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It is shown that if (L, T) is a compact connected modular
topological lattice of finite dimension under a topology T,
then the topology T, the interval topology of L, the complete
topology of L, and the order topology of L are all the same.

There are a variety of known ways in which a lattice may be
given a topology, e.g., Frink's interval topology [8], BirkhofΓs order
topology [4], and InseΓs complete topology [9].

A lattice L is a topological lattice if and only if L is a Hausdorff
space in which the two lattice operations are continuous.

In this paper we give some of the relationships between topological
lattice and its intrinsic topologies and extend a theorem of Dyer and
Shields [7] and a result of Anderson [2]. We shall finally prove the
main theorem stated above.

We shall use A A B and A V B for a pair of subsets A and B of
a lattice L to denote the sets {a A b \ a e A and b e B) and {a V b \ a e A
and beB}, respectively. For a subset A of L, A* is the closure of
A. The empty set is written as Π

By the interval topology of a lattice L, denoted by I(L), we
mean the topology defined by taking the closed intervals {α Λ L,
α V L\aeL} as a sub-base for the closed sets. It is easy to see
that if (L, T) is a topological lattice and if I(L) is Hausdorff, then
(L, T) is compact if and only if T — I(L) and L is complete.

For a net {xa \ a e D} in a complete lattice L, if lim sup {xa \ a e D} —
lim inf {xa \ xa e D) — x, we say that the net {xa} order converges to x.
We define a subset M of a complete lattice L to be closed in the
order topology of L, denoted by O(L), if and only if no net in M
converges to a point outside of M.

The following two lemmas are immediate:

LEMMA 1. If (L, T) is a compact topological lattice, and if
{xa I a e D) is a monotone decreasing net in L with inf {xa \ a e D} = α,
then the net converges to a in T. The dual argument is also true.

LEMMA 2. // (L, T) is a compact topological lattice, then
T c O(L). Moreover, if O(L) is also compact, then T — O(L).

By a complete subset C of a lattice L we shall mean a nonempty
subset C of L such that for each nonempty subset S of C, S possesses
both a sup S and an inf S in L, and furthermore, both sup S and
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inf S are in C. The smallest topology for L in which the complete
subsets of L are closed is called the complete topology for L, and
denoted by C(L). It is known [9] that C(L)aO(L), and if L is
complete, then I(L) c C(L).

The following lemma follows at once either from Lemmas 1 and
2 or from [11].

LEMMA 3. If (L, T) is a compact topological lattice, then I(L)
is Hausdorff, if and only if I(L) = C(L) = T = O(L).

The breadth of a lattice L is the smallest integer n such that
any finite subset F of L has a subset F' of at most n elements such
that inf F = inf F'. It is known [4] that the breadth of L is equal
to the breadth of the dual of L.

A subset M of a topological lattice L is convex if and only if
(MA L) Γ\(Mv L) = M [1]. A topological lattice is locally convex
if and only if the convex open sets form a basis for the topology.
It is well known that a compact (or locally compact and connected)
topological lattice is locally convex.

We shall extend a theorem of Dyer and Shields in [7] as follows:

THEOREM 1. If L is a locally compact, locally convex topological
lattice of finite breadth and U is a neighborhood of a point x in L,
then there exist two elements y and z in L and a neighborhood V
of x such that 7 c [y, z] c U.

Proof. Choose neighborhoods Uo, Uι and U2 of x such that Uo

and U2 are convex, U* compact, and Uoc U* aU2czU. Again we can
choose two neighborhood Us and U4 of x such that U3 A Λ 273

(n times) c Uo and ί74 V V U4 (n times) c UOf where n is the
breadth of L. Setting V = U3 Π U^ we consider the sublattice W of
L generated by V. Since every element w of W can be expressed as a
lattice-polynomial of finitely many elements xu x2, •••,»„ of V, we have
inf Xi ^ w ^ sup xim Suppose m > n. By definition of breadth we can
choose at most n elements x[ from those x/s such that inf x{ = inf x\.
Thus inf Xi 6 Uo. Similarly, sup α?< e Uo. Clearly WczϋΌ and W* c Uf.
Since T7* is a compact sublattice, W* has a maximal element z and
a minimal element y. Now consider the smallest convex subset
C(TF*) = (ΐ7* Λ L) Π (Ψ* V L) containing W* in L (see [1]). It is
easy to see that C( W*) = [y, z]. And 7 c [y, z]<zU2a U. The proof
is complete.

