FIXED-POINT-FREE OPERATOR GROUPS OF ORDER 8

Fletcher Gross

Abstract

Let A be a group of order 2^{n} which acts as a fixed-pointfree group of operators on the finite solvable group G. If no additional assumptions are made concerning G, then "reasonable" upper bounds on the nilpotent length, $l(G)$, of G have been obtained only when A is cyclic [Gross] or elementary abelian [Shult]. As a small step in extending the class of 2 -groups A for which such bounds exist, it is shown in the present paper that if $|A|=8$, then $l(G) \leqq 3$ if A is elementary abelian or quaternion and $l(G) \leqq 4$ otherwise.

Unfortunately, the author was unable to generalize his methods of proof to a wider class of groups.

The notation used in this paper agrees with that of [1] with two additions: (1) If G is a linear group operating on V and U is a G-invariant subspace, then $\{G \mid U\}$ denotes the restriction of G to U; and (2) $F_{0}(G)=1$ and $F_{n+1}(G) / F_{n}(G)$ is the greatest normal nilpotent subgroup of $G / F_{n}(G)$.

Theorem 1. Let $G=N Q$ be a finite solvable linear group over a field K whose characteristic is not 2 and does not divide $\left|F_{1}(N)\right|$. Assume that N is a normal 2-complement of G and Q is a group of order 8 containing an element x of order 4 . If, in addition, $C_{N}(Q)=1$ and $\sum_{g \in Q} g=0$, then it must must follow that

$$
\left[x^{2}, F_{2}(N) / F_{1}(N)\right]=1
$$

Proof. According to the hypothesis Q can be any group of order 8 except an elementary abelian group. If Q is cyclic, this theorem is a special case of [4, Th. 1.2], and if Q is a quaternion group, then a stronger result is possible. Thus the main interest in the theorem is when Q is either dihedral or is the direct product of cyclic groups of orders 4 and 2.

To prove the theorem we first notice that extending K affects neither hypothesis or conclusion. Thus we may as well assume that K is algebraically closed. We now assure that G is a minimal counterexample to the theorem and let V be the space on which G operates.

Choose S to be a subgroup of $F_{2}(N)$ such that Q normalizes S, $\left[x^{2}, S\right] \not \equiv F_{1}(N)$, and S is minimal with respect to the above properties. S must be a p-group for some prime p. Now Q normalizes [x^{2}, S], and $\left[x^{2},\left[x^{2}, S\right]\right]=\left[x^{2}, S\right][2]$. Due to the minimality of S, this implies that $\left[x^{2}, S\right]=S$.

Now $C_{S}\left(O_{p^{\prime}}\left(F_{1}(N)\right)\right)=S \cap F_{1}(N)$. Thus there is an r-group R for some prime $r \neq p$ such that $Q S$ normalizes $R, R \leqq F_{1}(N),[S, R] \neq 1$, and R is minimal with respect to the above properties. R must be a special r-group, and R / R^{\prime} must be transformed irreducibly by $Q S$.

Since the characteristic of K does not divide $\left|F_{1}(N)\right|, V$ is a completely reducible $K-R$ module. From this and the fact that $[S, R] \triangleleft Q S R$, it follows that V contains a maximal $K-Q S R$ submodule M such that $[S, R]$ is not the identity on V / M. Now let H be the kernel of the representation of $Q S R$ afforded by V / M.

Since $\langle x\rangle$ must be faithfully represented on V / M, we have that either $Q \cap H=1$ or $Q / Q \cap H$ is cyclic of order 4. But Q has no nonzero fixed vector in V and so certainly has none in V / M. Thus if $Q / Q \cap H$ is cyclic of order 4 , then it follows from [4] that $\left[x^{2}, S, R\right]=1$. Hence we must have $Q \cap H=1$. This implies that $Q S R / H$ acting as a linear group on V / M satisfies the hypothesis but not the conclusion of the theorem. Therefore, in proving the theorem we may as well assume that $G=Q S R$ and that V is an irreducible $K-G$ module.

Clifford's theorem now implies that V is a completely reducible $K-S R$ module and $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{t}$ where the V_{i} are the homogeneous $K-S R$ modules. Q must permute the V_{i} transitively, and, since $[S, R] \triangleleft Q S R$, it must be that $\left\{[S, R] \mid V_{i}\right\} \neq 1$ for all i.

We now proceed to prove that $t=1$, or, in other words, that V is a homogeneous $K-S R$ module. For this purpose let

$$
Q_{i}=\left\{g \mid g \in Q, V_{i} g=V_{i}\right\}
$$

and

$$
C_{i}=\left\{g \mid g \in Q_{i},\left\{[g, S R] \mid V_{i}\right\}=1\right\}
$$

Then Q_{i} and Q_{j} as well as C_{i} and C_{j} are conjugate in Q for all i and j. $\left[Q: Q_{i}\right]=t, V_{i}$ is an irreducible $K-Q_{i} S R$ module, and $\left\{\sum_{g \in Q_{i}} g \mid V_{i}\right\}=0$. for all i. The last fact implies that $Q_{i} \neq 1$. Since $\left\{\left[x^{2}, S\right] \mid V_{i}\right\} \neq 1$, x^{2} cannot belong to C_{i}.

