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SOME RESTRICTED PARTITION FUNCTIONS:
CONGRUENCES MODULO 3

D. B. LAHIRI

We shall establish in this paper some congruence relations
with respect to the modulus 3 for some restricted partition
functions. The difference between the unrestricted partition
function, p(ri), and these restricted partition functions which
we shall denote by

2Jp(n) with r = 3, 6,12 ,

merely lies in the restriction that no number of the forms
2Ίn, or 27n ± r, shall be a part of the partitions which are
of relevance in the restricted case. Thus to determine the
value of 2Jp(ri) one should count all the unrestricted partitions
of n excepting those which contain a number of any of the
above forms as a part. We shall assume p(n) and 2Jp(ri) to be
unity when n is zero, and vanishing when the argument is
negative. We can now state our theorems.

THEOREM 1. For almost all values of n

2lp(n) = %p(n) Ξ= llp(n) = 0 (mod 3) .

THEOREM 2. For all values of n

%p(Sn) Ξ= %p(βn + 1) = -f7

2p(Sn + 2) (mod 3) .

2* Definitions and notations* We shall use m to denote an
integer positive zero or negative, but n will stand for a positive or
nonnegative integer only.

We define ur by

(1) u0 = 1 and ur = Σ nranx
n. Σ P(n)xn, r > 0 ,

where an is defined by the well-known 'pentagonal number' theorem
of Euler,

( 2 ) f(χ) - Π (1 - xn) = Σ (-l)»α>4"(8w+lϊ = Σ α»a?w ,

and p(n) is the number of unrestricted partitions of n given by the
expansion,

( 3 ) [fix)]-' = Γfi (1 - α*)"Γ - Σ P(n)xn .
L»=i J τι—0

We shall use v to denote the pentagonal numbers,
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( 4 ) v = — m(3m + 1), m = 0, ± 1, ± 2, . . .
Δ

and with each v there corresponds an 'associated' sign, viz., ( — l)m.
We shall come across sums of the type

Σ [ + V(v)]
V

where it is understood that the sign to be prefixed is the ' associated'
one, which would thus be (a) negative if v is 1, 2,12,15, 35, , that
is, when it is of the form (2m + 1) (3m + 1), and (b) positive if v is
0, 5, 7, 22, 26 , that is, when it is of the form m(6m + 1). With
the above summation notation we can write,

(5) ur =

(6) Σ ( T
v

We shall also require the functions Uif i — 0,1, 2 which are cer-
tain linear functions of ur's, r = 0,1, 2 as given below.

( 7 ) lu, = - u2 - uλ,
{ 7 2 = — ^2 + Ml .

We also need the quadratics P^v) in v, i — 0, 1, 2 which are obtained
by writing Pi(v) for Ui9 and /yr for ur. Thus

- - v2 + 1 ,

( 8 ) \Pi(v)= - v 2 - v ,

3* Some lemmas* The truth of the following lemma can be
easily verified from the expressions for P^v) given in (8).

LEMMA 1.

Piiv) = 1 (mod 3) , if v = i (mod 3)

Ξ= 0 (mod 3) , if v =έ i (mod 3) .

If we replace the ^/s appearing in the expressions for Ui in (7)
by the right hand expressions in (5) we get

( 9 ) ut =
v

and then the use of Lemma 1 leads to the next lemma.
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LEMMA 2. Ui =Ξ Σ^=i(+ #")//(#) (mod 3), the summation being ex-
tended over all pentagonal numbers v = i (mod 3).

The truth of the following lemma can be verified without much
difficulty by writing 3m + j, with j — 0 — 1 and 1 respectively, in
place of m in the expression |m(3m + 1) for the pentagonal numbers,
and in ( —l)w its associated sign. It is also to be remembered that
i(3m — 1) (9m — 2) and 4(3m + 1) (9m + 2) represent the same set of
numbers.

LEMMA 3. The solutions of

v = i (mod 3) , i = 0, 1, 2

are as noted below, (the associated signs are also shown).

i solutions sign

0 J(27m2 + 3m) ( - l ) m

1 |(27m2 + 15m) + 1 (- l ) m + 1

2 |(27m2 + 21m) + 2 (-1)™+1 .

The identities given in the next lemma are simple applications of
a special case of a famous identity of Jacobi [3, p. 283] viz.,

(10) Π [(1 - x2kn+k-ι)(l - a?ϊ*»+*+I)(l - x2kn+2k)] = Σ (-l)mχk™2+lm .
n=Q —oo

In establishing this lemma k and I are given values which are in
conformity with the quadratic expressions in m given in Lemma 3.
As an illustration we have

(11) x (+ o = Σ (-i)™+i#(27-2+2i™>+2

= - ^ 2 Π L(i - χ 2 7 n + " ) ( i - χ 2 7 n + 2 4 ) ( i - χ 2 7 n + 2 7 ) ] .
n=Q

LEMMA 4. Writing v = i simply for v = i (mod 3)

Σ ( + O = Π [( i - α 2 7 w + 1 2 )( i - x27n+lδ)(i - x27n+27)]

Σ (Txv) = - x Π [(1 - x 2 7 ϊ l + β )(l - x 2 7 B + 2 1 )(l - xΐ7n+ίT)] .

