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FINITE GROUPS IN WHICH EVERY ELEMENT
IS CONJUGATE TO ITS INVERSE

J. L. BERGGREN

Let © denote the class of all finite groups all of whose
irreducible characters over C (the complex numbers) are real.
It is easy to verify, but important to observe, that this con-
dition is equivalent to the condition that every element of
the group is conjugate to its inverse (under an inner auto-
morphism). Since Sne&, where Sn denotes the symmetric
group on n letters, any finite group may be embedded in a
group in ©. The goal of §1 will be to show that the two-
Sylow subgroups of Sn also are in ©, and, if An denotes the
alternating group on n letters, that An e © if and only if
^€{1,2,5,6,10,14}. The result on the two-Sylow subgroups
of Sn will be used to show that any finite two-group is em-
beddable in a two-group in ©. G. A. Miller has studied a class
of groups related to those in ©. The main theorem of §2
gives a more intuitive characterization of the class of groups
investigated by Miller, a consequence of which is a necessary
and sufficient condition for a group in this class to be a mem-
ber of ©.

NOTATION. Throughout this paper we shall adhere to the notation
of M. Hall [2], with these exceptions: Fr(G) will denote the Frattini
subgroup of the group G and GwH will denote the wreath product
of G with H. The word * "group" will denote a finite group. If
n,nlf , nk are positive integers then the symbol n = [nu , nk]
will mean n = nt + + nk.

l Burnside [1] observed that any nonidentity group in @ has
even order. So, in investigating such groups one might start with
those groups in @ that are two-groups. However, this section will
show that, without additional hypotheses, there can be no general
structure theorems for these.

THEOREM 1.1. If A = <α> has order 2 and if Be& then BwAe@.

Proof. Since (B, Ba) = 1 and Be&, elements of B x Ba are
immediately conjugate to their inverses. It suffices, therefore, to
consider elements in the coset a(B xBa). These elements are of the
form abca, where b, ceB. But abca = acab = cab and (cab)c = abc.
Hence it suffices to consider elements of aB, say ab. Pick x e B,
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bx = b~\ Let h = xxaa. Since (α, £#α) = 1 = (6, xa), (ab)h = abxa =
ft-^α = (αδ)-1. Hence EwA e @.

COROLLARY 1.1. If Tn denotes a two-Sylow subgroup of Sn then

Proof. If n = 2m (m = l, 2, . •) then T* = ( . (CwC)wC)w *)wC)
is just the iterated wreath product of C m times, where C is the
cyclic group of order 2, and the result follows from Theorem 1.1.
But for arbitrary n, Tn is the direct product of groups of the above
form. Since A x Be& whenever A and B are in @, Tne@ for all n.

COROLLARY 1.2. 7/ G is any two-group then there exists a two-
group He@ and a monomorphism τ :G~+ H.

Proof. This follows from the Cay ley Theorem and Corollary 1.1.

REMARK. Wreath-products are extremely useful in constructing
counterexamples to conjectures about two-groups in @. For example:
Let A and B be elementary abelian groups, of orders 2m and 2n

respectively. Let G = AwB. Since any element of AwB may be
written as the product of two involutions it is immediate that G G @ .
But G has exponent 4 and nilpotence class at least n. So it is in
general not possible to bound the class of Ge© by bounding its
exponent (except in the trivial case where the exponent is 2).

The only nilpotent groups in @ are two-groups. For G — Πί=i H{e&
if and only if JEZ^G© for i = l, •••,%. It follows that, since any
group in © has even order, if G is any nilpotent group in @ then G
is a two-group. Also, from Theorem 10.5.3 of [2], it follows that if
G is super-solvable and if G e @ then any two-Sylow subgroup of G is
in @ (for if Ge@ then any homomorphic image of G is also in @).

Having shown that the two-Sylow subgroups of Sn are in @ for
all n we shall now prove that An e @ if and only if n e {1, 2, 5, 6, 10,14}.
In particular we conclude that @ contains non-abelian simple groups.

The following terminology will be convenient in what follows. If
g e An and g — (u19 , ur) (vlf , vs) is an expression for g as a
product of disjoint cycles then, setting 6 = (ui9 ur)(uB, ur^) (v2f vs)
yields gb = gr1. The above b will be called a standard conjugator of #•

THEOREM 1.2. T%e alternating group An e @ i/ αmZ (m£ί/ i/"
we{l, 2, 5, 6,10,14}.

Proof. If [nu , nk] is a partition of n into distinct odd integers
such that the number of nt = 3(4) is odd then An £ @. For, let g be
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any element of An corresponding to this partition. By Theorem 11.1.5
of [4], [Sn: CSn(g)] > [An: CAn(g)]. If CSn(g)£An then [Sn:CSn(g)\ =
[An: CSn(g) Π An] = [An: CAn(g)], which is a contradiction. Thus,
CSn(g)ξΞ:An. Since the number of % = 3(4) is odd the standard con-
jugator a of g is in Sn — An. If gβ = g~ι for some βeAn then
aβ e CSn(g) n (Sn — An), which is a contradiction.

