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ON ASYMPTOTIC DENSITY IN n-DIMENSIONS

A. R. FREEDMAN

The notion of asymptotic density for sets of nonnegative
integers is generalized to sets of -̂dimensional "nonnegative"
lattice points. The additive properties of sets relative to this
density are discussed. Some of the results are extended to the
infinite dimensional case. Finally, natural density is defined
and discussed.

To the author's knowledge, the only attemps at generalizing asymp-
totic density are to be found in Christopher [3] and, more significantly,
in Buck [2]. In §5, it is proved that our density always differs on
certain sets from those given in these articles. Moreover, neither of
the above mentioned papers discusses additive properties.

In § 2 the asymptotic density for subsets of the set of %-tuples of
nonnegative integers is defined and various equivalent forms are con-
sidered. In § 3 some density results involving the sum of sets are
obtained. In § 4 some of these results are extended to the infinite
dimensional case. Finally, in § 5, upper asymptotic density and natural
density are defined and a measure theoretic property of the latter is
proved.

2 Definitions, etc* Let n be a positive integer and S the set
of all π-tuples of nonnegative integers. The element (0, , 0) will be
denoted by 0 and generally the element (x19 , xn) by x. For JCGS, let

L(x) = {y IV e S, Vι ̂  Xi (i = 1, , n)}

and

= {y\xeL(y)}.

For a set XaS and element x e S denote by X\x the set of all
y G X, y Φ x. In general the set theoretic difference will be denoted
by\(rather than—).

Define 3$T to be the set

{F\Ff](S\0) is nonempty and finite; xe F=> L(x) c F } .

For Fe 3T, let

F * - {x\x e F; x e L(y)\y =- y g F) .

F* is just the set of maximal points of F with respect to the partial
ordering •< determined by the equivalence
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96 A. R. FREEDMAN

x < y <=> x e L(y) .

It is then clear that, for each Fe 3T, F = U {L(x) | Λ: e JP7*}.
For sets Aa S the "counting function" of A is defined as follows:

for each I c S , i ( I ) is the cardinality of the set (Af]X)\0. Use
of the counting function will be made only when X is finite. Note
especially that 0 is never counted.

Given 4 c S , the Z-density of A is defined to be

In the case n = 1 this definition reduces to the ordinary Schnirelmann
density of the set A. This generalization has been considered by
Kvarda [6] and the author [4|. Further generalizations of Schnirelmann
density have been considered by the author in [5].

A property of if-density [4, Lemma 1] can be noted here: if
d(A) < l(i.e., if A\0 Φ S\0), then

(1) d(A) = gib Fe S\A\ .

For a nonnegative integer N, let

J(N) = {x i x G S, min {ajlf , α?w} <£ JV} .

It can be noted that J(N) = S\U((N + 1, , N + 1)).

The asymptotic density of a set A c S is defined to be

δ(A) = lim d(A U J(N)) .

With little difficulty it can be proved directly that, in the case n = 1,
<5(A) is the usual asymptotic density of A, ι.e.,δ(A) = lim^oo A(n)/n.
However, a slightly different proof will be given at the end of this
section. For any dimension n, the asymptotic density of a set A exists
since d(A U J(N)) forms a nondecreasing sequence bounded above by 1.

We proceed to investigate some equivalent forms for δ(A) as well
as some other proporties. First, a number of structure lemmas are
needed concerning lower bounds on the quotients of the number of
elements in certain subsets of S. These seem to be interesting in
themselves.

For integers M, N, n with M > N ^ 0, n > 0, let

We note that, for fixed N,n, g(M, N, n) —-> °o as M—>oo. Also, for
fixed M, N, if n, > n2 then g(M, N, n,) ^ g(M, N, n2).
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LEMMA 2.1. Let 0 5Ξ N < M and x e S such that

M +1S %i(i = 1, , n) .

If

Π (»< + i) - Π («< - Λί)
f(M, N, n, x) = _ίώ i=i ,

Π («< + 1) -
i = l

/(M, iV, w, x) ^ ^(ilf, N, n).

Proof. For n = 1, f(M, N, 1, x) = (M + l)/(iV + 1) = flf(Jlf, N, 1).
Also, for any n, if x = (M + 1, , M + 1), then

* » • *> =

We perform a multiple induction. Let k > 1 and assume the lemma
true for all M, N,n,x with n < k. Let x = (α ,̂ , xk) be such that
Xi > M(i = 1, , fc) and, for some i , % > M + 1, and assume for each
y = (l/i, ---iVk) with M <Ίji^ Xi(ί = 1, , fc) and, for some i , τ/, < x, ,
that /(Λί, N, k, y) ^ βr(ikf, ΛΓ, /b). Without loss of generality we may
assume that x1 > M + 1. Now

/(M, ΛΓ, k, x)

[(Xl - 1 + 1) ft (Xi + 1) - fo - 1 - M) Π (X, - Jlf)]

[(xL - 1 + 1) fl (Xi + 1) - (x, - 1 - N) Π (a?* - iV)]

+ [Π (χt + i) - Π (Xi -

+ [Π (^ + i) - Π (»i -

^ min {/(Λf, JV, k, (x, - 1, x2, - • , xk)), f(M, N, k - 1, (x2, ,

^ min {g(M, N, k), g(M, N, k - 1)} = g(M, N, k) .