Σ ( + ^ ) = - x2 π [ ( i - χ27n+s)(i - χ27n+2i)(i - χ27n+27)].
Q

Lemma 5, given below is derived from Lemma 2 after the sub-
stitution in it of the product expressions for ^vsi( + xv) as given in
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the above lemma. The following fact also is to be taken into
consideration.

(12) Π (1 - x27n+r)(l - x27n+27~r)(l - x27n+27)]/f(x)

= Π [ ( 1 - xZ7n+r)(l - a j 2 7 B + 2 7 - 0 ( l - x 2 7 ί i + 2 7 ) ]/ [ ( l - x)(l - a;2)(l - x3)- •]
n=0

= Σ Vp(n)x* .

LEMMA 5.

UQ = Σ llp(n)xn (mod 3)

U, = - Σ 2ei>(« - 1)*" (mod 3)

^2 = - Σ JsP(» - 2)a;" (mod 3) .

We require another set of congruences which are obtained from
the classical result, due to Catalan [1, p. 290],

(13) p(n - 1) + 2p(n - 2) - 5p(n - 5) - Ίp(n - 7) + -

and another result due to Glaisher [1, p. 312]

(14) p(n - 1) + 22p(n - 2) - 52p(n - 5) - 72p(^ - 7) +

These results can be rewritten according to our notation as

(15) Σ [+ vp(n - ! ; ) ] = - σ(n) ,

(16) Σ [+

Now from (5) we have

(17) = Σ(+^r).

= Σ {Σ [+ «rP(w - v)]}x* , T > 0 .

It is now easy to establish the validity of the following lemma from
the above three relations (15), (16) and (17).
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LEMMA 6.

u2 = — Σ [5σ3(w) - (18w - l)σ(n)]xn .
12 *=i

The next lemma can be easily obtained by the substitution of the
above values of ux and u2 in (7).

LEMMA 7.

Uo - 1 = - - ί - Σ [ δ ^ W - (18n - l)<7(tt)]s» ,

Ux = - - ^ Σ [δ^sW - (18n + ll)σ(n)]x* ,
12 «-i

U2 = - — Σ [50"3(w) - (18w - 13)o (w)]^w .
1 2 w=i

The congruences given in Lemma 8 are elementary and can be
readily proved.

LEMMA 8.

σ(Zn - 1) =Ξ 0 (mod 3) .

σ(S?n) = σ(n) (mod 3) , λ > 0 .

4* Proof of the theorems* By comparing the coefficients of
like powers of x in the expressions (modulo 3) for ί7{ given in Lemmas
5 and 7 we obtain the following congruences for n > 0.

(18) llp(n) = - -±-[5σ8(n) - (ISn - l)σ(n)] (mod 3)

(19) - 2lp(n - l) = - J L [5(7,(9,) - (18% + ll)σ(n)] (mod 3)

(20) - Ίp(n -2)= - — [5σz(n) - (18% - lS)σ(n)] (mod 3) .

Remembering the well-known congruence, [4 2, p. 167],

{21) ok(n) = 0 (modikf) for almost all n

for arbitrarily fixed M and odd A:, it is a straightforward matter to
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deduce Theorem 1 from the above congruences.
To establish Theorem 2 we obtain by a process of addition or

subtraction of (18), (19) and (20) in pairs the following.

(22) - Hp(n) - %p(n - 1) = %p(n) + %p(n - 2)

= %p(n - 1) - 2lp(n - 2) = σ{n) (mod 3) .

Now writing 3w + 2 for n in (22) and making use of the first rela-
tion of Lemma 8 we obtain the theorem immediately.

To derive a generalization from (22) we write Zλn for n in it and
make use of the last congruence of Lemma 8 to obtain,

(23) - Hp(&n) - 2lp{Zλn - 1) = L7p(3%) + 2lp(3λn - 2)

= 2lp(&n - 1) - 2\p&n - 2)

ΞΞ σ(n) (mod 3) .

We need write Sn — 1 for n in (23) and use the first congruence of
Lemma 8 to arrive at the more general Theorem 3.

THEOREM 3. With respect to the modulus 3

n - 3;) = %p(Sλ+1n - 3 ; - 1) = 2lp(3λ+ίn - 3λ - 2) .

Finally, it might be of interest to note that the three restricted
partition functions 2lp{ri), r = 3, 6 and 12, are connected by the iden-
tical relation,

(24) llp(n) - %p(n - 1) + 2lp(n - 2) , n > 0 .

This is seen to be true by a joint consideration of (6), Lemma 4, and
(12). The first relation gives

(25) ΣΣ
i=0 v=i

We substitute the values of ΣV Ξ ί(=F xv) in the product form as given
in Lemma 4, and then make use of (12) in order to express the left
hand side of (25) as a power series in x whose coefficients are simple
linear functions of the restricted partition functions. Now (24) is
obtained directly by equating to zero the coefficient of xn, n > 0.
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