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DIFFERENCE EQUATIONS FOR SOME
ORTHOGONAL POLYNOMIALS

H. L. KrarLL AND I. M. SHEFFER

It is well-known that every orthogonal polynomial set
{P,(x)} satisfies a 3-term recurrence relation of the form

LD Pun(®) = (au2 + b)) Pu(w) + euPus(®) (m=1,2,--2).

Some orthogonal sets (polynomials of Jacobi, Hermite and so
on) are solutions of differential equations, It will be shown
that there exist orthogonal polynomial sets that satisfy 3-term
difference equations of the form

1.2) A@y(x + a) + B@)ylx — a) + C@)y(x) = 2y(x)
where A, B, C are polynomials of degree < 2 and 1is a para-
meter.

Consider the difference equation
(1.3) A@)y(@ + @) + B@)y(x + B) + Clx)y(x) = 2y(x)

where A, B, C are real polynomials, A is a parameter, and «, B, 0 are
distinct and real. We examine two cases, according as A, B, C are
of degree < 1:

(a) A(x) = ax + a,, B(x) = b + b, C({E) = ¢,
or are of degree < 2:

(b) A(x) = ax’ + ax + a, B(x) = b’ + b+ b, C(x) =ca* + ¢
(ay, by, ¢, not all zero). We shall use the notation (1.3a), (1.3b) to
denote equation (1.3) for the respective conditions (a), (b).

Equation (1.3) will be termed admissible if there exists a real
sequence {\,} (» = 0,1, ---) such that for » = A, there is a polynomial
solution ¥,(%), unique to within a multiplicative constant, and ¥,(x) is
of degree (exactly) n. It follows that admissibility implies that

(1.4) Am # Mp(M = ) o

LEMMmA 1.1. FEgquation (1.3a) ts admissible 1f and only if
(1.5) a+b+c,=0, o=aa+bB+0.
And in this case we have

(1.6) N = (@ + b)) + n(a,@ + b,B) n=0,1,---).

Proof. Let m be arbitrary. If we substitute the wmth degree
polynomial
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(1.7) Y@ = a* + 3, pa’

into (1.3a), a necessary and sufficient condition that y(x) be a solution
is that coefficients of x***, z*, -.- agree on both sides. The coefficient
of z"*! yields the first of (1.5), that of x™ gives A =\, as in (1.6);
and those of z"!, ..., x° give successive equations for p,_,, +++, 0,. In
these equations the coefficients of ,_, --+,p, are respectively
Ny — Nty Ny — Npgy = * 5 My — Ag, SO there is one and only one choice of
the p,’s if and only if », = \; (§ < % — 1). This condition is equivalent
to the second part of (1.5); and the lemma is established.

LeEmMmA 1.2. FEquation (1.3b) s admissible 1f and only if
(1.8) a,+b,+e¢,=0, a+b +¢,=0, aa-+5bL=0;
(1.9) 2(a.c¢ + b,8) + n(a,® + b,8%) = 0 n=20,1,.-+).
And in this case N, is given by

N, = (@ + b)) + n(e,x + b,8) + n(n — 1)(a.0® + b,58%)/2

(1.10) (1 =0,1,.).

Proof. Substituting (1.7) into (1.3b) and equating like terms (as
a necessary and sufficient condition for a solution) we find that the
terms in 2" 2" give (1.8), the 2" term gives » = ), as in (1.10),
and p,_, --+, P, again are uniquely determined if and only if X\, = \;
( £n —1). Now the condition A\, # X\, (m % n) is seen to reduce
to (1.9); so the lemma is proved.

In the proofs of Lemmas 1.1, 1.2 it was seen that if a polynomial
y(x) of degree m satisfies (1.8a or b) then the corresponding value of
N\ is A, as given by (1.6) or (1.10); so we have the

CorOLLARY. If (1.3a) or (1.3b) is admissible then for each \ % A\,
(n=0,1, .-.) the only polynomial solution s y(x) = 0.

Let (1.3a) or (1.3b) be admissible. In both cases the solution for
n=1Iis
(1.11) yi(@) = & + (e + b,B)o~
where ¢ is given in (1.5). If we set
x4+ d=2a* 22" =yl —d)
with
d = (a@ + bB)o,
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the equation in z(x*) will also be admissible and will have the form
(1.8a) or (1.3b) after the constant term in C(x*) has been absorbed
into the . Moreover, for n = 1 we have

Z(x®) = 2% .

