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PURITY AND ALGEBRAIC COMPACTNESS
FOR MODULES

R. B. WARFIELD, JR.

A submodule A of a left module B (over an associative
ring with 1) is pure if for any right module F, the natural
homomorphism F'(£) A —> F' ® B is injective. A module C is
pure-injective if for any module B and pure submodule A,
any homomorphism from A to C extends to B. The theory of
this notion of purity and the corresponding class of pure-
injectives is developed in this paper, with special attention to
modules over commutative Noetherian rings and Prϋfer rings.
It is proved that pure-injective envelopes exist and the pure-
injective modules are characterized as retracts of topologically
compact modules. For this reason, the pure-injective modules
are also called algebraically compact. For modules over Prϋfer
rings, certain simplifications occur, due essentially to the fact
that a finitely presented module is a summand of a direct sum
of cyclic modules. Complete sets of invariants are obtained
for certain classes of algebraically compact modules over
certain Priifer rings.

This work is an extension of the theory of algebraically compact
Abelian groups due to Kaplansky [8], Los [10], Maranda [12] and
others. Our notion of algebraic compactness agrees with that intro-
duced for general algebraic systems by Mycielski [14] and studied by
Weglorz [20], Related topics in module theory have been discussed
by Fuchs [5], Fieldhouse [4], and Stenstrom [17], and there is some
overlap between these papers and the results in the first and third
sections below.

In the first section below, we discuss several notions of purity
and identify the pure-projective modules in the cases which are of
interest to us. In the second section we study finitely presented
modules over a Priifer ring, and use them to give a characterization
of Priifer rings. In the next two sections we consider the general
theory of algebraically compact modules over arbitrary associative
rings with 1. Sections five and six are devoted to the special results
obtainable when the rings are commutative Noetherian rings and
Priifer rings respectively. All rings in this paper are associative with
1. We adopt the notation of [11] in using the arrow > • for a mono-
morphism and —» for an epimorphism.

l Purity and pure-projectives* Let S be a class of left R-
modules. We say a short exact sequence Ay* B-» C is S-pure if for
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any Me S, the natural homomorphism Horn (M, B) —> Horn (M, C) is sur-
jective. We also say that in this situation A is an S-pure submodule
of B. A module P is S-pure-projective if for any S-pure short exact
sequence A >-» B -*> C, the natural homomorphism

Hom(P, J3)-+ Horn (P, C)

is surjective. Similarly, D is S-pure-injective if for any such sequence,
the natural homomorphism Horn (B, D) —* Horn {A, D) is surjective.
The S-pure projectives can be described in very general circumstances,
the best results being contained in [15]. We prove the specific case
that we will need.

PROPOSITION 1. Let S be a class of left R-modules, containing
fthe module R+ (R regarded as a left module over itself), such that
there is a subclass S*, which is a set, with the property that for
any Me S there is an Ne S* with N ~ M. Then for any module A,
there is an S-pure sequence K>^F~^> A, such that F is a direct sum
of copies of modules in S, and a module P is S-pure-projective if and
only if it is a summand of a direct sum of copies of modules in S.

REMARK. The set-theoretic hypothesis here can be weakened,
but not simply removed, as examples in [15] show.

Proof. Let Λ be the set of pairs (M, f) with MeS* and
/eHom (M, A), and for each XeΛ, denote the corresponding M and
/ b y Mλ and fλ. Let F = ^XeAMx and let φ:F-+A be the homo-
morphism defined by the coordinate functions fλ. Since R+ e S, φ is
surjective, and if K is the kernel of φ, it is clear by construction
that K is S-pure in F. For the second statement of the proposition,
we apply the above result with P — A, and observe that if P is S-
pure-projective then P is isomorphic to a summand of F.

The elements of Ext {A, B) corresponding to S-pure short exact
sequences form a subgroup of Ext (A, B) which we denote by
P exts (A, B) and we note that

PexMA,J?)= n ^ K e r ( / * )

where / * is the natural homomorphism Ext (A, B) —> Ext {Mλ, B) induced
by fλ. It is easy to verify that the S-pure short exact sequences
form a proper class in the sense of [11, 367-375], from which it
follows that one can define the functors P ext£ (A, B) for all n > 0
in such a way that one gets the usual long exact sequences [11, 371-
375]. We omit the details in all of this since it will not play a
significant role in what follows. We will be interested in two special
cases of this general theory, and these cases are described in Pro-
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positions 2 and 3 below.

PROPOSITION 2. The following properties of a short exact sequ-
ence A>^> J?-» C of R-modules are equivalent:

( a ) For any reR, the natural homomorphism Horn (R/Rr, B) —*
Horn (R/Rr, C) is surjective.

(b) For any reR, the natural homomorphism R/rR ® A —•>
R/rR§§B is injective.

( c ) For any reR, rA = Af] rB.

Proof. Note first that (a) holds if and only if for any x e B with
rx e A, there is a ye A with ry — rx. This makes the equivalence
of (a) and (c) clear. To see the equivalence of (b) and (c) we simply
chase the following commutative diagram with exact rows

i
(Here, the map r:R§Z)B—>R§§B denotes the map r ® 1B where
r:R—>R is left multiplication by r—a right module homomorphism.)

DEFINITION. If a short exact sequence satisfies the conditions of
the previous proposition then A is said to be relatively divisible in B
and the short exact sequence is RD-ipme. The corresponding projec-
tives and injectives will be referred to as iϋjD-projectives and RD-
injectives.

This notion fits into the context of Proposition 1 if we (somewhat
artificially) let RD be the class of cyclic modules isomorphic to modules
of the form R/Rr. We can therefore derive the following corollary.