Lemma. $\quad C_{i}=1$ for all i.
Proof. Suppose $C_{i} \neq 1$. Since $\langle x\rangle \cap C_{i}=1$, it follows that C_{i} is cyclic of order 2 generated by an element y_{i}. Now $C_{R S}(x)$ is normalized by Q. It follows from this and the fact that conjugation by x transitively permutes the y_{i} that $\left[u, y_{i}\right]=\left[u, y_{j}\right]$ for all i and j and all $u \in C_{R S}(x)$. Since $\left[u, y_{i}\right]$ is represented by the identity on V_{i}, this all implies that $\left[C_{R S}(x), y_{i}\right]=1$ for all i. Since x and y_{i} generate Q, we obtain that $C_{R S}(x)=C_{R S}(Q)=1$. Hence x acts as a fixed-point-free automorphism on $R S$. From this follows $\left[x^{2}, S, R\right]=1$ [3] which is a contradiction.

Lemma. $\quad Q_{i}=Q$ and $t=1$.
Proof. If Q_{i} is elementary abelian, it follows from [7, Th. 4.1] that $C_{i} \neq 1$. Thus, since $Q_{i} \neq 1$, we must have either $Q_{i}=Q$ or Q_{i} is cyclic of order 4 generated by an element y. If Q_{i} is cyclic of order 4 we must have $y^{2}=x^{2}$ because Q only has 8 elements. Now Q_{i} can have no nonzero fixed vector in V_{i}. Theorem 1.2 of [4] now yields that $\left[x^{2}, S, R\right]$ is represented by the identity on V_{i}. Since this is impossible, Q_{i} must be Q. Then $t=\left[Q: Q_{i}\right]=1$ and so V is a homogeneous $K-S R$ module.

Corollary. $\quad Z(S R)=R^{\prime}=1$.
Proof. $Z(S R)$ is represented by scalar matrices and so Q must centralize $Z(S R)$. Thus $Z(S R) \leqq C_{R S}(Q)=1$. Now R^{\prime} is normalized by $Q S$ and so, due to the minimality of R, we must have $\left[S, R^{\prime}\right]=1$. Therefore $R^{\prime} \leqq Z(S R)$.

Now let $V=U_{1} \oplus U_{2} \oplus \cdots \oplus U_{s}$ where the U_{i} are the homogeneous $K-R$ submodules of V. Let $H_{i}=\left\{g \mid g \in Q S, U_{i} g=U_{i}\right\}$ and $S_{i}=$ $H_{i} \cap S$. Now $S Q$ must permute the U_{i} transitively since V is an irreducible $K-Q S R$ module. Thus $s=\left[Q S: H_{i}\right]$ for all i. But V is a homogeneous $K-S R$ module. This implies that $\left(U_{i} S\right) Q=U_{i} S$. Hence $U_{i} S=V$ for all i. Therefore $s=\left[S: S_{i}\right]=\left[Q S: H_{i}\right]$ which means that H_{i} must contain a Sylow 2-subgroup of $S Q$. Since the H_{i} are all conjugate in $Q S$, this implies that $Q \leqq H_{i}$ for some $i, i=1$ say. Then Q fixes U_{1}. Let R_{1} be the kernel of the representation of R afforded by U_{1}. Clearly R_{1} is normalized by Q. But R is abelian and so R is represented by scalar matrices on U_{1}. It now follows that $\left[R / R_{1}, Q\right]=1$. Since $C_{R}(Q)=1$, this implies that $R_{1}=R$. But, since V is an irreducible $K-Q S R$ module and $R \triangleleft Q S R$, this is impossible. This contradiction proves the theorem.

Theorem 2. Let $G=N Q$ be a finite solvable linear group over a field K whose characteristic does not divide $\left|F_{1}(N)\right|$. Assume that N is a normal 2-complement of G and Q is an ordinary quaternion group. If, in addition, $C_{V}(Q)=1$ and $\sum_{g \in Q} g=0$, then it must follow that $\left[Q^{\prime}, F_{1}(N)\right]=1$.

Proof. Extending K affects neither hypothesis nor conclusion. Thus we assume that K is algebraically closed. If $\left[Q^{\prime}, F_{1}(N)\right] \neq 1$, then there is a subgroup P of $F_{1}(N)$ such that Q normalizes P, Q^{\prime} does not centralize P, and P is minimal with respect to the above properties. Then P is a special p-group for some prime p and P / P^{\prime} is transformed faithfully and irreducibly by Q. This implies that
$\left|P / P^{\prime}\right|=p^{2}$, and so P is either elementary abelian of order p^{2} or extraspecial of order p^{3} and exponent p.

