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BANACH ALGEBRA BUNDLES

BERNARD R. GELBAUM

If & is a fibre bundle over a space X with fibre 4, a
Banach algebra, and group the group of isometric automor-
phisms of A then the set of sections of the fibre bundle can
be endowed with the structure of a Banach algebra, If the
fibre A is a so-called Q-uniform Banach algebra (e.g., a com-
mutative Banach algebra) then the maximal ideal space of
the Banach algebra of sections can be identified as a fibre
bundle with base X, fibre the set of maximal ideals of the
Banach algebra A and group the group of self-homeomorphisms
of the space of maximal ideals of A. Similar results are ob-
tained for certain epimorphism structures associated with the
algebras described.

In discussing fibre bundles we shall operate in the following con-
text: A fibre bundle & specified up to equivalence [3] by a bundle
space, F, a base space X, a fibre A, a continuous projection p: £ — X,
an open covering % = {U} of X, homeomorphisms ¢,: U X A — p~(U)
for Ue Zz. The ¢, are fibre-preserving in that o,(x x A) = p~'(x).
Furthermore there is an effective topological group .& of self-homeo-
morphisms (auteomorphisms) of the fibre A. The mappings ¢, and
the fibre A are related as follows: For

xeUNV,U, Vez, and acA,letoip,(, a) = (z, gyr(x)(@)) .
Then g,,(x) € .% and the map g,: UN V— & is continuous. If
yep™x),xeUec% ,

we shall write ¢7'(y) = (z, t,(¥)).
In our discussions we assume that .o is topologized via neighbor-
hoods of which the following is typical:

N(To) = {T: T(a;) e N(To(a)), © = 1,2, + -+, n}

where T, Te.%% a;€ A and N(Tya;) is a neighborhood of T, (a;) in
the topology of A. Thus .o is topologized by pointwise convergence.

Let gyv(x) = T, and let N(T,) be given as above. Note that
guy(x)(a) is continuous on (U N V) x A since it is the composition of
@7'py and the continuous open projection (UN V) x A— A. Thus
there is a neighborhood N(2,) c U N V such that, for

x € N(x,), guv(@)(@;) € N(gyv(@)a;), t = 1,2, <+, m .
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Thus g, (N(x,)) < N(T,) and ¢,,: UN V— .9 is continuous.

For our special purposes, A will be a Banach algebra with iden-
tity ¢, X will be compact Hausdorff and .o~ will be a group of isome-
tric C-automorphisms of A. We shall then show how to identify I'(¥),
the set of continuous sections v: X — E (pv(x) = «) as a new Banach
algebra D. For a class of Banach algebras (the so-called Q-uniform
algebras), among which are the commutative Banach algebras, we
shall relate various structure spaces for A and D and show how the
fibre bundle structure of & imposes a structure on the structure
spaces for D™,

In consonance with the remarks made earlier, we topologize .o
by neighborhoods of which the following is typical

N(ao) = {C(: Ha(aw) - ao(ai) HA < g, 1= 1» 2’ Tty ,n}

where «,, e o and a;€ A. Thus the map .o~ x A3 (a,a)—a(a)c A
is continuous.

Other topologies are useful in special situations. However, we
shall confine ourselves to that described above®. Direct calculation
shows that in the given topology .&7 is a topological group.

1. I'(¥). In this section we show I'(¥) may be given the
structure of a Banach algebra D that is in fact a bimodule over the
algebra C(X) of C-valued continuous functions on X.

For v, % I(¥), fi, ;€C(X) and e UeZ let

For@) = 7 fi(®) =@p(x, fI(2)(7(2)))
[fiov + for 7] (@) = pp(®, [i(®)E(7(2)) + Fo(2)Er(72(2)))
Vi 7e(%) = Pu(@, Lo (7:(2))Er(7:(2))) .
The above definitions ostensibly make the results dependent on the

choice of Ue Z. However, if xe€ Ve %, then, e.g., if we use V for
definition,

V12 7(®) = @p(@, L (7)) T (7:()))
= @p(®, gy (@) [T (7(2)Ex(V2(2))])
= @u(@, t(7(@)) s (7)) .

Thus 7,-7.(x) is well-defined as are f,-v(x) and [f,-7, + fo-7.](x); clear-
ly 71'72, f]_")’, f1'71 + f2'72 belong‘ tO F(g)-
We note the existence of the following special sections:

1 All the morphisms of this paper are assumed to be continuous, i.e., in the
category of Banach algebras and continuous homomorphisms among them.

