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A CHARACTERIZATION OF THE LINEAR SETS
SATISFYING HERZ'S CRITERION

HASKELL P. ROSENTHAL

Let E be a closed subset of T, the circle group, which we
identify with the real numbers modulo 1. E is said to satisfy
Herz's criterion (briefly, E satisfies (H))9 if there exists an
infinite set of positive integers N, such that

(*) for all integers j with 0 ̂  j < N, each of the num-
bers jIN either belongs to E or is distant by at least 1/JV from
E.

The main theorem proved here, is that E satisfies (H) if
and only if there exists a sequence of sets Fu F2, with
E= Π^Fi and positive integers Λ7Ί < N2 < ••• satisfying
the following properties for all i:

(1) Ni divides iSΓ»+i and F* => Fi+ί.
(2) Fi is a finite union of disjoint closed intervals each of

whose end points is of the form j/Ni for some integer j .
(3) If for some integer j,jlNieFi9 then

The motivation for studying sets E satisfying (H) is the result
of Herz (c.f. [1]) that all such sets satisfy spectral synthesis, and of
course that the Cantor set is an example. (See also [2], Chapter IX).

Now suppose that E = ΠΓ=i Fif within and Ni satisfying (l)-(3)
for all i. It is then evident that E satisfies (H), since the numbers
Ni will satisfy (*) for all i. Moreover, E is obtained by a sort of
disection procedure. Indeed, Fi+ί may be obtained from Ft by removing
from certain of the closed intervals [j/Ni9 (j + 1)/Ni] included in Fif

one or more open intervals of the form

/ I Q

Ni + 1

where j/N, < l/Ni+1 < q/Ni+1 ̂  (j +
The "only if" part of our main result is demonstrated following

the proof of Theorem 4 below. The latter result is somewhat stronger
than our main theorem, and enables us to show that certain sets fail
to satisfy (H) (in particular, the symmetric sets of ratio ζ, where ξ
is a rational number with 1/ξ unequal to an integer. (C.f. [2], pp.
13-15 for the definition of these sets).

§ 1. Preliminaries. We identify the points of T with [0,1),
where addition and subtraction are taken modulo 1. If x and y be-
long to T, then the distance between them, p(x, y), is defined to be
the distance from x—y to the closest integer on the real line. If E
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is a subset of T, then p(x, E) is defined as inίfeE p(x, f).
Throughout this paper, E shall refer to a closed proper nonempty

subset of T and Λ^ shall denote the set of all positive integers N
satisfying (*). (Thus if E satisfies (H), Λ^ is an infinite set (and con-
versly)). Every variable "N", with or without sub or superscripts,
refers to a member of ^4^, and every variable "j" refers to an integer.

If L and M are positive integers, we write L \ M if there is an
integer q with Lq — M.

Given a set S, " ~ S" denotes its complement.
Let [x] be the greatest integer less than or equal to x. We remind

the reader that if U is a proper connected open subset of T, there
will exist unique real numbers a < b <* a + 1, such that 0 ^ b < 1,
and such that U = {x — [x]: a < x < b}. We then define the length
of U to be 6 — α, with the left and right end points of U being a — [a]
and b respectively.

DEFINITION. Let x be a member of E for which there exists a
j with 0 ^ i < N, such that a? = j/N.

x is called ΛMnitial if (j — 1)/N$E.
x is called ΛΓ-terminal if (j + ΐ)N$E.
x is called an ΛΓ-end if x is iV-initial or ΛΓ-terminal.

We note that if x is iV-initial (iV-terminal) then x is a right (left)
end point of a component of — E of length at least 2/ΛΓ. Indeed, if
a? is iV-initial, we may close a j so that a? — (1/N) = j/N, and i/iV£ E.
Hence the open interval ((j/N) — (1/N), (j/N) + (1/N)) cannot contain
any points of E, and of course x = (j + l)/iV belongs to E.

2. Our first result shows that if E satisfies (H), then the bound-
ary points of components of ~E must be rational numbers.

LEMMA 1. Let U be a component of ~E, of length I. Then if
N > 1/Z, the end points of U are N-ends.

Proof. Let x be the left end point of U. Then xe E. Suppose
it were false that x = j/N for some j . There would then exist a
0 ^ j < N such that x e (j/N, (j + 1)/N). Since (1/N) < I, we would
have t h a t ((i + l)/iSΓe Z7), so(j + l)/JSΓe # . But

a contradiction. Thus, there exists a j , 0 tί j < N, with a? =
But then (j + l)/JVg £7, since the length of (j/N, (j + 1)/N) is 1/JV < I,
hence (i + l)/iVe U. Thus, a? is iV-terminal. The proof that the
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right end point of U is iV-initial is similar.