COROLLARY 1. A left R-module is RD-projective if and only if
it is a summand of a direct sum of cyclic modules of the form R/Rr
(for various reR).

COROLLARY 2. If R is a commutative local ring then any RD-
projective module is a direct sum of cyclic modules of the form R/Rr
(for various reR).

Proof. If P is jβZ)-projective then there is a Q such that
^ 0 0 = Σie/Ci, where for each iel there is an reR with d =
R/Rr. By [18, Proposition 3] it follows that P = Σ i e J Dά where each
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Dj is isomorphic to one of the C*. (The key point is that d has
local endomorphism ring).

We recall that an jβ-module M is finitely presented if there is a
finitely generated free module F and an epimorphism F—>M whose
kernel is finitely generated (that is, M has a finite number of gener-
ators and a finite number of relations). We denote by Horn (Rk, Rn)
the group of right-module homomorphisms of Rk into Rn and note that
any element μ e Horn (Rk, Rn) can be regarded as an n x k matrix of
elements of R. Any such μ induces a group homomorphism (which
we also call μ) Ak —> An (for any left-module A) by identifying Ak =
Rk 0 A, and taking the homomorphism μ&)lΛ.

PROPOSITION 3. The following properties of a short exact sequence
A>^B~^C of left R-modules are equivalent:

(a) For any finitely presented module M, the natural homo-
morphism Horn (M, B) —> Horn (M, C) is surjective.

(b) For any right R-module F, the natural homomorphism
F&) A—> F(g) B is injective.

( c ) For any μ e Horn (Rk, Rn) (as above), μ(Ak) = An Π μ(Bk) (as
subgroups of Bn).

(c') Any finite set of linear equations over R with constants in
A which is soluble in B is soluble in A.

REMARK. The equivalence of (a), (b) and (c') was observed by
Fieldhouse [4] and Stenstrom [17]. (c') is just the specialization to
modules of the general definition of purity used for algebraic systems
by Weglorz [20].

Proof. If we look at the homomorphism μ as an n x k matrix,
then the equivalence of (c) and (c') is a triviality.

Suppose our short exact sequence satisfies (c') and M is a finitely
presented module and feΉ.om(M, C). M is defined by n generators
Xi (1 ^ i ^ n) and k relations Σ f ^ r ^ = 0, (1 ^ j ^ k). Let φ: B-+
C be the epimorphism appearing in our short exact sequence, and
choose elements y{eB such that ψ(yi) = /(#*), 1 ^ i ^ n. The elements
Ui then satisfy the equations Σ?=i rijVi = aj 0- = 3 = &) f° r suitable
aό e A. By (c') there are elements Ziβ A satisfying the same equations.
We now define g:M—+B by g(x^ — y{ — z{. By construction, the g
so defined does yield a module homomorphism of M into B and it is
clear that the image of g under the natural homomorphism

Horn (M, B) > Horn (M, C)
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is our original homomorphism /, so we have proved that (c') implies
(a). Conversely, suppose that (a) is satisfied and that we have elements
yiβB (1 ^ i ^ n) satisfying the equations Σ?=i raVi = ad f° r suitable
aό eA, (1 ^ j ^ k). We then define a finitely presented module M
with n generators xt and k relations Σ?=i ru^i = 0, and applying the
above argument backwards, we see that (a) implies {&).

To prove the equivalence of (b) and (c) we first remark that it
is enough to prove (b) for finitely presented modules F since any
module is a direct limit of finitely presented modules and tensor pro-
ducts commute with direct limits. Assuming, then, that F is finitely
presented, we take the first two steps of a free resolution of F and
tensor with A and B respectively obtaining the following commutative
diagram with exact rows:

Rh (g) A - ί U Rn 0 A > F®A > 0

B >F(g)B >0 .

The equivalence of (b) and (c) is demonstrated by chasing the above
diagram, where for any finitely presented F, the corresponding
μ e Horn (Rk, Rn) is obtained from the free resolution of F so that
F = Coker (μ) (where F has n generators and k relations) and con-
versely, for any such μ, we obtain a finitely presented F by setting
F = Coker (μ).

DEFINITION. A short exact sequence satisfying the conditions of
Proposition 3 will be called pure (without prefix, since this is the
case of primary interest) and the corresponding projective and injec-
tives will be referred to as pure-projectives and pure-injectives.

If we let FP be the class of finitely presented left iϋ-modules,
then FP-purity in the sense of Proposition 1 coincides with purity as
defined here and the conditions of Proposition 1 are satisfied.

COROLLARY 3. A left R-module is pure-protective if and only
if it is a summand of a direct sum of finitely presented modules.

COROLLARY 4. If R is a complete, local, Noetherian, commuta-
tive ring then any pure-projective R-module is a direct sum of finitely
generated modules.

Proof. Note first that finitely generated and finitely presented
mean the same thing for modules over a Noetherian ring. By [3,
Proposition 3.4] an indecomposable finitely generated module over such
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a ring has local endomorphism ring. Hence if P is pure-projective,
there is a Q so that Pφ Q = ΣieiCi where each C; is a finitely
generated module with local endomorphism ring. By [18, Theorem 1]
it follows that there is a direct sum decomposition P = Σiej-Dj where
each Dj is isomorphic to one of the C{.

2* Finitely presented modules over a Prϋfer ring* We recall
that a valuation ring is a (commutative) integral domain such that
for any two elements r and s, either r divides s or s divides r. This
clearly implies that any finitely generated ideal is principal (and hence
protective) and that for any two ideals / and J, either / g J o r / g i .
In particular, a valuation ring is a local ring. A Prϋfer ring is an
integral domain such that every finitely generated ideal is protective.
It is well known (for example by Corollary 2 above) that a local ring
is a Prϋfer ring if and only if it is a valuation ring, and, therefore,
if R is a Prϋfer ring then for each maximal ideal m, Rm is a valuation
ring. It is also well known that this last fact characterizes Prϋfer
rings, but since a reference is not readily available, we include this
in Proposition 5 below. We first need a local criterion for RD-
projectivity.

