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DIFFERENCE EQUATIONS FOR SOME
ORTHOGONAL POLYNOMIALS

H. L. KRALL AND I. M. SHEFFER

It is well-known that every orthogonal polynomial set
{Pn(x)} satisfies a 3-term recurrence relation of the form

(1.1) Pn+i(x) = (anx + bn)Pn(x) + CnP»-i(x) in = 1, 2, •) .

Some orthogonal sets (polynomials of Jacobi, Hermite and so
on) are solutions of differential equations. It will be shown
that there exist orthogonal polynomial sets that satisfy 3-term
difference equations of the form

(1.2) A(x)y(x + ά) + B{x)y(x - a) + C(x)y(x) = λy(x)

where A, B, C are polynomials of degree ^ 2 and λ is a para-
meter.

Consider the difference equation

(1.3) A(x)y(x + a) + B(x)y(x + β) + C(x)y(x) = \y(x)

where A, B1 C are real polynomials, λ is a parameter, and a, β, 0 are

distinct and real. We examine two cases, according as A, B, C are

of degree <; 1:

(a ) A(x) = aLx + α0, B(a ) — bλx + 50J C(x) = C&,

or are of degree ^ 2:

( b) A(x) = α2x
2 + α ^ + α0, J?(cc) = b2x

2 + 6^ + δOι C(x) = c2x
2 + cxx

(α2, 62, c2 not all zero). We shall use the notation (1.3a), (1.3b) to

denote equation (1.3) for the respective conditions (a), (b).

Equation (1.3) will be termed admissible if there exists a real

sequence {Xn} (n = 0,1, •) such that for λ = Xn there is a polynomial

solution yn(x), unique to within a multiplicative constant, and yn(x) is

of degree (exactly) n. It follows that admissibility implies that

(1.4) λm Φ Xn(m Φ n) .

LEMMA 1.1. Equation (1.3a) is admissible if and only if

(1.5) a, + bx + c1 = 0 , d = a,a + b,β Φ 0 .

And in this case we have

(1.6) Xn = (α0 + 60) + n(aLa + bβ) (n = 0, 1, •) .

Proof. Let n be arbitrary. If we substitute the wth degree

polynomial
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(1.7) y(x) = x* + £ p3x>'

into (1.3a), a necessary and sufficient condition that y(x) be a solution
is that coefficients of xn+1, xn, agree on both sides. The coefficient
of xn+1 yields the first of (1.5), that of xn gives λ = Xn as in (1.6);
and those of xn~\ , x° give successive equations for pn_19 , po In
these equations the coefficients of pn-ι, , p0 are respectively
λΛ — Xn-lf Xn — λ%__2, , Xn — λ0, so there is one and only one choice of
the p/s if and only if Xn Φ X5 (j ^ n — 1). This condition is equivalent
to the second part of (1.5); and the lemma is established.

LEMMA 1.2. Equation (1.3b) is admissible if and only if

(1.8) α2 + b2 + c2 = 0 , a, + b, + cx = 0 , α2α + 62/S = 0

(1.9) 2(α,α + bβ) + ^(α2α
2 + 62/S

2) ^ 0 (w - 0, 1, •) .

And in this case Xn is given by

(1 10) K = (α° + ho)

(n = 0, 1, . - • ) .

Proof. Substituting (1.7) into (1.3b) and equating like terms (as
a necessary and sufficient condition for a solution) we find that the
terms in xn+\ xn+1 give (1.8), the xn term gives λ = Xn as in (1.10),
and pn-u ' - , Po again are uniquely determined if and only if Xn Φ Xά

(j ^ n — 1). Now the condition λm Φ Xn (m Φ n) is seen to reduce
to (1.9); so the lemma is proved.

In the proofs of Lemmas 1.1, 1.2 it was seen that if a polynomial
y(x) of degree n satisfies (1.3a or b) then the corresponding value of
λ is Xn as given by (1.6) or (1.10); so we have the

COROLLARY. // (1.3a) or (1.3b) is admissible then for each X ^ χn

(n = 0, 1, •) the only polynomial solution is y(x) = 0.

Let (1.3a) or (1.3b) be admissible. In both cases the solution for
n = 1 is

(1.11) yx{x) = x + (aoa

where δ is given in (1.5). If we set

x + d = #*, z(x*) = y(x* — d)

with

d - (αoα
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the equation in z(x*) will also be admissible and will have the form
(1.3a) or (1.3b) after the constant term in C(x*) has been absorbed
into the λ. Moreover, for n = 1 we have

An admissible equation (1.3a) or (1.3b) in which for n ~ 1 the solution
contains no constant term will be called canonical. It is no restriction
to limit ourselves to canonical equations.