An admissible equation (1.3a) or (1.3b) in which for » = 1 the solution
contains no constant term will be called canonical. It is no restriction
to limit ourselves to canonical equations.

From (1.11) we obtain

LEMMA 1.3. The admissible equation (1.3a) or (1.8b) ts canonical
of and only if

(1.12) a + 0,8 = 0.

2. Orthogonality for case (1.3a). We consider the problem of
determining those canonical equations (1.3a) [(1.8b) in § 3] whose
polynomial solutions form an orthogonal set. For all polynomials y(x)
we have

(2.1) Y+ u) = 3y )tk |
Ie=0

so (1.3a) is equivalent, with respect to polynomial solutions, to the
differential equation of infinite order

(2.2) 2y @) + 3, Hiwy " @)k = oy(@)
where
(2.3)  Hy®) =7, + s = (@@ + 0,857 + (a.a* + 5,807z

(k=1,2,.-+) with 0 = {\ — (a, + b)}o~". Using (1.6) we find that the
sequence {0,} for which there are polynomial solutions is given by
g, = n.

Equation (2.2) is identical with equation (3.1) of [1]. In Remark
(i) ([1], p. 151) it is shown that if », = 0 the polynomial solutions do
not form an orthogonal set. We therefore assume 7, 0. In this
case, Theorem 3.1 ([1], p. 151) states that the solutions of (our present)
equation (2.2), hence of cononical equation (1.3a), form a weak orthogo-
nal set if and only if
(2.4) Popt1 = 0 s Sop+1 = st ,

Popirz = 28] 5 Seprz = SuS% »p=20,1,---).

Moreover the weak orthogonal set is an orthogonal set when and only
when one of the following two relations holds:
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(2.5, sl—8,=0;

(2.5,) 85— 8 #0 and 2ry(si—s)'#0,1,2, ...,
The condition 7,,,, = 0 is

(2.6) @@t 4 b =0 (p=0,1,-.--).

If @, =0 or b, = 0 then both are zero since @B = 0. But then r, = 0,
contrary to assumption. So a,b, # 0. Taking »p = 0, 1 in (2.6) we then
get B = a® Since a, £ are distinct, then 8 = —a; and again from
(2.6) with p = 0:a, = b,. Thus, if », # 0 then »,,,, =0 (p=0,1, -.+)
if and only if

2.7) B=—a,a,=b,#0.
With (2.7) holding then
0=a —b)=*0,
o

Topsr = 0, Spp1y = A, 15,0, = 2a(a, — b))~ '@,

(2.8) et
Sopte = (@; + b)(a, — b))~ 'a’?*,

Conditions (2.4) are seen to be satisfied. And (2.5,)), (2.5,) become
respectively:

(2.9, ab, =0;
(2.9,) ab, # 0, al(a, — b)(@ab)" #0,1, ... .

To sum up:

THEOREM 2.1. Let equation (1.3a) be canonical. Then its poly-
nomial solutions from an orthogonal set if and only if (2.7) holds
and one of (2.9), (2.9,) holds.

REMARKS. (1) If (1.3a) is canonical its polynomial solutions
form an orthogonal set if and only if it is of the form

(@@ + a)y(@ + a) + (b + a)y(z — a)

2.10
(2.10) — (@, + b)ay(x) = My(®) ,

with a, # 0, a, # b, @ = 0, and either (2.9,) or (2.9,) holding.

(ii) In (2.10) make the variable changes & = ax*, z(z*) = y(ax*).
There results a similar difference equation in z(z*), in which «a is
replaced by 1. This equation has an orthogonal set of solutions when
(2.10) does. It may be termed a standard canonical equation. After
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dividing by a, this equation has the form (dropping asterisks)

(cx + Dz(x +1) + (dx + 1)z(x — 1)

(2.11) — (¢, + d)xz(@) = p(x) ,

with ¢, — d, = 0 and either ¢,d, = 0 or

cd, # 0, (¢, — d)(ed)™ #0,1,2, -,

3. Orthogonality for case (1.8b). Let equation (1.3b) be canoni-
cal, so that (1.12) holds. Putting (2.1) into (1.3b) we get an infinite
order differential equation with polynomial coefficients of degree =< 2,
which is equivalent to (1.3b) at least for polynomial solutions:

(3.1) 2y (@) + 3, Ty @)k = oy(@) ,

where

Tu®) = 7, + s, + £,2° = (a,* + bS50~ + (a,a* + 5,80 'x

(3.2) + (a,* + b,B8%)0'a* (k=2,3,--°)

and ¢ = {A — (@, + b)}0~* and ¢ is given by (1.5). From (1.10) we see
that {o,} is given by

o, =mn+ nn — 1t,/2 .