Our next task is to define certain sets that are finite unions of
disjoint closed intervals, that approximate E. First, we note that if
x is JV-initial, then x is associated with a unique iV-terminal number
(possibly equal to x), as follows: let k be the smallest integer I, with
O^KN, such that x + (I + 1)/N$ E. (Note that I = N- 2 is such an
integer.) Then x + k/N is the uniquely determined iV-terminal number.

Wed efine Ix = [x, x + (k/N)] and EN = \J{IX: x is iV-initial}. If
there do not exist any AΓ-ends, set EN = T. Let l1 be the maximum
of the lengths of components of ~ E.

Then if N > l/lly there will exist iV-ends by Lemma 1 and hence
EN will be a proper subset of T. Of course, Ix Π Ix, = 0 for x and
#' different iV-ends; so 23̂  is a disjoint union of intervals with end
points all of the form j/N.

LEMMA 2. For all N and N', N' < N implies ENaEN,.

Proof. Let N' < N be fixed, and let x be a fixed JV-initial
number. It follows directly from the definitions that EczEN,; thus
since x e E, there is a (unique) AΓ-end y, such that x e Γy, where Γy =
[2/, «], with a; the unique ΛΓ'-terminal number associated with y.

Now choose an integer I with 0 ̂  I < AT such that

ϊ +

Then (l + l)/N<*E, since (ί + l)/iSΓe (z, z + 1/iV). Thus we must
have that z - l/N, or else |θ(i/iSΓ, E) ^ p(ί/ΛΓ, 2) < 1/ΛΓ. Hence 2 is
iV-terminal, and so it follows from the definition of Ix that Ix c Γy.

Thus £ i V c(J{ί; : V is ΛΓ-initial} = S^.

Our last lemma enables us to obtain certain canonical members of
N crucial for the proof of Theorem 4 (whose proof also shows that the

number N/d below equals qi9 where li+1 g - < / , and q., I, are defined
N

directly preceeding the statement of Theorem 4).

LEMMA 3. Let SN = {0 ̂  j < N: j/N is an N-end).
Let d be a positive integer such that d | N and d \j for all j e SN.

Then (N/d) e^r.

Proof. We may and shall assume that d > 1. Put M = N/d9

and let I be an integer with 0 ̂  I < M, such that l/Mg E. It remains
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for us to show that p(l/M, E) ^ l/M. If this is not the case, then
either {(I - ΐ)/M, l/M) or {l/M, (I + 1)/M) contains a point of E.
Suppose the first possibility; then

M ' MJ V N ' N

contains an iV-end.
Indeed there is, in the first place, an integer r, d(l — 1) < r < dl,

such that r/NeE. For if

(I - 1) dl

belongs to E, we can certainly find such an r with p(x, r/N) < 1/N.
Then r/Ne E since Ne^/f^ is always assumed. Now let A be the
least integer greater than or equal to r such that (k + 1)/N $ E.
Evidently k ^ dl — 1 since l/M = dl/N$E, and yfe/AΓ is an iV-end.

Hence there is a j e SN such that k/N = j/N (mod 1). Since d \ N
and d \j, it follows that d \ k. But d(l — 1) < k < dl, hence

a contradiction.
The argument for the case when ((l/M), (I + 1)/M) contains a

point of E, is practically identical to this.

The next result implies our main theorem, and is useful in de-
termining if a given set fails (H). We shall need the following as-
sumptions and notation:

Assume that ~E has infinitely many components, all with rational
end points.

Let lu l2, be an enumeration of their lengths, with Zf > li+ι > 0
for all i. Evidently ΣΠ=i h ^ 1, so ^ - ^ 0 as i—> oo.

Let Ui be the union of all the components of ~E of lengths
greater than or equal to li9 K{ the set of end points of these com-
ponents, and qι the least common multiple of the denominators of the
members of K{, expressed in the lowest form.

THEOREM 4. If E satisfies (H), then for infinitely many in-
tegers i, the following three conditions must hold simultaneously:

(a) li+1<—.
Qi

(b) 2li+ι<h.
(c) For each integer j with 0 ^ j < qi9 if j/qi g E, then j/qi e U^
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REMARK. If E is a set for which condition (c) holds for infinitely
many i, then E satisfies (H). Indeed, the boundary points of Ui are
all of the form j/q^ thus if i satisfies (c), N = q{ satisfies (*). More-
over, {q{: i satisfies (c)} will then be an infinite set. Indeed, (1/tf;) S k
for all i. Thus fixing i, if we choose k > i such that lk <
we have that (l/qk) < (l/?<), so there are at most finitely many
such that qό = gί#

Proof of Theorem 4. Assume that i? satisfies (iϊ), and fix Ne
with AT > 1/k.

