ON THE CONSTRUCTION OF LOWER RADICAL PROPERTIES

YU-LEE LEE

The purpose of this paper is to give a simple construction of the lower radical properties for an arbitrary class of rings.

Let \mathscr{S} be a class of rings. We shall say that the ring R is an \mathscr{S} -ring if R is in \mathscr{S} . An ideal J of R will be called an \mathscr{S} -ideal if J is an \mathscr{S} -ring. A ring which does not contain any nonzero \mathscr{S} -ideals will be called \mathscr{S} -semisimple. We shall call \mathscr{S} a radical property if the following three conditions hold:

(A) homomorphic image of an \mathcal{S} -ring is an \mathcal{S} -ring,

(B) every ring R contains a largest S-ideal S,

(C) the quotient ring R/S is S-semi-simple.

The largest \mathscr{S} -ideal S of a ring R is called the \mathscr{S} -radical of R. Given a class of rings \mathscr{A} , Kurosh has constructed a lower radical property $\mathscr{S}(\mathscr{A})$ determined by \mathscr{A} , [1], [2], i.e., $\mathscr{S}(\mathscr{A})$ is a radical property, $\mathscr{A} \subseteq \mathscr{S}(\mathscr{A})$, and if \mathscr{T} is any radical property and $\mathscr{A} \subseteq \mathscr{T}$ then $\mathscr{S}(\mathscr{A}) \subseteq \mathscr{T}$.

In this paper we are going to give a simpler construction.

The construction is similar to [3], where we take \mathscr{N} to be the class of all nilpotent rings. It is proven in [3] that this construction is exactly the lower radical property determined by the class of nilpotent rings. We want to extend this construction to any class of rings.

Let \mathscr{A} be a class of ring and let \mathscr{A}_0 be the class of all homomorphic images of rings in \mathscr{A} . For each ring R, let $D_1(R)$ be the set of all ideals of R, and by induction, we define $D_{n+1}(R)$ to be the family of all rings which are ideals of some ring in $D_n(R)$ and set

$$D(R) = \bigcup \{D_n(R): n = 1, 2, 3, \cdots\}$$
.

A ring R is called a $\mathscr{L}(\mathscr{A})$ -ring if D(R/I) contains a nonzero ring which is isomorphic to a ring in \mathscr{A}_0 for each ideal I of R and $I \neq R$. The following facts are clear.

LEMMA 1. $\mathscr{A} \subseteq \mathscr{A}_0 \subseteq \mathscr{L}(\mathscr{A}).$

LEMMA 2. If I is an ideal of R then $D(I) \subseteq D(R)$.

LEMMA 3. Every isomorphic image of an $\mathscr{L}(\mathscr{A})$ -ring is an $\mathscr{L}(\mathscr{A})$ -ring.

YU-LEE LEE

LEMMA 4. If A is isomorphic to B and D(A) contains a ring which is isomorphic to a nonzero ring in \mathcal{A}_0 then so does D(B).

LEMMA 5. If $\mathscr{A} \subseteq \mathscr{B}$ then $\mathscr{L}(\mathscr{A}) \subseteq \mathscr{L}(\mathscr{B})$.

Also we need the following fact [1].

LEMMA 6. A class of rings S is a radical property if and only if

(A) A homomorphic image of an S-ring is an S-ring.

(D) If every nonzero homomorphic image of a ring R contains a nonzero \mathcal{S} -ideal, then R is an \mathcal{S} -ring.

LEMMA 7. If S is a radical property, then for any ring R and any ideal I of R, the S-radical of I is an ideal of R.

THEOREM 1. If \mathscr{A} is a class of rings, then $\mathscr{L}(\mathscr{A})$, contructed above, is a radical property.

Proof. If R is in $\mathscr{L}(\mathscr{A})$ and I is any ideal of R. Consider the quotient ring R/I and any proper ideal J/I of R/I, $R/I/J/I \cong R/J$.

By definition, D(R/J) contains a ring which is isomorphic to a nonzero ring in \mathcal{M}_0 and therefore so does D(R/I/J/I), and hence R/Iis in $\mathcal{L}(\mathcal{M})$. Every homomorphic image of R is isomorphic with R/Ifor some I. Hence, by Lemma 3, (A) follows.

Suppose that every nonzero homomorphic image of R contains a nonzero $\mathscr{L}(\mathscr{A})$ -ideal and let I be any ideal of R and $I \neq R$. Then R/I contains a nonzero \mathscr{L} -ideal J/I. Now $D(J/I) \subseteq D(R/I)$, hence D(R/I) contains a ring which is isomorphic to a nonzero ring in \mathscr{A}_0 . By definition of $\mathscr{L}(\mathscr{A})$, R is in $\mathscr{L}(\mathscr{A})$. This proves (D). By Lemma 6, $\mathscr{L}(\mathscr{A})$ is a radical property.

THEOREM 2. If \mathcal{T} is a radical property then $\mathcal{L}(\mathcal{T}) = \mathcal{T}$.

Proof. By Lemma 1, $\mathcal{T} \subseteq \mathcal{L}(\mathcal{T})$.

If there is a ring R in $\mathscr{L}(\mathscr{T})$ but not in \mathscr{T} , let I be \mathscr{T} -radical of R. Then R/I is a nonzero ring in $\mathscr{L}(\mathscr{T})$ and is \mathscr{T} -semi-simple. Without loss of generality we may assume R is in $\mathscr{L}(\mathscr{T})$ but is \mathscr{T} -semi-simple. By definition D(R) contains a ring $J \neq 0$ such that $J \in \mathscr{T}$. But if K is a nonzero ideal of R, i.e., $K \in D_1(R)$, then, by Lemma 7, the \mathscr{T} -radical of K is also an ideal of R. But R is \mathscr{T} simi-simple. Hence K is also \mathscr{T} -semi-simple. By induction it is easy to see every ring in D(R) is \mathscr{T} -semi-simple. This is a contradiction. Hence $\mathscr{T} = \mathscr{L}(\mathscr{T})$. THEOREM 3. If \mathscr{A} is a class of rings then $\mathscr{L}(\mathscr{A})$ is the lower radical property determined by \mathscr{A} .

Proof. Let \mathscr{S} be any radical property such that $\mathscr{A} \subseteq \mathscr{S}$. Then by Theorem 2 and Lemma 5 $\mathscr{S} = \mathscr{L}(\mathscr{S}) \supseteq \mathscr{L}(\mathscr{A})$.

BIBLIOGRAPHY

1. N. J. Divinsky, Rings and radicals, University of Toronto Press, 1965.

2. A. G. Kurash, Radicals of rings and algebras, Mat. Sbornik (1953).

3. Y. L. Lee, A characterization of Baer lower radical property, Kyungpook Math. J. 7 (1967).

Received January 19, 1968. Presented to the Society on January 26, 1967.

KANSAS STATE UNIVERSITY MANHATTAN, KANSAS