2 The author thanks the referee for numerous constructive comments on this and
on other points.
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e(x) = py(x, e) , veUe%
o(x) = py(z, 0) , xeUe% .

Clearly these definitions are U-independent. Furthermore for all
ve (&),

Yee=eY =70Y=70=0,7+0=0+7=7.

The above definitions endow I'(¥’) with an algebraic structure.
If we set |v(x)| = || tz(v(x)) ||, for xe Ue %, and then

Hvll=:sgplvcw|,

we see that:

(i) since each g,.(x) is an isometry, |v(x)| is independent of
the choice of U>z,

(i) |v(x)| is continuous on X and

(iii) since X is compact, ||7]] < ee.

Direct verification shows that || --- || is @ norm on (") and that
with respect to this norm I'(¢°) is a Banach algebra D.

In the work below we shall need a lemma whose general character
justifies its inclusion here.

LEMMA 1.1. Let UeZ and let fe C(X, A), the set of A-valued
continuous functions on X, where the support K of f is contained
U. Then

(@) = oo, flw)), wel
= o(x) xe U

is in D and t,(7(x)) = f(x).
Proof. For xe U, v(x) is clearly continuous. If x,¢ U, then
V(o) = o(%,) .

The (compact) support K of f lies in U whence there is a neighbor-
hood N(w,) not meeting K. Clearly, throughout this neighborhood
v(x) = o(x). The equation py(x) = x is valid by definition of .

REMARK. If {y,} is a C-valued partition of unity subordinate to
Z and ac A let

Yo(@) = @u(@, ayy(x)), @elU
= o() , xeU.

If Zr is finite, let v = 3, v,. Then for U,e %
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Ly, (v(@) = Site,(ve(2))
= ZgUQU(x){tU(’YU(x))]
= Eg(/'ov(fc)(a)%"t(x) .

The last expression is nct necessarily equal to a.

We note also that by the very definition of the structure of D
the mapping 6, :v—t.(v(x)) for any wve Ue 4/ is a C-epimorphism
of D onto A.

The algebra D is clearly an analogy and an extension of the con-
cept of C(X, A). When ¢~ is the trivial bundle, then in fact D =
C(X, A). We note in passing that for a suitable tensor product norm,
namely X\, the “least cross-norm” [2]|, we may identify C(X, A) and
C(X) ®;A. In another place, the author proposes to explore this sug-
gestion since it appears to lead to an abstract and useful formulation
of the algebras studied here.

2. Uniform Banach algebras. The Gelfand-Mazur theorem may
be rephrased as follows:

If A is a commutative Banach algebra and i+f M s a regular
maximal tdeal of A then A/M is C-isomorphic to C.

We are led to the following definition:

Let @ be a simple Banach algebra with identity e, and let A be
a Banach algebra that is a Q-bimodule, i.e., for ¢e @, ac A, ga and
aq (possibly different) are defined, belong to A and

Haall = llgllllaill,lleql] = llailiql;eq
= ae, = a, q(ab) = (qa)b, (ab)q = a(bg), (qa)q’
q(aq’); (¢, @) — qa, (¢, @) — aq

I

are bilinear. If, for every regular maximal ideal M of A4, A/M is C-
isomorphic to Q, we say A is Q-uniform.

Whereas the set _¢7, of regular maximal ideals is of interest if
A is commutative, the set Epi, (4, Q) of C-epimorphisms 7, of A onto
Q, where || 7,(a)]lo = ||all,, is of interest when A is a not necessarily
commutative @Q-uniform Banach algebra. Until further notice we as-
sume A is a Q-uniform Banach algebra and that it has an tdentity
e, as noted earlier. Examples of such (noncommutative) A abound,
e.g., C(X, Q) where X is compact Hausdorff and @ is a simple Banach
algebra, e.g., the set End,(C") of endomorphisms of C*,n >1. In a
separate paper [1] the author will treat general Q-uniform algebras



BANACH ALGEBRA BUNDLES 341

in detail.
We note here the surjection %: Epi, (4, @)on—ker(n)e . If
Epi. (4, Q) is given the weak topology (a typical neighborhood is

N(770> = {77: H 77(0’@) - 770(&73) H(J < g, 1y 2y s, M, Q€ A})

and if _ 7, is then given the strongest topology such that %k is con-
tinuous, then Epi, (A4, @) is a Hausdorff space and the map %k is an
open surjection.