PROPOSITION 4. Let R be a commutative ring and M a finitely
generated R-module. Then M is RD-projective if and only if M is
finitely presented and for each maximal ideal m of R, Mm is a direct
sum of cyclic Rm-modules of the form Rm/Rmr (r e Rm).

Proof. We first note that if M is finitely generated and RD-
projective, then M is finitely presented since it is a summand of a
finite direct sum of cyclic modules with principal annihilator ideals,
and this direct sum is clearly finitely presented. If M is i?Z)~projective
then Mm is trivially ϋ?Z>-projective over Rm and hence (by Corollary 2)
a direct sum of cyclic modules of the form Rm/Rmr.

If M is a finitely presented iϋ-module and N is arbitrary, then
by fl, p. 98, Proposition 19] there is a natural isomorphism

Horn (M, JNOm > Horn (Mm, Nm)

where the module on the right represents the J?m-homomorphisms. We
now assume that M is finitely presented and Mm is i?Z)-projective for
each maximal ideal m. Let A >-> B -» C be an iϋ.D-pure short exact
sequence. Then for each m, the short exact sequence of Rm modules
Am >-» Bm -» Cm is iϋjD-pure over Rm. (To see this note that any ele-
ment r* of Rm is of the form rfu where u is a unit in Rm and r' is

the image of some element reR under the natural map R—>Rm.
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Hence Rm/r*Rm = (R/rR)m and the result follows by criterion (b) of
Proposition 2.) Hence the natural homomorphism

Horn (Mm, Bm) > Horn (Afm, Cm)

is surjective for all m. This together with the identification mentioned
above shows that for each m, the natural homomorphism

Horn (M, B)m > Horn (M, C)m

is surjective, and by [1, p. I l l , Th. 1] this implies that the natural
homomorphism

Horn (M, B) > Horn (M, C)

is surjective. Since this holds for all i?Z)-pure short exact sequences,
it follows that M is JSD-projective.

THEOREM 1. A finitely presented module over a valuation ring
is a direct sum of cyclic modules. A finitely presented module over
a Priifer ring is a summand of a finite direct sum of cyclic modules.
In each case, the cyclic modules can he chosen to he of the form R/Rr
for some r e R.

REMARK. The fundamental theorem of Abelian groups implies
that every finitely generated module over a principal ideal domain is
a direct sum of cyclic modules. Over a Dedekind domain the result
is slightly weaker: any finitely generated module over a Dedekind
domain is a summand of a finite direct sum of cyclic modules. This
theorem is a natural generalization of this result (since a Noetherian
ring is Priifer if and only if it is Dedekind).

Proof. We first note that if R/I is a cyclic module, then R/I is
finitely presented if and only if / is finitely generated. This is not
quite as obvious as it looks, but it follows from [1, p. 37, Lemma 9].
Now let M be a finitely presented module over a valuation ring R
and let zί9 , zn be a set of generators for M. Suppose that of
these n elements, zL has the smallest order ideal. This implies that
the cyclic submodule S generated by z1 is i?Z)-pure. By induction on
n we may assume that M/S is a direct sum of cyclic modules. Each
of these cyclic modules must also be finitely presented and hence the
order ideals must be finitely generated (by our first remark above)
and therefore principal (since R is a valuation ring). Hence M/S is
iϋjD-projective, so that M = S 0 M/S which proves the first statement
of the theorem. (This proof was partly modeled on the proof of [7,
Th. 14].)
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Now let M be a finitely presented module over a Prϋfer ring R.
For each maximal ideal m, Mm is a finitely presented module over the
valuation ring Rm and hence a direct sum of cyclic 2?m-modules. In
particular, by the above argument, Mm is iϋD-projective over Rm, so
by Proposition 4, M is iϋD-projective over R, and hence a summand
of a direct sum of cyclic modules. We can clearly specify that this
sum be finite and that each of the cyclic summands be of the form
R/rR for some reR.

COROLLARY 5. For modules over a Prufer ring, purity and
RD-purity coincide (by Theorem 1).

PROPOSITION 5. For a commutative integral domain R, the fol-
loiving conditions are equivalent:

(a) For every maximal ideal m, Rm is a valuation ring.
(b) Every finitely presented R-module is a summand of a direct

sum of cyclic modules.
( c) Every finitely generated torsion-free module is protective.
(d) R is a Prufer ring.

Proof. That (c) implies (d) is trivial, and (d) implies (a) by our
orignial remarks on Prufer rings. The proof of Theorem 1 used only
property (a) of Prϋfer rings, and so shows that (a) implies (b). It
remains to show that (b) implies (c), so suppose that (b) holds and M
is a finitely generated torsion-free module. It will suffice to show
that M is finitely presented. Let xt (1 <̂  i ^ n) be a set of genera-
tors, and suppose that the %ι (1 ^ i ^ k) are a maximal linearly inde-
pendent subset of M. Then for each ί, (k < i g n) there is a relation
τiχi = Σi=i riί^i (ri ^ 0), and we let F be a module with n generators
satisfying just these relations. There is a natural epimorphism F —>
M. Since, by (b), F is a summand of a direct sum of cyclic modules,
the torsion submodule T is a summand, and hence finitely generated,
so F/T is finitely presented. Since FJT is torsion-free of rank k, the
natural epimorphism F/T-^M is an isomorphism, so M is finitely
presented, as desired.

