NONOSCILLATORY SOLUTIONS OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS

LYNN H. ERBE

We consider here a generalization of the equation

$$x'' + a(t)x^{2n+1} = 0$$

where a(t) is a continuous non-negative function on $[0, +\infty)$ and $n \ge 0$ is an integer. Necessary and sufficient conditions are given for the existence of

- (1) a bounded nonoscillatory solution with prescribed limit at ∞ ;
- (2) a nonoscillatory solution whose derivative has a positive limit at ∞ .

Specifically, we are concerned with the asymptotic behavior of the solutions of the following second order nonlinear differential equation:

(1)
$$x'' + f(t, x)g(x') = 0.$$

We shall assume the following conditions hold:

f(t, x), g(x'), and the partial derivative function

 $(A_{\scriptscriptstyle 0})$ $f_{\scriptscriptstyle x}(t,\,x)$ are all continuous for $t \geq 0,\; x' \geq 0,$ and $\mid x \mid < + \; \infty$.

$$f(t, 0) = 0, t \ge 0.$$

 (A_2) $f_x(t,x) \ge 0$ and is nondecreasing in x for $t \ge 0$ and $x \ge 0$.

$$(A_3) g(x') > 0 for all x' \ge 0.$$

As a special case we have the equation

$$(2) x'' + a(t)x^{2n+1} = 0, n \ge 0,$$

in which $a(t) \ge 0$ for $t \ge 0$ and g(x') = 1 for all x'. Oscillatory and nonoscillatory properties of (2) for the case $n \ge 1$ were investigated by Atkinson in [1], Moore and Nehari in [5], and Utz in [9]. Generalizations of equation (2) have been considered by Waltman in [7] and [8], Nehari in [6], Wong in [10], and Macki and Wong in [4].

We shall study equation (1) by considering the equation

$$(3) x'' + f_x(t,\alpha)x = 0,$$

where α is some real constant depending on solutions of (1). To do this we shall need to establish several lemmas concerning the equation

$$(4) x'' + p(t)x = 0,$$

where p(t) is continuous and satisfies $p(t) \ge 0$ for $t \ge 0$.

LEMMA 1.1. Let [a, b] be a compact interval of the reals and suppose there exists a $\beta(t) \in C^{(2)}$ [a, b] satisfying

$$\beta(t) > 0$$
, $\beta''(t) + p(t)\beta(t) \leq 0$, $t \in [a, b]$.

Then [a, b] is an interval of disconjugacy for equation (4). That is, no nontrival solution of (4) has more than one zero on [a, b].

Proof. If the conclusion is false, then there is a solution y(t) of (4) satisfying $y(t_1) = y(t_2) = 0$ and y(t) > 0 on (t_1, t_2) , where $a \le t_1 < t_2 \le b$. It follows that there is a k > 0 such that $ky(t) \le \beta(t)$ on $[t_1, t_2]$ and $ky(t_0) = \beta(t_0)$ for some $t_1 < t_0 < t_2$. Therefore, $ky'(t_0) = \beta'(t_0)$ and for $t_0 \le t \le t_2$ we have

$$ky'(t) - \beta'(t) \ge \int_{t_0}^t -p(s)\{ky(s) - \beta(s)\}ds \ge 0$$
.

Hence,

$$ky(t_2) - eta(t_2) = \int_{t_0}^{t_2} (ky'(s) - eta'(s)) ds \ge 0$$
 ,

which is a contradiction.

REMARK. If there exists an $\alpha(t) \in C^{(2)}$ [a, b] satisfying

$$lpha(t) < 0$$
 , $lpha''(t) + p(t)lpha(t) \geqq 0$, $t \in [a,b]$,

then the conclusion of the lemma again holds. (Set $\beta(t) = -\alpha(t)$, $t \in [a, b]$.)