We make one more observation in the form of

LEMMA 2.1. Let A be a Banach algebra that is a bimodule over
a Banach algebre B. Then every vegular ideal I of A is also o B-
ideal.

Proof. If w/I = identity of A/I, let be B,xel. Then wu(bx) —
bxeI. However (ub)z el whence bz e I and similarly zbe I.

3. Epi.(D,Q). When A is Q-uniform we assume .7 is the
group of isometric @Q-automorphisms of A. We prove first that D is
Q-uniform and then we shall show that Epi. (D, Q) is a new fibre
bundle over X with fibre Epi, (A, ) and where the various maps and
the group of the bundle are quite naturally related to the correspond-
ing entities for #. Note that the map 0, :7v —t,(v(x)) for xe Ue %
is now a @-epimorphism of D onto A.

LEMMA 3.1. The algebra D is Q-uniform.

Proof. We define actions of Q@ on D by:

q-7(x) = py(x, gt (7)) , velU
7-q(x) = pu(w, t(7(2)q) , zeU.

Because the g,, are Q-automorphisms the above is a valid definition
and makes D a @Q-bimodule.

Next let M be a maximal ideal in D. We shall show that for
some @, ¢ X, every U e % such that x,e U and every ve M, t,(7(x,)) = e.
Indeed, otherwise, for each = there is some U,z and a v, M such
that ¢, (v.(x)) = e. In consequence [¢. (7.(¥))] ™" exists for all y in a
neighborhood N, U,. We may assume there are neighborhoods V.,
W, satisfying V.,cV.c W.c W,c N,. Let x,i=1,2 -+, be
such that U, V., = X. Let f;e C(X) be such that f; =1on V,, f; =0
off W.,,0=fi(x) =1, all . Then let g;() = fi(x)o[tl,a%.(ﬁ'a%.(a:))]“1 for
ze W., g:(x) = 0 otherwise. The support of g; is contained in U,
and since inversion is continuous we find g;e C(X, A). Thus there is
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a section 7; such that by, (7)) = g:x). Then t, (¥;+7.,(x)) =e for

xeV,,. Note that ¥; = v;-v,,€ M. Let {y,} be a partition of unity
subordinate to the covering {V.;}. Then 4;-7;€ M (Lemma 2.1) whence
¥ = X\ ¥:¥:€ M. However, for any « there is some V, 32 and then

b, (F@) = 3, ¥i(@)te, (@) = 3 di@e = e

(To prove this, we begin with xe V,,C U,,

to, (V@) = 3 #@te, (,(@) -
If z¢ U,J. then
tr, (Vi(®)) = gnxivxj(w)tuxj(%(x)) =e.
If z¢ U,,j, then x ¢ V,J., ¥;(®) = 0 whence
Vi(@)ty, (Vi(@) = y5(@)e .
In all cases then
Vi(@)ty, (Vi(x)) = ¥i(@)e) .

Thus 5(x) = e(x) and M cannot be a proper ideal.

Note that the method of proof applies to the simplest case in
which the bundle is trivial and A = C (or even A = R, in which case
A is not a complex but a “real” Banach algebra). The conclusion is
that the identification of points and maximal ideals in function alge-
bras is not completely dependent on their being complex or on their
having an involution.’

We thus choose some x, such that ¢,(v(x,) # ¢ for all ye M and
all Ue % such that x,e U. Consequently 0Uz0(M ) # A, is an ideal and
we show it is maximal. Otherwise there is a maximal ideal I/ 2 0%0(M )
and since 01,% is surjective, 0,7;0(117 ) is an ideal in D. However
0;;0(1171 ) O M whence, (9(7;0(1171 ) = Mand so I = 0y, (M), a contradiction.
Set 0,,%(M) = M,, and let 7: A — @ have kernel M,,. Define 5,: D —
Q by 7,(7) = (ty(¥(%))) = 70y, (7). Then 7,¢Epi;(D, Q) and thus
ker (y,) is a maximal ideal. Clearly, M C ker (1,) and so M = ker (1,).
We conclude D/M is C-isomorphic to @ and thus that D is Q-uniform.