3* Algebraic compactness* If A is an Abelian group, there is
a natural way to imbed A into a compact Abelian group having certain
universal properties. We let T = R/Z (the circle group) and define
the Bohr compactification B(A)

B(A) = Horn (Horn (A, Γ), T) .

Here we regard Horn (A, Γ) as a discrete Abelian group so that B(A)
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has a natural compact Hausdorff topology. It is easy to show that
A is dense in B(A) and that any homomorphism of A into a compact
Abelian group C extends to a unique continuous homomorphism of
B(A) into C. If we apply this remark to the homomorphism taking
A to A/K (where K is a subgroup) and thence to B(A/K), we see that
there is a natural isomorphism B(A/K) = B(A)/K, where K denotes
the closure of K in B{A). In particular, K Π A = K. Note also that
if Ai (i = 1, , n) is a family of Abelian groups, then there is a
natural isomorphism J3(Π?=i^i) = Tli=iB(Ai).

Now suppose that R is an associative ring with 1 and A is a
unitary left iϋ-module. Then for any r eR, the left multiplication by
r on A extends uniquely to a continuous homomorphism of B(A) into
itself, making B(A) a left i?-module. It is not hard to see from what
has gone before that A is a pure submodule of the resulting .β-module
B(A). Using criterion (c) of Proposition 3, we note that μ(B{A)k) is
just the closure of μ(Ak) in B(A)n = B(An), and using the fact that
K Π An = K for any subgroup of An (where the closure is taken in
B(An)) we have the desired result. We sum up the result in a defini-
tion and a lemma.

DEFINITION. A left i?-module M is compact if there is a compact
Hausdorff topology on M making it a topological group and such that
the left multiplications by elements of R are continuous.

Note that we merely require the existence of such a topology—
no further properties of it will be used.

LEMMA 1. Any left R-module can be imbedded as a pure sub-
module in a compact module.

DEFINITION. A left ϋJ-module M is algebraically compact (Mycielski
[14]) if every finitely soluble family of linear equations over R in M
has a simultaneous solution.

The most useful interpretation of this condition is the following.
Let I be any index set (which will correspond to the set of variables)
and consider the infinite product M1. For any finite subset I* S I,
and elements r^R (ίel*) we can define a homomorphism ώ: M1 —>M
by φ(χ) = Σ*ei*τv&i. (This is always a group homomorphism, and it
is a module homomorphism if R is commutative). By a linear equation
we mean a pair (φ, m) where φ is a homomorphism of the type defined
above and meM. The solution set of this equation S(φ, m) is the
set of all elements x e M1 such that φ(x) = m. For a family of equa-
tions to be finitely soluble simply means that the corresponding sets
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S(φ, m) have the finite intersection property.

THEOREM 2. The following conditions on a left R-module M
are equivalent:

( a ) M is pure-injective.
(b) M is a summand of a compact R-module.
( c ) M is algebraically compact.

Proof. If M is pure-injective, then M is a summand of a compact
ϋϊ-module, since by Lemma 1, M can be imbedded as a pure submodule
in a compact module. Hence (a) implies (b). It is clear that a sum-
mand of an algebraically compact module is algebraically compact, so
to show (b) implies (c) it suffices to show that a compact module is
algebraically compact. If M supports a compact Hausdorff topology
then the product topology on M1 is compact by the Tychonoff theorem,
and since the sets S(φ, m) of solutions are clearly closed, if they have
the finite intersection property then their total intersection is non-
empty, so a finitely soluble family of linear equations is soluble.

Finally, suppose that (c) holds and A is an i?-module, B a pure
submodule, and f:B-^M& homomorphism. We take the elements of
A as our index set (or variables) and if x e MA, we denote the α-
coordinate of x by x(a). We consider the equations

rxx{a^ + r2x(a2) — xir^ + r2α2) = 0

(for any elements â  e A, τ% e R) and x(b) = f(b) for b e B. The purity
of B in A implies that these equations are finitely soluble (using criterion
(c') of Proposition 3), and hence this set of equations is soluble.
Since a solution of this set of equations is simply a homomorphism
from A to M extending /, we have shown that (c) implies (a).

Some historical notes are in order. This result was proved for
Abelian groups by Los [10]. Algebraic compactness was defined for
arbitrary algebraic systems by Mycielski [14] who showed that in
general, (b) implies (c). The equivalence of (a) and (c) for general
algebraic systems was shown by Weglorz [20], using the characteriza-
tion (c') of purity. This was also shown independently for modules
over Noetherian rings by Fuchs [5] and for modules over general rings
by Stenstrom [17]. Each of these authors gives a proof for Corol-
lary 6 and Proposition 6 below, Fuchs using reduced powers (and
restricting to Noetherian rings) and Stenstrom using an adjoint functor
theorem. The analogue of Corollary 6 does not hold for arbitrary
algebraic systems, since W. F. Taylor has constructed noncommutative
groups which cannot be imbedded in an algebraically compact group*
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COROLLARY 6. Any left R-module can be imbedded as a pure
submodule in a pure-injective module, (by Lemma 1 and Theorem 2).

DEFINITIONS. If A is a pure submodule of B, then B is a pure-
essential extension of A if there are no nonzero submodules SξΞ?B,
with S n i = 0 and the image of A pure in BjS. A pure extension
B of A is a pure-injective envelope if B is pure-injective and the
extension is pure-essential.

PROPOSITION 6. Pure-injective envelopes exist and are unique up
to isomorphism. If A is an R-module and B a pure-injective envelope
of A, and f: A—+C an imbedding of A as a pure submodule in a
pure-injective module C, then f extends to a homomorphism B —>C,
imbedding B as a pure submodule of C.