Lemma 1.1 is closely related to a theorem of Wintner (see Hartman [2], p. 362, Th. 7.2) and could be obtained directly by setting $z=\beta'/\beta$. Also, a function $\beta(t) \in C^{(2)}$ [a,b] satisfying $\beta''(t)+p(t)\beta(t) \leq 0$ on [a,b] is just a special case of an upper solution, as defined by Jackson in [3] for general nonlinear second order differential equations. Likewise $\alpha(t) \in C^{(2)}$ [a,b] satisfying $\alpha''(t)+p(t)\alpha(t) \geq 0$ on [a,b] is a special case of a lower solution.

LEMMA 1.2. Let $\alpha(t)$, $\beta(t) \in C^{(2)}$ [a, b] and satisfy $\alpha''(t) + p(t)\alpha(t) \geq 0$, $\beta''(t) + p(t)\beta(t) \leq 0$, and $0 < \alpha(t) \leq \beta(t)$ on [a, b]. Then for any c, d with $\alpha(a) \leq c \leq \beta(a)$, $\alpha(b) \leq d \leq \beta(b)$, there is a unique solution z(t) of (4) satisfying z(a) = c, z(b) = d, and $\alpha(t) \leq z(t) \leq \beta(t)$ on [a, b].

Proof. By Lemma 1.1, [a, b] is an interval of disconjugacy for equation (4) so that the BVP

$$x'' + p(t)x = 0$$
, $x(a) = c$, $x(b) = d$

has a unique solution z(t) (see for example [2], p. 351). Since z(t) cannot have more than one zero on [a,b] and since initial value problems for (4) have unique solutions, it follows that z(t) > 0 on [a,b]. If the conclusion of the lemma is false, then assume, to be specific, that $z(t_1) - \beta(t_1) = z(t_2) - \beta(t_2) = 0$ and $z(t) > \beta(t)$ on (t_1, t_2) , where $a \le t_1 < t_2 \le b$. As in Lemma 1.1, there is a k > 0, k < 1, such that $0 < kz(t) \le \beta(t)$ on $[t_1, t_2]$, and $kz(t_0) = \beta(t_0)$, $kz'(t_0) = \beta'(t_0)$ for some $t_1 < t_0 < t_2$. Since $kz(t_2) < z(t_2) = \beta(t_2)$, this leads to a contradiction as in Lemma 1.1. Hence, $z(t) \le \beta(t)$ on [a,b]. A similar argument shows that $z(t) \ge \alpha(t)$ on [a,b] and this proves the lemma.

LEMMA 1.3. Let $\alpha(t)$, $\beta(t) \in C^{(2)}$ $[a, +\infty)$ with $\alpha''(t) + p(t)\alpha(t) \geq 0$, $\beta''(t) + p(t)\beta(t) \leq 0$, and $0 < \alpha(t) \leq \beta(t)$ on $[a, +\infty)$. Then for any $\alpha(a) \leq c \leq \beta(a)$ there is a solution $y(t) \in C^{(2)}$ $[a, +\infty)$ of (4) satisfying y(a) = c and $\alpha(t) \leq y(t) \leq \beta(t)$ on $[a, +\infty)$.

Proof. By Lemma 1.2 for each $n \ge 1$ there is a solution $y_n(t) \in C^{(2)}$ [a, a+n] of (4) satisfying $y_n(a)=c$ and $\alpha(t)\le y_n(t)\le \beta(t)$ on [a, a+n]. Therefore, for each $N\ge 1\mid y_n(t)\mid$ and hence $\mid y_n''(t)\mid$ are uniformly bounded on [a, a+N] for all n=N. Since $y_n'(t)=y_n'(a)+\int_a^t y_n''$, the $\mid y_n'(t)\mid$ are likewise bounded on [a, a+N], uniformly for $n\ge N$. Now consider the sequence $\{y_n(t)\}_{n=1}^\infty$. By the Ascoli-Arzela Theorem there is a subsequence $\{y_n^t(t)\}_{n=1}^\infty$ converging to a solution $z_1(t)$ of (4) on [a, a+1]. Inductively, for each $k\ge 2$ we obtain a subsequence $\{y_n^k(t)\}_{n=1}^\infty$ of $\{y_n^{k-1}(t)\}_{n=1}^\infty$ which converges to a solution $z_n(t)$ of (4) on [a, a+k]. Therefore, the diagonal sequence $\{y_n^k(t)\}_{k=1}^\infty$ converges uniformly on each compact subinterval of $[a, +\infty)$. That is,

$$z(t) = \lim_{k \to \infty} y_k^k(t)$$
, $t \in [a, +\infty)$,

is the desired solution.