In the argument just given we have used the following

LEMMA 3.2. Let xe Ue Z,n,€ Epic (4, Q). Then
Np = Nuby, € Epic (D, Q) .
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Proof. Since
6y, € Epi, (D, A) C Epi. (D, A)

and since 7, € Epi; (4, @), the result is clear.
Our principal object now is to prove a form of converse to Lemma
3.2, namely

LemMmA 3.3. If 1,¢€ Epi (D, Q) there is a unique &, X such that
if v,eUe % there is an 1, satisfying: 7, = ‘/]_46?[,,50 (n4 may depend

on U).

Proof. Let 7,¢ Epi. (D, Q) be given and let ker (y,) = M,. We
note first that there is an 2,€ X such that if 2,e Uc % then M, =
0U%(MD) is a maximal ideal in A. The argument for this fact was
given in the proof of Lemma 3.1. If 7j,¢eEpi, (4, Q) is such that
ker (j,) = M, then ker (77_40Ux0) = ker (y,) and thus 7, = a-%ﬁ% where

« is a C-automorphism of Q. Setting 7, = a7, we conclude
T}D = 77'40[/10 .

We show now that the z, is unique. Indeed, let x, be such that
if ®, € Ve % there is an 7/, satisfying ‘0;6”1 = 77,46,,%. We show that
%, = %, by showing that if x,¢ W,, x,¢ W,, where W,, W, are open,
W,cU,ezr, W,cU,e %, then W,N W, +* @. Indeed, we can find
feCX), 0= f(x)£1, flw)=1and f=0off W,. Then v= f-ec(C(X,A)
is such that GUM,I(“/) = ¢ whereas 19,,0%(7) = 0 (Lemma 1.1) and thus
77;6,,”1 ;é 77,,1600%. Since X is Hausdorff we see x, = %, i.e., x, is
unique.

We are now in a position to define a projection P: Epi, (D, Q) —

X, namely by letting P(,) = z, in the notation above. Furthermore,
for Ue 7 define @,(U x Epi, (4, Q)) — P~'(U) by the formula

@U(xy 771) - 7]A‘9Ux .

Finally, for each xe UN YV, where U, Ve, define G,,: UNV —
Perm (Epi, (4, Q) = the set of permutations of the set Epi, (4, Q)
according to the following formula

G (@)(.)(@) = 7.(guv()(a))

“Gyr = 9ov™).

We shall show below that if the weak topologies (§ 2) are used
for Epi. (D, Q) and Epi, (4, @) then:

(i) P is a continuous surjection.
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(ii) Each @, is a homeomorphism onto P~(U).

(i) 07'0v(x, 7.) = (v, Gyp()(n.) if 2 UN V.

(iv) Each G, is a continuous map of U N V into the set Auteo
(Epi, (4, @) in the sense that each G..(z)¢ Auteo (Epi, (4, @)) and
Gyr: UN V— Auteo (Epi, (4, @)) is continuous with respect to a sui-
table topology for Auteo (Epi. (4, Q)).

These statements imply

THEOREM 3.1. Epi; (D, Q) is a fibre bundle over X with fibre
Epi; (4, Q), projection P, maps @, and group Auteo (Epi; (4, Q)).

Ad (i). Let

N2 = Mpoy P(an) = &, P(77D0) =T .

If @, - @, let ;€ Ue % and find open V, W3, such that Wc VU
and such that for a subnet x;, ¢ V. Choose fe C(X) so that

0= fle) =1,

f=1on W,f=0off Vand let yeD be such that ¢, (v(v)) = f(x)e
(Lemma 1.1). (Alternatively, let v = f-e.) Then

D2 (Y) = 7o)
whereas
N2 (V) = Nzl (V) = 0
and
Dunlt) = D, (1) = e,

a contradiction. Thus P is continuous. It is clearly surjective.
Ad (ii). We show first that @, is continuous. Let

(2, 7]A2) — (@, 77,10) .

Assume 774149%1 = Npr = Npo = (Xoy Y uo)-
Then there is a neighborhood

N@wo) = (15 117500 — DoV I <&, ©1=1,2,--+,m}
and a subnet 7,; € N(7,,). We know that eventually
(@) — to(ae) [ < /2, i=1,2,--+,n
and thus eventually

[ QaEo(vi22)) — DalE (V@) |l < €/2
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(Since ||77A(a') ”Q = ||a/||A)7 1= 11 2) cee, M. Hence

I a2 (B (Yil®2))) — Do (7)) 1o

= 1940 G (Vi(22))) — Dar (o (V%)) o

+ 1942 o (7(20))) — Dao(Eo (Vi) g -
Eventually the first term falls below ¢/2 uniformly in 7,,, ¢ =1,2,
..., n, and then eventually the second term falls below /2, whence
eventually 7., € N(7,,), a contradiction.