Proof. Let A be a module and imbed A as a pure submodule in
a pure-injective module C. If B is a pure-essential extension of A,
then this imbedding extends to an imbedding of B in C, from which
it follows immediately that maximal pure-essential extensions exist.
Let B such an extension. Choose S, a submodule of C, maximal with
respect to the properties that S Γ) A = 0 and the image of A is pure
in C/S. (It is necessary, but easy, to check that the union of an
ascending family of submodules with these properties again has these
properties.) If we regard B as imbedded in C, then B Π S = 0 and
since C/S is (by construction) a pure-essential extension of the image
of A, it follows that the image of B is all of C/S, so that C = S © B,
and JB is pure-injective. Hence a maximal pure-essential extension is
a pure-injective envelope. It follows immediately that if C is any
pure-injective module and f: A—+C imbeds A as a pure submodule,
that / extends to an imbedding of B in C, and by the previous argu-
ment this imbedding is necessarily pure. The uniqueness of B up to
isomorphism follows.

PROPOSITION 7. Let A be an R-module and B an algebraically
compact R-module. Then Horn (A, B) and Extw (A, B) are algebraically
compact as Abelian groups, and if R is commutative they are alge-
braically compact as R-modules.

Proof. By Theorem 2 there is a compact .R-module C such that
B is a summand of C. In this case, Horn (A, B) and Ext71 (A, B) are
summands of Horn (A, C) and Extn (A, C) respectively, so it suffices
to show that Horn (A, C) and Extw (A, C) are compact JS-modules. If
we give A the discrete topology and C its compact topology, then
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Horn (A, C) has a natural topology making it a compact Hausdorff
Abelian group, and a topological 12-module if R is commutative.
(The standard proof [9, p. 64, (18.1) (b)] for Abelian groups, where
C is the circle group, carries over almost verbatim.) We also note
that if /: A—•* A' is a homomorphism, then the induced homomorphism
Horn (A', C) —>Hom (A, C) is continuous, so the image and kernel are
also compact. We now refer to the standard computation of Ext% (A, C)
from a projective resolution of A, [11, p. 89], This gives us a family
of modules Pi and homomorphisms d{: Horn (Piy C) —* Horn (Pi+1, C)
which are induced from homomorphisms of the modules Pi and are
therefore continuous. It follows by our above remark that ker (dn)
and im (dn__x) are closed subgroups of Horn (Pn, C), and hence their
quotient, ker (dn)/im(dn_ι) = Ext™ (A, C), also has a compact topology
and is hence algebraically compact as an Abelian group, and as an
iϋ-module if R is commutative.

4* Completeness and linear compactness. If M is a left R-
module, the iϋ-topology on M is defined by taking as neighborhoods
of 0 the subgroups rM(reR, r Φ 0). An Abelian group is known to
be algebraically compact if and only if it is a direct sum of a divisible
(injective) group and a group which is complete and Hausdorff in the
Z-topology. We will show that strong completeness conditions hold
for algebraically compact modules in general, including completeness
in the i?-topology. If M is an JS-module and X is a subset of R,
then by XM we mean the subgroup of M generated by the elements
of the form rm, me M, r e X. If X and Y are two subsets of R,
then we denote by (XM): Y the set of meM such that rm e XM for
all reY. In particular, we have (Oikf): Yf the set of elements of M
annihilated by Y, also denoted M[Y]. Also note that (XM): R = XM,
since R has a unit.

PROPOSITION 8. Let M be an algebraically compact R-module, X*
and Yi (i e /) subsets of R, where the sets X{ are finite, and z{ (i e I)
a family of elements of M. Let Nt = (X{M): Yi9 Then if the sets
Zt + Ni have the finite intersection property, their total intersection
in nonempty.

Proof. The condition y ez{ + Ni can be expressed by the equations
s(y — z%) = Σrezi rVr (s 6 7J, a set of equations indexed by the elements
of Yi in the variables y, yr. Note that it is essential that Xt be finite.
The finite intersection property guarantees that this system of equa-
tions (indexed by pairs (i, s), s e Yt) is finitely soluble, and algebraic
compactness then gives us a global solution, which shows that the
total intersection is not empty.
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COROLLARY 7. An algebraically compact R-module is complete
in the R-topology.

Proof. This follows from Proposition 8 by considering the family
of subgroups Nr = rM = (rM): R (reR,rφO).

If the ring R is commutative then for any subset X of R we
have XM = IM where / is the ideal generated by X, and M[X] =
M[I]—the annihilator of the ideal generated by X. Proposition 8 can
be rephrased in terms of projective limits. An important special case
is the following. Suppose that R is a commutative ring and Iά (j e J)
is a directed decreasing family of finitely generated ideals (that is,
for any j and k in /, there is an neJ with InSl, Π Ik)- Then if
M is an algebraically compact ϋ?-module, the natural homomorphism

M >UmM/I3M

is surjective.
Suppose that M is a topological iϋ-module, by which we mean a

module equipped with a Hausdorff topology making it a topological
group such that the multiplications by elements of R are continuous.
M is linearly compact in this topology (Lefschetz [9], Zelinsky [21])
if whenever we have a family of closed submodules Nt (i e I) and a
family xt (i e I) of elements of M, such that the sets x{ + Nt have
the finite intersection property, their total intersection is nonempty.
When we do not care what the topology is, we simply say M is line-
arly compact.

PROPOSITION 9. A lineary compact module over a commutative
ring is algebraically compact. If R is a commutative ring which is
either Noetherian or a valuation ring, then R is algebraically compact
as a module over itself if and only if it is linearly compact in the
discrete topology.

REMARK. We refer to Zelinsky [21] for a discussion of rings
satisfying this hypothesis.