Equations of the form (3.1), that is, with max, {degree T(x)} = 2
were considered in [1], but the results obtained were not as complete
as for the case where the coefficients are of degree < 1. We must
therefore proceed differently. We first show that if canonical equation
(1.3b), hence also (3.1), has an orthogonal set of solutions then 8 = —a.

For suppose not. Then |a| +# |B]|, since «, 8 are distinct. We
may assume that |a| > [B]|. By Theorem 2.2 ([1], p. 148) there is a
sequence of constants {«,} (the moments of the weight function corres-
ponding to the orthogonal set), with «, == 0, that satisfies the system
of equations

(3.9) dyi,=0,D5,., =0 (p,k=0,1,---)
where (in our present case, as seen in [1], p. 153)

» 2k+2 k k
bk = 2, ail:(' Toptopti—i T | Soptok+a—i
vk T —Fk—1

’L__.

+ ( B Vs |
1 —k -2

(3.4)
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» 2k+3 /l:+1 k+1
Dp+k_ ’_k-{-l(@_
1 E+1

E+1\; —k—1

-1/ kE+1
+ Z; + 1 <i _ _;; _ 2>t2p+2k+4—i:| .
Here the convention is made that (Z”) =0 for ¢ <0, and r; =s; =
t;=0forj<0and r,=t¢ =0,s, =1.

Putting the values of 7, s, t, from (3.2) into (3.3) we get

)”'zp+2k+z—¢

(3.5) >szp+zk+a—i

2p+2k+1 242+
(3.6) {Zwmgjk:’i mw‘;‘k :% (P =0,1, )
where
= zg‘,zai[(. k )aoa—i + ( k )a1a~*‘+1
=k T —k T —k—1
k]
(3.7) — k-2

2k+3 >
W= Saf 2t lE+1\gpe © [ E+1 \gpn
£= 2 I:k+l i —k E+1\; —p—1)"

7 —1 E+1 i
4+ —— a. |,
k+1(i—k—2)2 ]

and V,, X, are obtained from U,, W, be replacing
Qoy Oy @y, & DY by, by, by, B

Let k& be arbitrary but fixed. If we divide (3.6) by a®+%*+! qtr+ik+2
respectively and let p — o, then since |B/a| <1 we get

(3.8) U.=0,W,=0 k=01,-.-2).
And from (3.6) we then have
(3‘9) Vk=0’Xk=0 (k=0’19"')°

For k = 0, (3.8), (3.9) reduce to

ae, + aa, + aa, = 0, aa, + a0, + aa, =0,

3.10
( ) ab, + ab, + ab, = 0, ab, + ab, + ab, = 0,

Now from (8.3) with p = k£ = 0 we have

ar, +as, + ait, =0.
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But », =¢, =0, s, = 1; hence
a,=0.
So (3.10) becomes

Uty + 00, = 0, o, + o, = 0,

(3.11)
ab, + ab, = 0, ab, + ab, = 0.

Now a.b, = 0. For if a, or b, is zero then from a,& + 0,8 = 0 (in
(1.8)) and aB + 0 we get a, = b, = 0. Hence (again from (1.8)) ¢, =
0; so all coefficients in (1.8b) are of degree < 2, contrary to assumption.
Again, ab, = 0. For if a, or b, is zero then (3.11) implies that «, =

0. Since we already have a, = 0, then 4, = g‘ﬁ} = 0. But for the
1“*2

moments {«,} corresponding to an orthogonal set it is known [2] that

QA+ e
= (TEITRE0 =01
so we have a contradiction. Thus,
(3.12) ash, # 0, ab, # 0, a, = 0 .
The right hand equations in (3.11) give us
—ba, + ab, = 0.
This with
aa, + Bb, = 0
from (1.8) implies
aa, + £b, =0,

contrary to (1.9) for n = 0. So the assumption 8 # —a leads to a
contradiction, and we have

(3.13) B=—a.