Next we show @, is a bijection between U x Epi, (4, Q) and

P (U). If (x,7,) + («', 7)) then either x = &’ or x =2’ and 7, # 7.
If x = 2" we may find fe C(X, A), as in earlier arguments, so that
the support of s is inside U, f(x) = e, f(«') = 0 and for some v e D,
ty(v(x)) = f(x). Then 0, () =e, 0,,(7) = 0 and so

D, 14) #* Pu(@', 1)

If ¢ = o, let 7,(a) # 74(a,), and let 8, (7,) = a,. Again, we see @,(x, 7,) #
@,(«’, 7). Furthermore we have seen that each 7, may be written
in the form 7,6,_. Thus @, is a bijection of U x Epi; (4, @) on P~*(U).
Now we show @;' is continuous. Thus let 1,, — %,,. Since P is
continuous, P(7,;) = &, —x, = P(0y). If 7, =1, 10% and 7,, = 7;,100”%
we wish to show 7,;, —7,. Otherwise, there is a neighborhood
N®.o) = a1 maa) — Do) lle < &,1=1,2, -+, n}

and a subnet 7,; ¢ N(1,,). Furthermore we may assume that for some
open W and V there obtains: 2,e Wc W Vc U and that 2, e W
for all \'. Again we find f; € C(X, A) such that fi(x) = a; on W, fi(x) =0
off V. If t,(vi(w)) = fi(x), let

N = 05 170(7)) — Do) e < 6,0 =1,2, <+, m} .

Thus || 752(7:) = Poo(73) lle = || a2 (@) — Nao(@s) [l = €, and we arrive at
a contradiction of: 7,, — 7y, .
Ad (iii).

Dy(x, 1.4) = Naby,, P5'(Ma0y,) = (2, 14) ,
where
N0y, = 0il0v, = 0agur(@)0y, = Goy(@)(7s)0, .
Thus 7, = Goy(2)(172), s = Gyu(@)(7.4), and so
D7 0y(2, 14) = (%, Gro(2)(14)) -

Ad (iv). To discuss the mappings Gy,(x) we first prove
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LEmMMA 3.4. If T is a C-automorphism of a Q-uniform Banach
algebra B, then T*:Epi; (B, Q) — Epi; (B, Q) defined by

T*(n)(b) = 7(T(®))

18 an automorphism of Epi; (B, Q).

Proof. We note that T* is injective since T*(n,) = T*(,) if and
only if 5(Tb) = 1,(Tb), and since T is an automorphism of B, we find
7, = 0,. Furthermore, if » is given, direct calculation shows that 7 =
T*((T~YH*n), i.e., (T*)™ = (TYH)*. Let T(n,) = {, and let

N(CO) = {C; HC(bm) - Co(bi) ”B < 877: = 1: 2, M ’I’I/} .
Then let
N(7}0) = {77: ||77(sz) - 770(sz) HB < &, ?’ = 1: 2’ cy /n} .

Clearly T(N(n,)) € N(£). The same kind of argument shows (T*)™' =
(T—Y* is continuous.

From Lemma 3.4 we see that each G, (x) € Auteo Epi; (4, Q).

By virtue of (iii) we see, in a manner analogous to that given in
the introduction that G, (x)(%,) is continuous on (U N V) x Epi; (4, Q).

For our purposes, the relevant part of Auteo (End, (4, @)) consists
of all auteomorphisms of the form T* where T e .9 We denote this
relevant part of Auteo (End, (4, Q) by .o *. Since

3T —->T e ™

is bijective, we see that . * may be regarded as an anti-isomorphic
copy of &, (If T,— Ty, T,— Ty then T.T,— T3Ty.) We topologize
* by giving it the topology of .&7* i.e.,, a set S*C . »* is open
if and only if the preimage S is open in .o/ In this way . * becomes
a topological group.

Since the maps ¢g,,; UN V — % are continuous we see that the
maps Gyv: UN V — 7% are also continuous.

4. _+. The spaces _, and _.#, in the topologies they derive
from Epi, (D, @) and Epi, (4, Q) respectively, are related via a fibre
bundle.