Proof. By [9, pp. 78,19] a product of linearly compact modules
is linearly compact in the product topology. Using the description of
algebraic compactness given before Theorem 2, this implies that a
linearly compact module M is algebraically compact, using the linear
compactness of products of the form M1. Hence if R is a linearly
compact commutative ring, then it is algebraically compact as a module
over itself. In the Noetherian case, the converse follows by Proposi-
tion 8, proving that R is actually linearly compact in the discrete
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topology (since the only closed submodules are the ideals, which are
of the form XR for some finite set X). If R is a valuation ring,
then for any two ideals, there is a principal ideal containing one and
contained in the other, and hence Proposition 8 again implies linear
compactness in the discrete topology.

In several special cases below, we will be able to give completeness
conditions which are equivalent to algebraic compactness, but in general
we will not be able to do this. Weglorz [20] has shown that a module
is algebraically compact if and only if it is a retract of each of its
ultrapowers, and this very general completeness condition is perhaps
the best one can do in general. In the following two sections we
will be able to get better results for modules over Noetherian rings
and Prϋfer rings.

5* Modules over Noetberian rings* If A is an Abelian group
with no elements of infinite height (that is, it is Hausdorίf is the Z-
topology) then the pure-injective envelope of A is just its completion
in this topology. For a similar result for modules over a commuta-
tive Noetherian ring, we are forced to restrict ourselves to finitely
generated modules.

DEFINITION. Let Ω denote the set of maximal ideals of the com-
mutative Noetherian ring R, and let M be an iϋ-module. The ί2-adic
topology is defined on M by taking as neighborhoods of 0 the sub-
modules IM, where / is an ideal which is a finite intersection of
powers of the maximal ideals. (More formally, we consider functions
s of finite support from Ω to the nonnegative integers and take
ideals of the form I(s) = n ms(m), (meΩ).)

We should note that the intersection of these ideals is just their
product by [1, p. 71, Proposition 3].

PROPOSITION 10. Let R be a commutative ring and M a topological
R-module equipped with the Ω-adic topology. For each m e Ω, denote
by M(m) the module M equipped with the m-adic topology, and let
u: M-+ Π M(m) (meΩ) be the diagonal homomorphism. Then u is
continuous and induces a topological isomorphism

M —

(where the completion on the left is taken in the Ω-adic topology,,
that in the center with respect to the product of the m-adic topologies,
and Mm denotes the localization of M at m equipped with the m-adic
topology). (Compare [2, p. 54, Proposition 17].)
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Proof. We first remark that the completions of M(m) and Mm is
the m-adic topology are naturally isomorphic by [2, p. 56, Proposition
18]. The remainder of the right-hand equality above is given by the
fact that the completion of a product of uniform spaces is the product of
their completions. An appropriate form of the Chinese remainder
theorem [1, p. 73, Proposition 6] shows that u maps M continuously
onto a dense submodule of Π M(xn) and that the induced topology on
M as a submodule is the same as the i2-adic topology, from which
the rest of the proposition follows.

If the ring R is Noetherian, then Proposition 8 implies that an
algebraically compact module is complete in the £?-adic topology. Hence
the following corollary:

COROLLARY 8. If R is a commutative Noetherian ring and M
is an algebraically compact R-module which is Hausdorff in its Ω-
adic topology, then M is complete and is a product of algebraically
compact modules over the local rings Rm(meΩ).

We do not know whether, conversely, any complete, Hausdorff
module over a Noetherian ring is necessarily algebraically compact,
but in certain cases we can prove this.

THEOREM 3. Let R be a commutative Noetherian ring, and E,
F, G three finitely generated R-modules. Then

(a) If E—>F—+G is an exact sequence of R-modules, then the
induced sequence E —>F—> G is exact (where the completions are with
respect to the Ω-adic topology).

(b) There is a natural isomorphism R(g) E—> E.
(c) E is the pure-injective envelope of E. In particular, E is

pure in E.
(d) R is faithfully flat as an R-module.

Proof. By [2, p. 68, Th. 3, (i)] the condition (a) above holds if
we take completions in the m-adic topology, for any ideal m. Since,
by Proposition 10, the i2-adic completion is just the product of the
m-adic completions, the result also holds for the ί2-adic completions.
The proof of (b) is then identical to the proof of (ii) in the same
theorem, and the proof of condition (iii) of that theorem shows that
R is a flat iϋ-module. That R is actually faithfully flat follows from
Proposition 10 above and [1, p. 44, Proposition I, (d)]. It remains to
prove (c).

To show E is purely imbedded in E, we must first show that the
β-adic topology is Hausdorff on E. By [2, p. 65, Proposition 5] if
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x e E is in the closure of 0 then for any maximal ideal m, there is
an r e n t with (1 — τ)x = 0. It follows x goes to zero in the natural
homomorphism M—> Mm. Since this is true for all maximal ideals m,
it follows that x = 0 by [1, p. 112, corollary 1], Hence the homo-
morphism E-^E is injective, and by (b) above, this is just the
natural homomorphism E—*Eζt)R. Since this holds for any finitely
generated module, it applies to the module F® E, where F is another
finitely generated module. Hence, for any finitely generated module
F, the induced homomorphism F(g)E—+ F<g)E is injective, which
shows that E is pure in E by criterion (b) of Proposition 3.