From (1.11) we obtain

LEMMA 1.3. The admissible equation (1.3a) or (1.3b) is canonical
if and only if

(1.12) aQa + bQ/3 = 0 .

2* Orthogonality for case (1.3a). We consider the problem of
determining those canonical equations (1.3a) [(1.3b) in § 3] whose
polynomial solutions form an orthogonal set. For all polynomials y(x)
we have

(2.1) y(x + u) = Σ V<k)(x)uk/k !

so (1.3a) is equivalent, with respect to polynomial solutions, to the
differential equation of infinite order

(2.2) xy\x) + Σ Hk(x)y(k)(x)/kl - σy(x)

where

(2.3) Hlc(x) = rk + skx = {aQak + b.β^δ-1 + (a,ak + bβ^δ-'x

(k = 1, 2, •) with σ = {λ - (α0 + δo)}^1. Using (1.6) we find that the

sequence {σn} for which there are polynomial solutions is given by

On = n.

Equation (2.2) is identical with equation (3.1) of [1]. In Remark
(i) ([1], p. 151) it is shown that if r2 = 0 the polynomial solutions do
not form an orthogonal set. We therefore assume r2 Φ 0. In this
case, Theorem 3.1 ([1], p. 151) states that the solutions of (our present)
equation (2.2), hence of cononical equation (1.3a), form a weak orthogo-
nal set if and only if

(2.4)
nPf2 = r2sξ , s2p+2 = s2sξ (p = 0, 1, •) .

Moreover the weak orthogonal set is an orthogonal set when and only
when one of the following two relations holds:
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(2.5,) βϊ - 8s = 0

(2.5,) s2

2 - s3 Φ 0 and 2r2(s2 - s,)-1 Φ 0, 1, 2, . . . .

The condition r2p+1 = 0 is

(2.6) α0α
2*+1 + δo/92^1 - 0 (p - 0, 1, . . . ) .

If α0 = 0 or &o = 0 then both are zero since aβ Φ 0. But then r2 = 0,
contrary to assumption. So aobo Φ 0. Taking p = 0,1 in (2.6) we then
get β2 = α2. Since α, β are distinct, then /? = — a; and again from
(2.6) with p = 0: α0 = 60. Thus, if r2 ^ 0 then r2 p + 1 = 0 (p = 0,1, . .)
if and only if

(2.7) /5 = - α , a0 = b0 Φ 0 .

With (2.7) holding then

δ = α:(α1 - 6,) ^ 0 ,

so

= & P V+2 — 2 ^ ( 0 - ! Ox) OC P ,

s2p+2 - (a, + 60(^1 -

Conditions (2.4) are seen to be satisfied. And (2.5X), (2.52) become
respectively:

0,1,

THEOREM 2.1. Lβί equation (1.3a) δe canonical. Then its poly-
nomial solutions from an orthogonal set if and only if (2.7) holds
and one of (2.90, (2.92) holds.

REMARKS. ( i ) If (1.3a) is canonical its polynomial solutions
form an orthogonal set if and only if it is of the form

(2.9,)

(2.90

To sum up:

Φ 0, αo(α! —

(2 10) ^ + a°^X + °^ + ^lX

- (a, + bjxyix) = Xy(x) ,

with α0 Φ 0, αx Φ bu a Φ 0, and either (2.90 <>r (2.92) holding.
(i i) In (2.10) make the variable changes x = ax*, z(x*) — y(ax*).

There results a similar difference equation in z(x*), in which a is
replaced by 1. This equation has an orthogonal set of solutions when
(2.10) does. It may be termed a standard canonical equation. After
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dividing by α0 this equation has the form (dropping asterisks)

(C& + l)z(x +1) + (dyX + l)z(x - 1)

— (c1 + d^xz{x) = μs(αθ ,

with Cx — d1 Φ 0 and either c1dι = 0 or

M i ^ 0, (Cl - ddicA)"1 ^ 0, 1, 2, . . . .

3* Orthogonality for case (1.3b). Let equation (1.3b) be canoni-
cal, so that (1.12) holds. Putting (2.1) into (1.3b) we get an infinite
order differential equation with polynomial coefficients of degree <£ 2,
which is equivalent to (1.3b) at least for polynomial solutions:

(3.1) xy\x) + Σ Tk(x)y<k)(x)/k\ = σy(x) ,
k=2

where

Tk(x) = rk + sΛα? + tkx
2 = (aoa

k + bQβk)δ~1+ (a,ak + 6 ^ ) 5 - ^

+ (a2a
k + 62iS*)«-V (Λ = 2, 3, •)

and σ = {λ — (α0 + δo)}^1 and δ is given by (1.5). From (1.10) we see
that {σn} is given by

σn = n + n(n — l)t2/2 .