THEOREM 4.1. _/7, is a fibre bundle over X with fibre _+,. The
projection w: _#, — X 1is defined by w(M,) = P(n,) where ker (y,) =
M,. This definition is independent of the choice of 1, and ™ is
continuous. The group is the group of auteomorphisms of _7,. Fur-
thermore, +f Ue 2/ then ' (U) is homeomorphic to U X _#,. The
map ¥,: U X _#, — v (U) implements the homeomorphism according
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to the formula:
Volw, M) = {v:ity(v@) e My} = Mye 7, .
The maps “,: UN V — Auteo (. Z,) are defined by
Cur@)M,) = {gov(@)(@): a € M} .

The function <. (x)(M,) is continuous tn the pair (x, M,) by virtue
of the formula:

Uy (x, M,) = (x, Cyp(x)(M))) .

The map <py: UNV — Auteo (_7,) is continuous in a suitable
topology for Auteo (_/7;).

We omit the proof of Theorem 4.1 since the arguments and con-
structions of the proof closely parallel those given in § 3.

5. Complements. Some of the foregoing may be carried out in
a more general context where no assumptions about the Banach alge-
bra A are made except that it has an identity. The constructions of
P and 7, of &, and ¥, of Gy, (x) and <, (2) can be carried out with-
out recourse to hypotheses about @-uniformity of A. However, some
of the continuity proofs cannot be repeated in the “natural” topologi-
cal context.

First Epi; (4, Q) and Epi, (D, Q) must be replaced by Epi; (4) and
Epi; (D) (the respective sets of all epimorphisms of A and D onto
simple quotients). Next ../ and _.7, should be given their hull-kernel
(hk) topologies and then Epi, (4) and Epi,(D) are given the weakest
topologies that make the mappings 7, — ker (y,) and 7, — ker(n,)
continuous. It is of interest to note that P and z remain continuous
but that ¥, need not be continuous. We show 7 is continuous and
since Epi, (D) — _#, is continuous, the continuity of P follows.

Indeed, if MpoD Nuypes My, and if (M) = x,¢7(S) let v,e W
where WNn(S) = @. As in earlier proofs, let z,e¢ W,c W,c W.
We may assume also that W< Ue %. Then if fe C(X, A) has sup-
port in U and if f() =e on W, f(x) =0 off W, let vyeD be such
that ¢,(v(z)) = f(x). Then ¢,(v(x,)) = ¢ and so v ¢ M,, whereas t,(v(x)) =
0, x¢ W and so v€ (,,.s M,. We arrive at a contradiction.

On the other hand the following example shows that ¥, need not
be continuous.

ExAmMPLE. Let A be the commutative Banach algebra of functions
f(2) analytic for |z| < 1 and continuous for |z]| < 1, z€ C; let X=]0, 1]
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and let & = A x X. Then D = I'(¢’) is the set of all continuous
maps from X to A. The bundle & is trivial and we wish to consider
the singularly covering {X} and to show that ¥, is not continuous. We
shall exhibit a section ve D, a pair (X,, M,) and a set of pairs (z,, M,)
such that

XT)—> X, MODnM)_
’y(x)) € M}. ’ r.)I(:‘co) e M .

Thus, if M,, = ¥ (x,, M,), then vye O\ M,, and ve M, = ¥, (x,, M,)
whence ¥, {(x;, M))} & ¥ {(x,, M,)}. Specifically, let

x1=x,Mz~~g—,0§x§1.

Let

We) = f2) = 2 —

Then f.(1) = 1,

x x? x? ( x
I—: —_—1-‘-——— :0.
f(z) 4+2(a;~—2) 2)

Furthermore

7)) — v(@,) || g‘ = 9if2) - aigz)

whence ve D. As A — 0, v(x,) — v(x,) = 7(0) = 2°. On the other hand,
N M, ={0}cM={f:f(1) =0}. Thus

Te) =709 = () =0,

whence v(x,) e M;. But v(x,) = 2*¢ M. We conclude that ¥, is not
continuous in this example.

The referee has suggested an alternative approach for the more
general situation: For each simple @ and any A, the argument of
§ 3 shows that Epi, (D, Q) has a fibre bundle structure with fibre
Epi; (4, Q), although Epi, (D, Q) and Epi, (4, @) may be empty. There
now arises the problem of patching “all” Epi; (D, Q) and correspond-
ingly “all” Epi, (4, @) together and thereafter relating the resulting
structures.
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