We must show, finally, that E is algebraically compact. We first
remark that an Artinian module is linearly compact [17, Proposition
5] and hence algebraically compact by Proposition 9 above. By [9,
pp. 78, 31-33] an inverse limit of linearly compact modules is linearly
compact (if all of the relevant homomorphisms are continuous) so the
inverse limit of Artinian modules is algebraically compact. It remains
to show, then, that if / is one of the ideals appearing in the defini-
tion of the β-adic topology, that E/IE is Artinian. By an iterative
argument, it suffices to show that if E/IE is Artinian then E/mIE is
Artinian for any m e Ω, and for this it suffices to show that IE/mIE
is Artinian. Since IE is finitely generated, IE/mIE is finite dimen-
sional over R/m, and hence trivially Artinian. This completes the
proof.

6* Modules over Prϋfer rings*

THEOREM 4. If R is a Priifer ring, then an R-module M is
algebraically compact if and only if for any family of submodules
Ni (iel), where Nζ = (nikf) : (s*), for some elements Ί\ and s€ of R,
and any family #* (ί e I) of elements of M, if the sets xζ + N{ have
the finite intersection property, then their total intersection is non-
empty.

Proof. That an algebraically compact module satisfies this con-
dition is guaranteed by Proposition 8. Conversely, if M is a module
satisfying this completeness condition, we will show that M is a maximal
pure-essential extension of itself, which implies that it is algebraically
compact by Proposition 6. Suppose, then, that M is imbedded as a
pure submodule of a module A, and x e A, x&M. We will find an
element y e M such that for any r eR, if rx e M then rx = ry, and
if r divides sx + m (for some seR, meM) then r also divides sy + m.
This we do as follows. Let A be the set of triples (r, s, m), with
r, seR, meM, such that r divides sx + m. We then look at the family
of equations



PURITY AND ALGEBRAIC COMPACTNESS FOR MODULES 715

ry = rx (for all reR such that rx e M)

rzλ — sy + m (λ e Λ) .

These equations are finitely soluble in C (using criterion (cr) of Pro-
position 3) since C is pure in A and these equations are globally soluble
in A (by setting y = x). To show these equations are globally soluble
in M, note that if ry0 = rx, then ry = rx if and only if y e y0 + M[r]
(where Λf[r] = (OM) : (r) and is therefore a submodule of our desired
type), and similarly, if rz = sτ/0 + m, then there exists a z' with
rz' = sy + m if and only if yeyQ-\- (rM) : (s). Hence we have a
family of subsets of M of the type described in the theorem, and
the finite solubility of the equations implies that these subsets have
the finite intersection property. We can therefore choose an element
y in the intersection of all of these sets, and this element y satisfies
our requirements.

We now let S be the submodule of A generated by x — y and
our construction guarantees that S Π M = 0. M therefore projects to
a submodule M' of A/S isomorphic to M. M' is pure in A/S, since
if me M and m is congruent to rw modulo S, then for some s e R,
rw = m — sy + sx, which by construction shows there is a z e M with
rz = m — sy + sy so m is divisible by r in M. (This is enough to
guarantee purity, by Corollary 5, since R is a Prϋfer ring). The
conclusion of all this is that A is not a pure-essential extension of
Λf, and since A was an arbitrary pure extension, this shows that M
is a maximal pure-essential extension of itself, and is therefore alge-
braically compact.

PROPOSITION 11. // M is an algebraically compact module over
a Prϋfer ring, then M — E φ JV, where E is injective and N is
an algebraically compact module with no nonzero elements of infinite
height (that is, no nonzero elements divisible by all nonzero elements
of R).

Proof. Let M be any J?-module, and Λf * the submodule of ele-
ments of infinite height. Note that M/M* has no nonzero elements
of infinite height. If N is the pure-injective envelope of M/M*, and
if ΛΓ* is the submodule of elements of infinite height in N, then
AT* = 0, since (M/M*) Π N* = 0 and the image of M/M* is still pure
in N/N*, which implies i\Γ* = 0 since N is a pure-essential extension
of M/M*. The imbedding of ikf* into its injective envelope E(M*)
can be extended to a homomorphism of M into E(M*), and we there-
fore have an imbedding M-+E(M*)® N. The module on the right
is algebraically compact and a pure-essential extension of M, and
therefore is the pure-injective envelope.
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We offer the above two results as our generalization of the theorem
that an Abelian group is algebraically compact if and only if it is
the direct sum of a divisible (injective) group and a group with no
elements of infinite height which is complete in its Z-topology. We
would also like to have analogues of two other results. The first is
that an algebraically compact group with no elements of infinite height
is a direct product of complete modules over the p-adic integers (see
also Corollary 8 above). The second is that there is a complete clas-
sification of the complete modules (with no elements of infinite height)
over the p-aάic integers [8]. We will find a reasonable class of Priifer
rings (including the Dedekind rings) for which the first result carries
over, but for the second result, we restrict ourselves to certain cases
(Theorems 5 and 6).

We follow E. Matlis in calling a domain R h-local if each nonzero
prime ideal of R is contained in a single maximal ideal of R, and
each nonzero element of R is contained in only a finite number of
maximal ideals of R. Matlis shows [13, pp. 44-47] that a domain R
is Mocal if and only if every torsion 22-module T is isomorphic to
]Γ, Tm, where m ranges over all maximal ideals of R. We note ii?
passing two important consequences of this result for an /ι-local Prϋfei
ring R. The first is that a finitely presented torsion i?-module is s
direct sum of cyclic modules (by Theorem 1). The second is that the
injective jR-modules can be completely classified. Any such module is
of the form T φ F, where F is torsion-free and T is torsion. F is
essentially just a vector space over the quotient field of i?, and
hence is completely described by its dimension. T is a direct sum of
injective modules over the valuation rings Rm, and these have a reason-
able set of invariants, by the results in [19].

PROPOSITION 12. If R is an h-local Prίίfer ring and M an alge-
braically compact R-module with no nonzero elements of infinite
heighty then M is a product of algebraically compact modules over
the rings Rm (where m ranges over all maximal ideals of R).