2. After these preliminary lemmas, we are now in a position to establish necessary and sufficient conditions for the existence of certain types of solutions of (1).

THEOREM 2.1. Assume $A_0 - A_3$ hold and let $\alpha_0 > 0$. Then the following statements are equivalent:

(a) For each $0 < \alpha < \alpha_0$ there is a solution $u_{\alpha}(t)$ of (1) satisfying $\lim_{t\to\infty} u_{\alpha}(t) = \alpha$.

(b)
$$\int_{-\infty}^{\infty} t f_y(t, \alpha) dt < +\infty \ \ for \ \ 0 < lpha < lpha_0.$$

Proof. (a) implies (b): Assume $\int_{0}^{\infty} t f_{y}(t, \alpha_{1}) dt = +\infty$ for some $0 < \alpha_{1} < \alpha_{0}$ and let $\alpha_{1} < \beta < \alpha_{0}$. Let $u_{\beta}(t)$ be the corresponding solution of (1) with $\lim_{t\to\infty} u_{\beta}(t) = \beta$. Let $\delta > 0$ be such that $\alpha_{1} + \delta < \beta$ and let $T \geq 0$ be such that $t \geq T$ implies $u_{\beta}(t) \geq \alpha_{1} + \delta$. Then for $t \geq T$

$$u_{\beta}^{\prime\prime} = -f(t, u_{\beta})g(u_{\beta}^{\prime}) \leq 0$$

so that u'_{β} decreases to a limit, and this limit clearly must be zero. Therefore, $u_{\beta}(t) \leq \beta$ for $t \geq T$ so that applying the Mean Value Theorem we get

$$egin{aligned} f_{y}(t,lpha_{\scriptscriptstyle 1}) & \leq rac{f(t,u_{\scriptscriptstyle eta}(t)) - f(t,lpha_{\scriptscriptstyle 1})}{u_{\scriptscriptstyle eta}(t) - lpha_{\scriptscriptstyle 1}} & \leq rac{f(t,u_{\scriptscriptstyle eta}(t))}{u_{\scriptscriptstyle eta}(t) - lpha_{\scriptscriptstyle 1}} \ & \leq rac{u_{\scriptscriptstyle eta}(t)}{u_{\scriptscriptstyle eta}(t) - lpha_{\scriptscriptstyle 1}} & rac{f(t,u_{\scriptscriptstyle eta}(t))}{u_{\scriptscriptstyle eta}(t)} & \leq rac{eta}{\delta} & rac{f(t,u_{\scriptscriptstyle eta}(t))}{u_{\scriptscriptstyle eta}(t)} \ , \end{aligned}$$

for $t \ge T$. Since $\lim_{t \to \infty} u'_{\beta}(t) = 0$, there is a $T_1 \ge T$ such that $t \ge T_1$ implies $g(u'_{\beta}(t)) \ge g(0)/2 > 0$. Hence, for $t \ge T_1$ we have

$$u_{\beta}^{\prime\prime}(t) = -f(t, u_{\beta}(t))g(u_{\beta}^{\prime}(t)) \leq -kf_{y}(t, \alpha_{1})u_{\beta}(t),$$

where $k = g(0)(\delta/2\beta)$. Also, $\alpha_1'' = 0 \ge -kf_y(t, \alpha_1)\alpha_1$. Therefore, by Lemma 1.3 there is a solution z(t) of the equation

$$(5) x'' + kf_y(t, \alpha_1)x = 0$$

satisfying $\alpha_1 \leq z(t) \leq u_{\beta}(t)$ on $[T_1, +\infty)$. Let $w(t) = z(t) \int_{T_1}^t ds/(z(s))^2$ for $t \geq T_1$. Then w(t) is a solution of (5). Since $z''(t) \leq 0$ for $t \geq T_1$, we see that