Equations of the form (3.1), that is, with max,, {degree Tk(x)} = 2
were considered in [1], but the results obtained were not as complete
as for the case where the coefficients are of degree ^ 1. We must
therefore proceed differently. We first show that if canonical equation
(1.3b), hence also (3.1), has an orthogonal set of solutions then β = —a.

For suppose not. Then \a\ Φ |/9|, since a, β are distinct. We
may assume that \a\ > \β\. By Theorem 2.2 ([1], p. 148) there is a
sequence of constants {an} (the moments of the weight function corres-
ponding to the orthogonal set), with a0 Φ 0, that satisfies the system
of equations

(3.3) d*+k = 0, Dl+k = 0 (j>, k - 0, 1, •)

where (in our present case, as seen in [l],"p. 153)

i - k - i
—" Z J # i

x=-k

\i
\i2p+2k+2,—ί

i - k - 2
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2p+2k+2-%

(3 5)

I i - l ( k + 1 \,
"Γ — — — \hp+2k+i-i

k + 1 \i _ k _ 2/

Here the convention is made that (™) = 0 for g < 0, and r^ = ŝ

ί, = 0 for j ^ 0 and rx = ίA = 0, sx = 1.
Putting the values of rk, sk, tk from (3.2) into (3.3) we get

0

where

i - k

A-

\i-k-2
<3 7>

i — * — 2/

and Vk, Xk are obtained from Uk, Wk be replacing

α0, α n α2, α: by 60, δi, K β

Let k be arbitrary but fixed. If we divide (3.6) by α2p+2fc+1, a2p+2k+2

respectively and let p —• oo, then since | /5/α | < 1 we get

(3.8) Uk = 0,Wk = 0 (A? = 0,l, . . . ) .

And from (3.6) we then have

(3.9) Vk = 0,Xk = 0 (fc = 0,l, . . . ) . .

For fc = 0, (3.8), (3.9) reduce to

,a, + a2a2 = 0, a,a0 + a2at + a,a2 = 0 ,

aQb0 + α ^ ! + α262 = 0, aJ>0 + a2bx + aj>2 = 0 .

Now from (3.3) with p — k = 0 we have

+ ^Si + αA = 0 .
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But r1 = tx = 0, s1 = 1; hence

So (3.10) becomes

(3.11)

ax = 0 .

2α2 = 0, a2ax + a3a2 = 0 ,

>62 = 0, a2bι + α362 = 0 .

Now α2δ2 Φ 0. For if α2 or b2 is zero then from a2a + &2/5 = 0 (in
(1.8)) and aβ Φ 0 we get α2 = h2 = 0. Hence (again from (1.8)) c2 —
0; so all coefficients in (1.3b) are of degree < 2, contrary to assumption.
Again, aQb0 Φ 0. For if α0 or bQ is zero then (3.11) implies that a2 —

0. Since we already have aλ = 0, then J1 = = 0. But for the

moments {an} corresponding to an orthogonal set it is known [2] that

Λ 0
• ) ;

fY CΫ
yi^n + l ^2%

so we have a contradiction. Thus,

(3.12) α2δ2 Φ 0, αoδo Φ 0ya2Φ 0 .

The right hand equations in (3.11) give us

— bλaz + afi2 — 0 .

This with

from (1.8) implies

aa2
βb2 = 0

bλ = 0 ,

contrary to (1.9) for n = 0. So the assumption β Φ —a leads to a
contradiction, and we have

(3.13)

Then from (1.12):

β= - a .

In (3.2) we now have

(3.15) \TίP = 2a°δ 1(χ2P' S2P = ( α i "

= 0 > S2p+1 = («1 ~ ί>x)

yyZp + //γ
UL 1 °2p — \^2

, t2p+χ = (<22 -
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(p = 1, 2, . . . ) , with rί = tι = 0, s, = 1. (3.12) and (3.15) show that

r2Φ 0 .

Let

(o.lb) Up = s2p+ι, vp = t2p+ι, Wp = t2p+2

From a2a + b2β = 0, /S = —α ^ O w e get

(3.17) a 2 = b 2 .