If V is the vector space on which G operates, then

$$
V=V_{1} \oplus V_{2} \oplus \cdots
$$

where the V_{i} are the homogeneous $K-P$ modules. By renumbering, we may assume that $\left[Q^{\prime}, P\right]$ is not the identity on V_{1}. Now if Q, as a permutation group on the V_{i}, had an orbit of length 8 , then $\sum_{g \in Q} g$ would not be 0 . This implies that Q^{\prime} must fix V_{1}.

If $\left\{P \mid V_{1}\right\}$ is abelian, then P is represented by scalar matrices on V_{1} and so we would have $\left\{\left[Q^{\prime}, P\right] \mid V_{1}\right\}=1$. Thus $\left\{P \mid V_{1}\right\}$ is not abelian. This implies that $P=\left\{P \mid V_{1}\right\}=$ an extra-special p-group of order p^{3} and exponent p.

Now let $H=\left\{g \mid g \in Q, V_{1} g=V_{1}\right\}$. In order that $\sum_{g \in Q} g=0$, we must have $\left\{\sum_{g \in H} g \mid V_{1}\right\}=0$. Now a faithful irreducible K-representation of P is uniquely determined by the representation of P^{\prime} [6]. It follows from this that $H=C_{Q}\left(P^{\prime}\right)$. Since $C_{P}(Q)=1, H \neq P$. But the automorphism group of P^{\prime} is cyclic. Thus Q / H is cyclic. This implies that H is cyclic of order 4. Let x generate H and let y be an element of Q not contained in H.

Case 1. $\quad p \equiv 1(\bmod 4)$.
Suppose first that $\operatorname{char}(K) \neq 2$. Then Theorem 3.1 of [7] implies that $\left\{\left[x^{2}, P\right] \mid V_{1}\right\}=1$, which is a contradiction. If $\operatorname{char}(K)=2$, then Theorem B of [6] leads to $\left\{x^{3}+x^{2}+x+1 \mid V_{1}\right\} \neq 0$, also a contradiction.

Case 2. $\quad p \equiv 3(\bmod 4)$.
In this case $G F(p)$ does not contain a primitive 4 th root of unity. Since Q faithfully transforms P / P^{\prime}, it follows that there elements a, b generating P such that

$$
a^{y} \equiv b, b^{y} \equiv a^{-1}\left(\bmod P^{\prime}\right)
$$

But this implies that $[a, b]^{y}=\left[b, a^{-1}\right]=[a, b]$, contrary to $y \in C_{Q}\left(P^{\prime}\right)$.
Theorem 3. Let Q be a group of order 8 which acts as a fixed-point-free group of automorphisms of the finite group G. Then G is solvable and $l(G) \leqq 3$ if Q is either elementary abelian or a quaternion group and $l(G) \leqq 4$ otherwise. The upper bound in the case when Q is elementary abelian or a quaternion group is bestpossible.

Proof. If G admits a 2-group as a fixed-point-free operator group,
then G must have odd order and so G must be solvable from the Feit-Thompson Theorem [1]. If Q is elementary abelian, the result follows from Thorem 4.3 of [7]. Therefore assume that Q has an elemen x of order 4. We now use induction on $|G|$.

If H_{1}, H_{2} are distinct minimal Q-admissible normal subgroups, then $l(G) \leqq l\left[(G / H) \times\left(G / H_{2}\right)\right]=\operatorname{Max}\left\{l\left(G / H_{1}\right), l\left(G / H_{2}\right)\right\}$. Thus in proving the theorem we may assume that G has only one minimal Q-admissible normal subgroup. Hence $F_{1}(G)$ is a p-group for some prime p. Now let $N=G / F_{1}(G)$ and consider $N Q$ as a linear group acting on V where V is $F_{1}(G) / D\left(F_{1}(G)\right)$ written additively. Theorems 1 and 2 imply that $\left[x^{2}, F_{k}(N) / F_{k-1}(N)\right]=1$ where $k=1$ if Q is a quaternion group and $k=2$ otherwise. It follows from this that $\left[x^{2}, N / F_{k-1}(N)\right]=1$. But then $N / F_{k-1}(N)$ admits a fixed-point-free operator group of order 4. This implies that $l\left(N / F_{k-1}(N)\right) \leqq 2$. We now have that

$$
l(G)=1+l(N)=1+(k-1)+l\left(N / F_{k-1}(N)\right) \leqq k+2 .
$$

Finally, the claim of best-possible in the statement of the theorem is justified by [5].

References

1. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
2. G. Glauberman, Fixed points in groups with operator groups, Math. Z. 84 (1964), 120-125.
3. D. Gorenstein and I. Herstein, Finite groups admitting a fixed-point-free automorphism of order 4, Amer. J. Math. 83 (1961), 71-78.
4. F. Gross, Groups admitting a fixed-point-free automorphism of order 2^{n}, Pacific J. Math. (in press)
5. (in press).
6. P. Hall and G. Higman, On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3) 6 (1956), 1-42.
7. E. Shult, On groups admitting fixed-point-free abelian groups, Illinois J. Math. 9 (1965), 701-720.

Received March 19, 1968.
University of Utah
Salt Lake City, Utah