Then there is a unique i such that li+1 <̂  (1/iV) < Z*. By Lemma
1, each member of Kι is an JV-end. Letting EN be as defined before
the proof of Lemma 2, we thus have Uid~EN. Moreover, every
component of ~EN is a component of ~E, of length greater than or
equal to 2/N, by the definition of EN. Thus, every component of
~EN is of length greater than li+ι, whence ~ENa Uif and every N-
end is a member of K^ since it is an end point of a component of
~E oί length greater than or equal to liΛ Thus EN — — ί7{ and the
set of iV-ends equals Ki9 So every element in K{ is of the form
j/N, whence q{ \ N, so qt ̂  N, and thus (a) follows. Since 2/iV is less
than or equal to the lengths of all the components of — EN = Ui9 it
follows that 2/N ̂  Zi, whence (b) holds. Finally, it follows from the
definition of qi9 that if d is the greatest common divisor of SN U {iV},
then q{ — Njd (where SN is defined in Lemma 3). Thus by Lemma 3,
qι G «̂ //", whence since q{ ̂  JV, EQi ZD EN by Lemma 2. So suppose that
i/& g £/. Then

by the latter's definition, so ofa g £7xV, whence y/^ 6 i/i, so (c) holds.
Finally since ^ is infinite, there must be infinitely many i's for

which there exists an Ne^yf/^ with li+ι ^ 1/N < lif and consequently
for which (a), (b), and (c) all hold.

Proof of the main theorem. Let E satisfy (H), and assume first
that ~E has infinitely many components. Then by Lemma 1, the
end points of these components are all rational numbers, so Theorem
4 is applicable; thus condition (c) of that result holds for infinitely
many integers i. Now fixing i for which (c) holds, if N > qi9 then
& IN; indeed, since q{ ̂  1/Z<, we obtain by Lemma 1 that every
element of Ki is an iV-end, and thus expressable in the form j/N.
Moreover, since the boundary points of Ui are all of the form j/qif

we obtain that q^^yΓ.
Thus simply let j19 j 2 , * be an enumeration of a subset of the
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ί's satisfying (c), such that qir < qir, for all r < r\ Then if we put
Ft= ~ Uj. and N4 = qu for all *i, E = ΓIΓ=i F, and (l)-(3) are satisfied
for all i. We have also established that when E satisfies (H) and
its complement, has infinitely many components then there exist
Nί < N2< such that for all i and N, if N ^ Nt then Ni | N.

Now if E satisfies (H) and ~ E has only finitely many components,
then by Lemma 1, the boundary points of E are all rational numbers.
Let M be the least common multiple of the denominators of these num-
bers expressed in the lowest form; then setting Ni = 2i~1M and Ft = E
for all i, it is easily verified that (l)-(3) hold. We remark finally
that if —JS7 has finitely many components with rational boundary
points, then E satisfies (H), and in fact letting M be as above, then
for all L ^ M, L e Λ" if and only if M\L. (Thus the statement
ending the preceeding paragraph fails for E's such that ~E has
finitely many components.)

We wish finitely to give some examples of sets which fail to satisfy
(H). If ξ is a real number with 0 < ξ < 1/2, Sζ, the symmetric set
of ratio ζ, consists of all numbers x in T such that

Σ
where εd = 0 or 1, all j . (See pages 13-15 of [2].)

Now ί is an end point of a component of ~Sξ, namely (f, 1 — ξ).
Hence if ξ is irrational, then Sξ fails (H) by Lemma 1. If f = 1/L

for some integer L, then it is well known that Sξ satisfies (H). We
shall show that if ζ = p/q, where p and q are relatively prime integers
with p>l, then Sξ fails (H).

Defining lt and qt for E = Sξ, we have that lt = (1 — 2ξ)ξί~1 and
q. = qι for i = 1, 2, . (It follows from page 14 of [2] that all the
end points of components of Ui are of the form l/qi for some integer
I; but pi/qi is such an end point, and pί and qi are relatively prime.)
Now if li+ι ^ l/qi9 then (1 - 2(p/q))(p/qγ ^ l/qif or p* ^ q/(q - 2p);
thus condition (a) of Theorem 4 will be violated for all i sufficiently
large.
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