$$w''(t) = z''(t) \int_{T_1}^t ds / (z(s))^2 \le 0$$

for $t \ge T_1$ and hence w'(t) decreases to a finite nonnegative limit. In fact, we have

$$w'(t) = 1/z(t) + z'(t) \int_{r_1}^t ds/(z(s))^2 \ge 1/z(t) \ge 1/eta$$

for $t \ge T_1$. Hence, for sufficiently large t, say $t \ge T_0 \ge T_1$, we have $w(t) \ge t/2\beta$. Therefore, for $t \ge T_0$ we have

$$egin{align} w'(t)-w'(T_0)&=-k\int_{T_0}^t f_y(s,lpha_1)w(s)ds\ &\le (-k/2eta)\int_{T_0}^t sf_y(s,lpha_1)ds \le 0 \;. \end{gathered}$$

Therefore,

$$w'(T_{\scriptscriptstyle 0}) \geq w'(t) + (k/2eta) \int_{T_{\scriptscriptstyle 0}}^t \!\! s f_{\scriptscriptstyle y}(s,\, lpha_{\scriptscriptstyle 1}) ds$$

for $t \geq T_0$, so that

$$\int_{T_0}^{\infty}\!\! s f_y(s,\,lpha_{\scriptscriptstyle 1}) ds < + \infty$$
 ,

which is the desired contradiction.

Conversely, let $0 < \alpha < \alpha_0$ be given and let

$$M = \max \{g(x') : 0 \le x' \le \alpha\}$$
.

Let $T \ge 0$ be such that

$$\int_{\scriptscriptstyle T}^{\infty} (s-T) f_{\scriptscriptstyle y}(s,\,lpha) ds < 1/M$$
 and $\int_{\scriptscriptstyle T}^{\infty} f_{\scriptscriptstyle y}(s,\,lpha) ds < 1/M$.

We shall now define a sequence of functions on $[T, +\infty)$ in the following manner:

Let $y_0(t) = \alpha$, $t \ge T$. Now for $t \ge T$

$$0 \leq \int_{t}^{\infty} (s-t)f(s,\alpha)g(0)ds \leq \alpha \int_{t}^{\infty} (s-t)f_{y}(s,\alpha)g(0)ds \leq \alpha ,$$

so that defining $y_1(t) = \alpha - \int_t^{\infty} (s-t)f(s,\alpha)g(0)ds$, $t \geq T$, we have $0 \leq y_1(t) \leq \alpha$. Differentiating $y_1(t)$ we have

$$0 \leq y_1'(t) = \int_t^{\infty} f(s, \alpha)g(0)ds \leq M\alpha \int_t^{\infty} f_y(s, \alpha)ds < \alpha$$
.

Proceeding inductively, we define for all $k \ge 1$

$$y_{k+1}(t) = \alpha - \int_{t}^{\infty} (s-t)f(s, y_{k}(s))g(y'_{k}(s))ds$$
 , $t \geq T$,

and obtain $0 \le y_k(t)$, $y_k'(t) \le \alpha$ for all $k \ge 1$. It follows that the sequences $y_k(t)$, $y_k'(t)$, and $y_k''(t)$ are uniformly bounded on [T, T+n] for all $n \ge 1$. The Ascoli-Arzela Theorem and a diagonalization argument yields a subsequence which converges, uniformly on compact subsets of $[T, +\infty)$, to a solution $u_\alpha(t)$ of (1). Obviously, $\lim_{t\to\infty} u_\alpha(t) = \alpha$. This completes the proof of the theorem.

REMARK. If f(t,x)=-f(t,-x) and g(x')>0 and is continuous for $|x'|<+\infty$, then we see that $\int_{-\infty}^{\infty}tf_{y}(t,\alpha)dt<+\infty$ for $0<|\alpha|<\alpha_{0}$ if and only if for each $0<|\alpha|<\alpha_{0}$ there is a solution $u_{\alpha}(t)$ of (1) with $\lim_{t\to\infty}u_{\alpha}(t)=\alpha$.