Then from (1.12):

(3.14) a = b, .
In (3.2) we now have

Top = 20,07'0%7, 8, = (a; + 0,)07'a*, t,, = (a, + b)o~'a®®

(3.15)
Topt1 = 0, Sopt1 = (@, — b)o~'a’+, toprs = (a3 — b,)o" e+t
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»p=1,2,...), with », = ¢, =0,s, = 1. (3.12) and (3.15) show that
ry %= 0.

Let

(3.16) Uy = Supbsy Uy = bupisy Wy = bupes

From a,0 + 0,8 =0,8 = —a % 0 we get

(3.17) a,=b,.

It is then readily seen that

(3.18) v, =0,w, —tu, =0 =012 -..)
Choose 7, s,, t,, s; to satisfy the conditions

(3.19) ry# 0,2+ kt, =0k =0,1,--2),4,#0,

where «, = 0, a,, @, &, are obtained from the equations

(3.20) Dy=0,d!=0,D!=0.

(3.18)-(3.20) make Theorem 4.2 ([1], p. 158) applicable, so that the
solutions of (1.8b) form a weak orthogonal set if and only if
(3.21) {32p+1 = 88, tops1 = 0, 7554, = 0 P =0,1,-41).
Syprs = 8383, boprp = oS5, Toprp = 1287
Now these conditions do hold in view of (3.14).
The first two conditions of (3.19) become

(3.22) a, # 0; (a;, — b) + kaa, # 0 k=0,1,2,--).

Finally, for weak orthogonality to imply orthogonality it is necessary
and sufficient ([1], pp. 161-162) that ¢, ¢ S(r,, s,, 8;) where S(r, s, ;) is
the set of all real values of ¢, for which 7,(r,, s, s;, t,) = 0 for some
n > 1. The expression for 7, is lengthy, and we do not reproduce it
here. We merely observe that for given 7, s,, s, the set S(7,, s, s;) is
at most denumerable.

To sum up:

THEOREM 3.1. Let the admissible equation (1.3b) be camonical.
Its solutions form an orthogonal polynomial set if and only if:

(i) (8.12), (3.13), (3.14), (3.17), (3.19) hold.

(i1) ¢, ¢ S(ry, sy 83).

REMARKS. (a) If the canonical equation (1.8b) has an orthogonal
polynomial set of solutions then it has the form
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(M$WM+M+WWWM+WM+M+WW—®
' — [2a:2* + (a, + b)wly(x) = \y(2)

with

(3.24) a,a.(a, — b)a = 0;(a, — b) + kaa, = 0 k=0,1,-.-2).

(b) As in §2 the transformation x = ax*, z(x*) = y(ax*) carries
(3.24) into a similar equation with a replaced by 1.

4. Two examples. If an orthogonal polynomial set {P,(x)} satisfies
(2.10) with » =, for y = P,(x) then from (1.6) we have

(4.1) AN, = 2(10 + na(al — bl) (’)’I, = 0, ]_’ . .) .

Let {P,(x)}, {Q.(%)} be polynomial sets defined by the respective gener-
ating functions

4.2) el(1 — t)=+e = i}o P(@)t* (¢ 0),
(4.3) (1 — )= (l — bt)—=+t = i Q.@)t* (B#0,1).

We shall show that these sets are orthogonal and satisfy an equation
of the form (2.10).

Denote the left side of (2.10) by L[y]. If G(x, t) is the generating
function in (4.2) then

(4'4) L[G] = G{(alx + ao)(l - t)a + (blx =+ ao)(l - t)—a - (aq + bl)x} .
Also,

@5 Z:; N Po(@)t = 20,G + ala, — b))t 8G/ot
= G{2a, + a(a, — b)t[lc — (z + o)A — )]} .

{P,(x)} will satisfy (2.10) if (4.4) and (4.5) are identical. It is a
straightforward computation to show that they are identical if

(4.6) a=1;a,=0;b, = ac.
Hence {P,(z)} is an orthogonal set which satisfies the equation
@7 P@+1) + (@ + )Py — 1) — aP,(x) = (2¢ — n)P,(x) .

In the same way it is found that {@,(x)} is an orthogonal set that
is a solution of (2.10) for

(4.8) a=1,a,=bb;a = —bdb, .
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The equation reduces to

b(x — d)Q,(x + 1) + (@ — bd)Q.(z — 1) — (b + 1)zQ,(v)
= {—2bd + n(b — 1)}Q.(x) .

In the case of (4.9) the condition (2.9,) is to hold. It reduces to

(4.9)

(4.10) —d(b—1)#£0,1,2, -+ .
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