Since compactness implies local convexity in a topological lattice,
the distributivity hypothesis in Theorem 3 in [7] is not necessary.
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It is remarked that the hypothesis of finite breadth in Theorem 1
can be replaced by finite dimension. The author, however, does not
know how to obtain this result without using connectedness. For
example, the space 2X(X is an infinite set) has infinite breadth, but
has zero dimension. And we note that the 2X is Hausdorff in its
interval topology [10]. (See [4], Problem 81).

A topological lattice is chain-wise connected if and only if for
each pair of elements x and y with x ^ y there is a closed connected
chain from x to y. It is well known [12] that a locally compact
connected topological lattice is chain-wise connected.

We shall show that the hypothesis of distributivity in Anderson's
result ([2], Corollary 1) can be replaced by modularity. The proof is
essentially the same as in [2].

LEMMA 4. If L is a locally compact connected modular topological
lattice, then the breadth of L is less than or equal to the codimension
of L.

Proof. Suppose the codimension of L is n. If the breadth of
L is ^ n, then L contains an % + l element subset A, say A =
{x19 - - -, xn+ί}, such that inf A Φ inf B for any proper subset B of A.
Let b{ = inf (A\Xi), i = 1, 2, , n + 1, and let a = inf A. Then b{ Φ a,
i = 1, , n + 1, and bi Φ bό (i Φ j). Let I; be the closed interval
[a, δ{], i = 1, 2, , n + 1. Now consider two mappings

/: I, x . . . x /»+!->!! V ••• V l , + i C L

defined by f(al9 , αn+1) = aλ V V an+lf and g: Ix V V In+1 —>
Itx ••• x In+1 defined by g(aί V V an+1) = (δx Λ (αx V VαΛ+1),
• , δn + 1 Λ («! V V αΛ+i)). Then clearly / and # are well defined
and continuous. Furthermore, f~ι — g, because by modularity we have

aι ^ bι A (aι V V an+1) = αt V (bλ A (a2 V VαΛ+1))

^ αx V (δi Λ (62 V V 6W+1)) ^ a, V (^ Λ»1) = αiVα = c 1 ,

and hence &! Λ (αL V V α»+i) — αlf and similarly for i = 2, , n + 1.
On the other hand, since such /; is locally compact and connected

in its relative topology, I{ contains a nondegenerate compact connected
chain Ci9 i — 1, 2, « -, n + 1. The subset d x x Cw+1 of It x x
/Λ+1 has codimension n + 1 [6]. Hence, the codimension of the closed
subset / ( d x x Cw+1) of L is ^ + 1. We thus have a contradiction.

LEMMA 5. // (L, T) is α compact topological lattice of finite
breadth, then I(L) is Hausdorff.

Proof. For two distinct elements x and y of L, choose T-neigh-
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borhoods U and V of x and y, respectively, such that U f] V = ••
For each element z of L\{x, y), choose a Γ-neighborhood W of z such
that Wp[{x, 2/} = •• By Theorem 1, we can find T-neighborhoods
U', V and W of a?, ?/ and z, respectively, and closed intervals [x19 x2],
[Vi, vλ and [zl9 z2] such that U' c [x19 x?] c Z7, V c [#lf #2] c F and
W 7c fo, s j c W. Clearly the family <%r = {W, V, W'\zeL\{x, y}} is
an open covering of L. So there is a finite sub-family of W" which
covers L. Therefore, there is a finite family of closed intervals whose
union is L such that no interval contains both x and y. It follows
by Proposition 1 in [10] that I(L) is Hausdorff.

Summarizing Lemmas 4, 5 and 3, we have the following main
theorem:

THEOREM 2. // (L, T) is a compact, connected, modular topologi-
cal lattice of finite codimension, then I(L) = C(L) — T —0{L).

COROLLARY 1. If (L, T) is a compact topological lattice of finite
breadth, then I{L) = C(L) = T = 0(L).
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