COROLLARY 2.2. $\int_{-\infty}^{\infty} t f_{\nu}(t, \alpha) dt < +\infty$ for all $\alpha > 0$ if and only if there is a solution $u_{\alpha}(t)$ of (1) with $\lim_{t\to\infty} u_{\alpha}(t) = \alpha$ for all $\alpha > 0$.

COROLLARY 2.3. If $f(t, x) = \sum_{i=0}^{n} a_i(t) x^{2i+1}$ where the $a_i(t)$ are continuous nonnegative functions for $t \ge 0$, then the following statements are equivalent:

(a) There is a solution $u_{\alpha}(t)$ of (1) with $\lim_{t\to\infty}u_{\alpha}(t)=\alpha$ for all $\alpha\neq 0$.

(b)
$$\sum_{i=0}^{n} \int_{-\infty}^{\infty} t a_i(t) dt < +\infty$$
.

As examples of equations to which Theorem 2.1 applies but which do not belong to any of the classes of equations considered in references [1], [4] through [8], we have

(6)
$$x'' + x \left(\exp \left(t(x - \alpha_0) \right) \right) (1 + x') = 0$$

(7)
$$x'' + x \left(\exp\left(t(x^2 - \alpha_0^2) + cx'\right) \right) (1 + (x')^2) = 0,$$

where c is an arbitrary real number. Then for $0 < \alpha < \alpha_0$ there is a solution $u_{\alpha}(t)$ of (6) with $\lim_{t\to\infty}u_{\alpha}(t)=\alpha$, and for $0<|\alpha|<\alpha_0$ there is a solution $y_{\alpha}(t)$ of (7) with $\lim_{t\to\infty}y_{\alpha}(t)=\alpha$.

3. In [5] it is shown that equation (2) has solutions for which

$$\lim_{t\to\infty}\frac{y(t)}{t}=\alpha>0$$

if and only if

$$\int_{0}^{\infty} t^{2n+1}a(t)dt < +\infty$$
 .

In this final section we will show that an analogous result is true for equation (1) provided f(t, x) satisfies the following additional condition.

(A₄) There exist real numbers c>0 and $\lambda>0$ such that $\lim_{x\to\infty}\inf\frac{f(t,x)}{xf_x(t,\,cx)}\geq \lambda>0$, for all sufficiently large t.

Note that in the case of equation (2) c and λ may be any positive real numbers with $\lambda c^{2n} \leq 1/(2n+1)$. We first establish the following lemma.

LEMMA 3.1. Assume conditions $A_0 - A_3$ hold and let there exist a real number $\beta > 0$ with

$$\int_{0}^{\infty} t f_{v}(t, \beta t) dt < +\infty$$
 .

Then there exist solutions to (1), say y(t), such that $\lim_{t\to\infty} y(t)/t$ exists and is positive.

Proof. Let T > 0 be such that

$$\int_{\scriptscriptstyle T}^{\infty}\! t f_{\scriptscriptstyle y}(t,\,eta t) dt < 1/2M$$
 ,

where $M = \max\{g(x') : 0 \le x' \le \beta\}$. We define a solution of (1) by

$$u(T) = 0$$
, $u'(T) = \beta$,

and we assert that the solution satisfies $u'(t) \ge \beta/2$ for $t \ge T$. Assume, on the contrary, that there is a $\delta > 0$, $\beta/2 > \delta > 0$, and a $t_1 > T$ with $u'(t_1) = \delta$ and u(t) > 0 on $(T, t_1]$. Then for $T \le t \le t_1$ we have

(8)
$$u'(T) = u'(t) + \int_T^t f(s, u(s))g(u'(s))ds$$
.

Since $u''(t) \leq 0$ on $(T, t_1]$ and since u(t) is concave it follows that

$$u'(t) \leq \beta$$
 on (T, t_1) and $u(t) \leq \beta(t - T)$ on (T, t_1) .