Proof. By Corollary 7 and the fact that M has no nonzero ele-
ments of infinite height, we know that there is a natural isomorphism

M >limM/rM

where r ranges over all nonzero elements of R, ordered by divisibility.
Since R is λ-local, M/rM is a direct sum of torsion modules over the
rings Rm (for maximal ideals m) and [MjrM)m = 0 for all but a finite
number of maximal ideals m (since r is contained in only a finite
number of maximal ideals). It follows by standard results on inverse
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limits that

M = Π Mm (M/rM)m
XϊleΩ <

so that M is a product of Rm modules (which are necessarily alge-
braically compact).

We now turn to the study of algebraically compact modules over
a valuation ring, and we restrict ourselves to modules with no elements
of infinite height.

THEOREM 5. A torsion-free, algebraically compact module with
no elements of intinite height over a valuation ring R is the pure-
injective envelope of a direct sum of ideals, and the number of ideals
of each isomorphism type form a complete set of invariants.

Proof. Let C be the module and B a pure submodule which is
a direct sum of ideals and which is maximal in the sense that it is
not a summand of a larger pure submodule 2?* with J5* = ΰ φ j , and
J isomorphic to an ideal of R. C contains a pure-injective envelope
E of J3, which is a summand of C, so that C = E 0 D. We must
show D = 0. Let xe D, x Φ 0 and let J be the set of all yeD such
that there are nonzero elements r, s of R with rx = sy. Since C has
no elements of infinite height, J is isomorphic to an ideal of R. J is
pure in D, and therefore B φ / is pure, contradicting the maximality
of B.

To show that we have a complete set of invariants, we should
show that the number of ideals of each isomorphism type appearing
is independent of the choices involved. (We remark that two ideals
/, J are module-isomorphic if and only if there are nonzero elements
r, s of R which rl = sJ.) For this proof we refer to [19, Corollary 4.4],

Let R and S be valuation rings and S an extension of R and
let the maximal ideal of R be m. Then S is an immediate extension
if there is a one-to-one correspondence between the ideals of R and
S (that is, for every ideal I of R, IS Π R = I and all ideals of S arise
in this way) and if the natural homomorphism R/m —-• S/mS is an
isomorphism. R is a maximal valuation ring if it has no proper
immediate extension, or equivalently [16, pp. 36-51] if R is algebrai-
cally compact as a module over itself (using Proposition 9 above).
Any valuation ring R has an immediate extension S which is maximal,
but S is not in general unique as a ring [6].

PROPOSITION 13. Let R be a valuation ring, S a maximal im-
mediate extension of Rf and I any ideal of R. Then (S/IS)+ is the
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pure-injective envelope of (R/I)+ (where the imbedding is the natural
one and the superscript indicates that all objects involved are being
considered as R-modules).

Proof. Let M = (S/IS)+. It is clear that M is a pure extension
of (R/I)+ since S is an immediate extension of R. If s and r are in Rf

then if r divides s, rM: (s) = M. Otherwise, s divides r and rM: (s) =
(g~ιr)M. By Theorem 4, therefore, we need only show that for any
family of elements Xi of M and r< of i2, if the sets ^ + r t Λf have
the finite intersection property, then Π (Xi + rM) is nonempty. Choose
coset representatives yζ in S for the xt. If any of the r< are in JΓ
the result is trivial so assume not. Then yt + r^S is the inverse
image in S of #* + r̂ ikf, so the ^ + ^S also have the finite intersec-
tion property. Since S is algebraically compact, Π (Vi + r{S) is non-
empty, and hence so is Π (#* + nΛf).

Since (S/IS)+ is algebraically compact, it contains a pure-injective
envelope, E, of (i2//)+, and (S/IS)+ = E(& V. We must show V = 0.
If # e F, a? ̂  0, there is no element y e (SJIS)+ such that x is a
multiple of y and such that y £ m(S/IS)+. Since there are no elements
α (x Φ 0) in (S/IS)+ with this property, we conclude that V — 0.

COROLLARY 9. If R is a valuation ring, then the R-module
structure of a maximal immediate extension of R is uniquely deter-
mined (taking I = 0 in Proposition 13).

THEOREM 6. Let R be a valuation ring, S a maximal immediate
extension of R, Ma finitely generated R-module and E the pure-
injective envelope, of M. Then E ~ M§§ S, E is a finite direct sum
of modules isomorphic to (S/IS)+ (for various ideals /), and any
two such decompositions are equivalent.

Proof. We note first that J l ί®S can be regarded as a finitely
generated S-module. Since S is a maximal valuation ring, by [7, Th.
14] M(g)S is a finite direct sum of cyclic S-modules. Interpreting
all of these as jβ-modules, we see that Λf®S is a direct sum of R-
modules isomorphic to (S/IS)+ (for various ideals I), as desired. By
Proposition 13, these are algebraically compact lϋ-modules, so M(&S
is algebraically compact. The endomorphism ring of (S/IS)+ is a local
ring, which proves that any two of these decompositions are equivalent
by the Azumaya theorem or by [18, Theorem 1].

We still must show that M(&S is the pure-injective envelope of
M. For purity, we use criterion (b) of Proposition 3, and for any
module F we look at the homomorphism
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induced by the natural homomorphism Λf—*ikf(g)S. The injectivity
of this follows from the purity of R in S, by applying criterion (b)
again using the module F§§M instead of F. To show that M(g)S
is a pure-essential extension of ikf, note that the induced jβ-hom-
omorphism M/mM—* (ilί® S)/tn(M® S) is an isomorphism, and the
result follows as in the proof of Proposition 13.
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