C^{\prime}|u|^{-1 / 4}\right)^{r N(u)}$, a magnitude ultimately smaller than any assigned power of $|u|^{-1}$. The integral on the complement $\left\{B_{N(u)} \leqq r N(u)\right.$ is $O\left(e^{-\eta N(u)}\right)=O\left(|u|^{2-1_{\eta / \log b}}\right)$. Choosing b close to 1 , we can make this $O\left(|u|^{-4 M-6}\right)$. Then by Fubini's theorem

$$
E\left(\int_{-\infty}^{\infty}|u|^{4 M+4} \|\left. e^{i u \rho}\right|_{\infty} ^{4} d u\right)=\int_{-\infty}^{\infty}|u|^{4 M+4} E\left(\left\|e^{i u \rho}\right\|_{\infty}^{4}\right) d u<\infty,
$$

so $\int_{-\infty}^{\infty}|u|^{4 M+4}\left\|e^{i u \mathcal{J}}\right\|_{\infty}^{4} d u<\infty$ for almost all ω in Ω. Conclusion (1) is a consequence of Holder's inequality.

It is clear that if b^{k} is replaced by k^{-2} for example, the condition (1) is valid for any integer M.

References

1. J.-P. Kahane, Sur un théorème de Paul Malliavin, C. R. Acad. Sci. Paris 248 (1959), 2943-2944.
2. J. P. Kahane and Y. Katznelson, Contribution à deux problèmes, concernant les fonctions de la classe A, Israel J. Math. 1 (1963), 110-131.
3. J. P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963.
4. P. Malliavin, Sur l'impossibilité de la synthèse spectrale sur la droite, C. R. Acad. Sci. Paris 248 (1959), 2155-2157.

Received October 9, 1967.