Applying the Mean Value Theorem in (8) we have

$$eta = u'(T) < u'(t) + Meta \int_T^t s f_y(s, eta(s-T)) ds$$

$$\leq u'(t) + Meta \int_T^t s f_y(s, eta s) ds < u'(t) + eta/2.$$

Hence, $u'(t_1) > \beta/2$, a contradiction. Therefore, $u'(t) \ge \beta/2$ on $[T, +\infty)$ and hence $\lim_{t\to\infty} u'(t)$ exists and is positive which implies that $\lim_{t\to\infty} u(t)/t$ exists and is positive.

THEOREM 3.2. Assume conditions $(A_0) - (A_4)$ hold. Then (1) has solutions, say y(t), such that $\lim_{t\to\infty} y(t)/t$ exists and is positive if and only if

$$\int_{-\infty}^{\infty} t f_{y}(t,\,eta t) dt < +\infty \;\; ext{for some} \;\; eta_{.} > 0$$
 .

Proof. Let $\alpha > 0$ and let y(t) be a solution of (1) with

$$\lim_{t\to\infty}\frac{y(t)}{t}=\alpha.$$

Let $T \ge 0$ be such that $t \ge T$ implies $y(t) \ge \alpha t/2$. Let

$$m_0 = \min \{g(x') : 0 \le x' \le y'(T) \}$$

By condition (A_i) there is a $T_1 \ge T$ such that $t \ge T_1$ implies

$$f(t, y(t)) \ge \lambda y(t) f_y(t, c\alpha t/2) \ge (kt) f_y(t, c\alpha t/2)$$
,

where $k = \lambda \alpha/2$. Since $0 < y'(t) \le y'(T)$ for $t \ge T$ we have

$$f(t, y(t))g(y'(t)) \ge (m_0kt)f_y(t, c\alpha t/2)$$
, $t \ge T_1$.

Therefore,

$$y'(T_1) = y'(t) + \int_{T_1}^t f(s, y(s))g(y'(s))ds$$

$$\geq y'(t) + \int_{T_1}^t (m_0ks)f_y(s, c\alpha s/2)ds.$$

Since $\lim_{t\to\infty} y'(t) \ge 0$, this implies that

$$\int_{T_{*}}^{\infty}\!sf_{y}(s,\,clpha s/2)ds<+\infty$$
 ,

and this proves the theorem.

As a simple example of an equation to which the previous theorem applies but which is not considered in references [1], [4] through [8], we have

(9)
$$x'' + x^2 (\exp(x - \beta t))(1 + x') = 0,$$

where $\beta > 0$. Condition (A_i) holds for any 0 < c < 1 and any $\lambda > 0$.

The author wishes to thank Professor Lloyd Jackson and the referee for several helpful comments and suggestions.

REFERENCES

- F. V. Atkinson, On second order nonlinear oscillations, Pacific J. Math. 5 (1955), 643-647.
- 2. P. Hartman, Ordinary differential equations, Wiley, 1964.
- 3. L. K. Jackson, Subfunctions and second order differential inequalities, Advances in Math., Academic Press (to appear).
- 4. J. W. Macki and J. S. W. Wong, Oscillation of solutions to second order nonlinear differential equations, Pacificic J. Math. 18 (1968) (to appear)
- 5. R. A. Moore and Z. Nehari, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc. **92-93** (1959), 30-52.
- 6. Z. Nehari, On a class of nonlinear second order differential equations, Trans. Amer. Math. Soc. 94-95 (1960), 101-123.
- 7. P. Waltman, Oscillation of solutions of a nonlinear equation, SIAM Review 5 (1963), 128-130.
- 8. ———, Some properties of solution of u'' + a(t)f(u) = 0, Monat. Math. (1963-64), 50-54
- 9. W. R. Utz, Properties of solutions of $u'' + g(t)u^{2n-1} = 0$, Monat. Math. (1961-62), 55-60.

10. J. S. W. Wong, A note on second order nonlinear oscillation, SIAM Review 10 (1968), 88-91.

Received June 19, 1968. This research was supported by a NASA Traineeship at the University of Nebraska.

THE UNIVERSITY OF NEBRASKA LINCOLN, NEBRASKA, AND THE UNIVERSITY OF ALBERTA EDMONTON, ALBERTA