Next, notice that there exists a partition [n^ , wfc] of w into
distinct odd integers such that the number of % = 3(4) is odd unless
n = 1,2, 5, 6, 10, 14. If n = 4k then [4k - 3, 3,] is such a partition.
If n — 4A; + 3 then [4& + 3] is such a partition. If n = 4k + 1 then
n = [4k — 3, 3, 1] is such a partition provided fc > 1 and, if n =
4k + 2, & > 3 , then [5, 1, 3, 4(ifc - 1) - 3 ] is such a partition. When
n = 1,2, 5, 6,10,14 every partition of n either contains an even integer,
a repeated integer, or else the number of n{ = 3(4) is even.

Now if there exists an even integer or a repeated integer in a
partition of n then any corresponding element g e Sn either is not in
An or [Sn: CSn(g)] = [An: CAn(g)], by Theorem 11.1.5 of [4]. In parti-
cular, g is conjugate to g~ι in An.

The remaining elements g of An correspond to partitions of n
into distinct odd integers where the number of Ui = 3(4) is even.
But this implies any standard conjugator of g is in An, so g" — g~ι

where ae An.

2. In [3] G. A. Miller examined the structure of those ^-generator
groups Mn = ζt19 , tny (n > 1) such that | U \ > 2 and tj%t3- = tτι,
1 <ί i Φ j ί^n. We shall refer to Mn as the Miller group on n
generators.

Let Mn = ζtly , tny and S = {ίlt , tn}. If u, v e S a short
calculation shows that | u \ = 4 and u2 = v\ Clearly, then, | Miι) \ — 2
and every element of Mn may be written uniquely apart from the
order of the factors as w z t?, where w, , z and distinct elements
of S and i e {0, 1}. The main theorem of this section will show that
Mn is built out of quaternion, dihedral, and cyclic groups. As a corollary
we shall classify those n for which Mn e @.

LEMMA 2.1. Let g = sx sm tlieMn (where each sk is a td and
Sj = sk if and only if j = k). Then \g\ = 4 if and only if m(m + 1) =έ
0(4). //, also, h — s[ s'n t\k (with the same conditions on the s )
then (g, h) = t\a, where a = m^ - c(g, h) and c(g, h) = | {(i, fc) | s{ = si} |.

Proof. An easy calculation shows #2 = c9, where /S = m(m + l)/2
and c = t\. As | c \ = 2 the conclusion to the first part follows. Since
all commutators are central and any commutator is equal to 1 or t\
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we have

(g,h) = (s1'--sm'tf, s[-' s'n tl
k)

= Π (*,βj) = <ϊβ.

THEOREM 2.1. Let Mn = ζtlf •••,*»> be the Miller group on n
generators. Then there exist nonabelian groups of order 8,GU ,
Gk {where k = k(n)) such that if n is even then

Mn = (G1x - x Gk)A ,

whereas if n = 1(4)

Mn = (G1x . . . x Gk x C4L ,

and ifn = 3(4)

Λfn = (Gι x . - . x Gfch x C 2 ,

where ( )̂  denotes the amalgamation of the square-generated sub-
groups of the factors and Cr is the cyclic group of order r.

Proof: Define a new set of generators as follows:

Wi = ti tt (i ^ 1) and, for i ^ 3, u{ = ^£ i + 1 and v< = w^jti .
It is clear that

M4k = <tu t2, u3, uδ, , uu_ly v4, v6, , v4hy\

M4k+1 = <Λf4fe, w4k+iy j

and

ilί4&+2 - <Λf4Jfc, ^ 4 Λ + 1 , v4fc+1> I k ^ 0, where we set MQ

and ux = ίlf ^i = ί2.

Now let Sx = <ίx, ί2>> ̂ 3 = <^3, ̂ 4>, , S2A:+1 = <%2fc+i> ̂ 2&>. From Lemma
2.1. it follows that Si is non-abelian of order 8 and that

M4k ~

M4k+1 ^

Mik+2 ~

M4k+3 ~

(sr
(Sf

(Sf
(S?

X

X

X

X

• X £&-I)A ,

• x Sfk+1)A

• x -%+JΛ x C2

0
0

where the Sf are disjoint copies of the Sif ( )A denotes the amal-
gamation of the square-generated subgroups of the direct factors, and
Cr is the cyclic subgroup of order r.
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COROLLARY 2.1. Mn e @ if and only if n ^ 1(4).

Proof. When n = 1(4) it follows from Theorem 2.1 that Mn has
a central element of order 4; hence, in this case, Mn g @. If % ̂  1(4)
it follows from Theorem 2.1 that Mn is the direct of product of either
the identity group or C2 with a factor group of a direct product of
quaternion and dihedral groups. Since all of these groups are in @
it follows that Mne&.

It is possible, of course, to prove Corollary 2.1 directly without
appealing to Theorem 2.1. However, since Theorem 2.1 is itself of
some interest it seems better to prove things in the order they are
done here.

The author wishes to thank C. Hobby for many valuable sug-
gestions.
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