It is then readily seen that

(3.18) vp = 0,wp- t2up = 0 (p = 0, 1, 2, •)

Choose r2, s2, ί2, s3 to satisfy the conditions

(3.19) r2 ̂  0, 2 + Atf2 Φ 0(fc = 0,1, . •.), 4 ^ 0 ,

where aι = 0, α2, α3, <x4 are obtained from the equations

(3.20) D°o = 0, dl = 0, JD? = 0 .

(3.18)-(3.20) make Theorem 4.2 ([1], p. 158) applicable, so that the
solutions of (1.3b) form a weak orthogonal set if and only if

s$> Up+i = 0, r2p+1 — 0

(ί> = U, 1, •) .
ό 2 d 3 j ^2^+2 — ^2ύ3 j ' 2p+2 — ' 2d3

Now these conditions do hold in view of (3.14).
The first two conditions of (3.19) become

(3.22) α0 Φ 0; (a, - b,) + kaa2 Φ0 (k = 0, 1, 2, . . . ) .

Finally, for weak orthogonality to imply orthogonality it is necessary
and sufficient ([1], pp. 161-162) that ί2 g S(r2, s2j s3) where S(r2, s2, s3) is
the set of all real values of t2 for which πn(r2, sz, s3, ί2) = 0 for some
n > 1. The expression for π% is lengthy, and we do not reproduce it
here. We merely observe that for given r2, si9 s3 the set S(r2, s2, s3) is
at most denumerable.

To sum up:

THEOREM 3.1. Let the admissible equation (1.3b) be canonical.
Its solutions form an orthogonal polynomial set if and only if:

( i ) (3.12), (3.13), (3.14), (3.17), (3.19) hold.
(ii) ί 2 ίS(r 2 , s 2 ,δ 3 ) .

REMARKS. (a ) If the canonical equation (1.3b) has an orthogonal
polynomial set of solutions then it has the form
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(a2x
2 + a,x + ao)y(x + a) + (a2x

2 + b,x + ao)y(x - a)

— [2a2x
2 + (a, + b^x\y(x) = λ#(&) ,

with

(3.24) αoα2(α! - bx)a Φ 0; (αx - b,) + kaa2 ΦQ (k = 0, 1, . •) .

( b ) As in §2 the transformation x == α#*, z(x*) — y(ax*) carries
(3.24) into a similar equation with a replaced by 1.

4* T w o examples. If an orthogonal polynomial set {Pn(x)} satisfies
(2.10) with λ = λn for y = PJx) then from (1.6) we have

(4.1) Xn = 2α0 + na(aλ - b,) (n = 0, 1, . •) .

Let {Pn(x)}, {Qn(x)} be polynomial sets defined by the respective gener-
ating functions

(4.2) e c t ( l - t y + c - Σ P n ( x ) t * ( c Φ O ) ,
n=0

(4.3) (1 - ί ) - " (l - δ ί )- I + i = Σ <3«(«)ίM (b Φ 0, 1) .

We shall show that these sets are orthogonal and satisfy an equation
of the form (2.10).

Denote the left side of (2.10) by L[y\. If G(x, t) is the generating
function in (4.2) then

(4.4) L[G] = GKa.x + αo)(l - t)a + (b,x + αo)(l - t)~a - (a, + b,)x} .

Also,

(4.5) ^=o

= G{2α0 + a(a, - bx)t[c - (x + c)(l - ί)"1]} .

{Pn(x)} will satisfy (2.10) if (4.4) and (4.5) are identical. It is a
straightforward computation to show that they are identical if

(4.6) a = 1; aλ = 0; b, = αo/c .

Hence {Pw(^)} is an orthogonal set which satisfies the equation

(4.7) Pn(x + l) + (x + c)Pn(x - 1) - &Pn(α) = (2c - n)Pn(s) .

In the same way it is found that {Qn(x)} is an orthogonal set that
is a solution of (2.10) for

(4.8) a = 1; αι = 66,; α0 = — 6d6, .
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The equation reduces to

b(x - d)Qn{x + 1) + (x - bd)Qn(x - 1) - (6 + l)xQn(x)

= {-2bd + n(b- l)}Qn(x) .

In the case of (4.9) the condition (2.92) is to hold. It reduces to

(4.10) -d(b- 1 )^0,1,2 , . . . .

REFERENCES

1. H. L. Krall and I. M. Sheffer, Differential equations of infinite order for orthogonal
polynomials, Annali dί Matematica (4) 74 (1966), 135-172.
2. G. Szego, Orthogonal polynomials, American Mathematical Society Colloquium
Publications, vol. 23, 1959.

Received March 12, 1968.

PENNSYLVANIA STATE UNIVERSITY