This completes the proof.
Note the following simple formulae:

(2) For each xeS, S(L(x)) = Π?=i («< + 1) - 1.
(3) For x,yeS,yeL(x),

S(L(x) n U(y)) = Π (Xi - Vi + 1) -

where 57(ί/) = 0 if y Φ 0 and η(y) — 1 if y = 0.
(4) For Λf ^ 0 , x ί J(M),
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S(L(X) Π J(M)) = Π (x( + 1) - Π (», - M) - 1 .
i = l t = l

This last follows since

L(x) Π J(iW) = L(x)\[L(x) n J7((Λf + 1, , M + 1))] .

We can now prove

LEMMA 2.2. If 0 < N < M and x £ J(M), then

S(L(x) Π J(M)) (M N ,
S(L() n J(N)) UK ' ' ''S(L(x)f]J(N)) S(L(x) n J(N))

Proof. The first inequality is obvious. The middle fraction is

Π (Xi + 1) - Π (** -M)-l
i=1 > f(M, N, n, x) ̂  g(M, N, n) .

Π (*, + 1) - Π (Xi -N)-l
i=l ΐ = l

LEMMA 2.3. Assume 0 < N< M,x ί J{M), 0 ^ P c { l , ,»} and
let y be defined by

(0 if ίeP

(Xi if i$P .

Then
S(L(x) n U(y))

S(L(x) n U(y) Π J(N)) " 2

Proof. Let P = {i19 , ίm} where 0 < m ^ n. Let S' be the set
of m-tuples of nonnegative integers. Define h: S—+S' so that h(w) —
(wilf wi2, » ,Wi ). For z e S ' and K ^ 0, define as before L'(z) and
Jr{K). From (2) and (3) above we have

S(L(x) n £%)) = Π (Xi - Vi + i) - >?(#)

= Π to, + 1) - 7̂(ίf)

= S'(L'(h(x))) + 1 — >7(ί/) .

Note that h(x) ί J'(M). Also, the function h establishes a one-one
correspondence between the sets L(x) ΓΊ U(y) (Ί e/ί-ΛΓ) and L'(h(x)) Π J'(N).
Nothing that 0 is in the first set if and only if y — 0 we get

S(L(x) Π U(y) Π J(N)) = S'(L'(h(x)) Π

Thus, using 2.2 and the fact that S'(L'(h(x)) Π /(iV)) > 0,
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we get

S(L(x) n U(y)) _ S'(L'(h(x))) + 1 - η(y)
S(L(x) Π U(y) Π J{N)) S'(L'{h{x)) n

~ 2'S'(L'(h(x)Γ)J'(N))

^ i - fir(M, ΛΓ, m) ^ i - </( ilί, iV, n)
Δ Δ

and the lemma is proved.
For an integer M ^ 0 define

C S\J(M)} .

LEMMA 2.4. If Fe ST(M) and M - 1 > N > 0, then

Π
> >

n J(N)) > s(F n J(N)) =

Proof. The first inequality is obvious so we prove the second. Let
R = {x\xeF,Xi^ M(i = 1, , n) and x5 — M for some j}. First it
is shown that F Π J{M) = U {L(x) \ x e R}. If y e F Π ̂ (M), then
^ G L(z) for some z e F* and for some i0, ?/ίo ^ M. Let Λ: be defined
by

Zi iί i it i

[M if i = i0 .

Then i/ e L(x) and x e i? so that F Π J(M) c U {L(x) | x e i2}. If
If e U {I'(ΛΓ) I X e R}, then ^ e L(x) c F for some xeRaF, and since
*τy = M for some j , yά ^ M so that # e J(M).

For XGJB let x' be defined by

(Xi if x{ > M
Xi ~ (0 if α?i = Λf .

Let G(x) - L(x) n Z7(x;). If ^ Φ y, then G(x) and G(y) are disjoint,
for, if zeG(x) Π G(«/), then, for xt > M, we have xt = ^ ^ ^ and,
otherwise, #< = ikf ^ ^ so that x < y. Reversing the argument gives
X = If.

Next it is shown that U {G(x) | x e R) = F f] J(M). Clearly

[J{G(x)\xeR}c: U {L(x) \ x 6 R) = i

If yeFf] J(M), then the element s defined by
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Vt if y< > M

M if yi ^ M

is in R and y e G(s).
Finally, noting that each xeR is not in J(M — 1), we have

n J(N)) Σ S(G(χ) n
xe R

>min
S(G(x) Π J(N))

Δ

The last step follows from 2.3. This completes the proof.

Define £f to be the class of all sequences (Ft) in J3Γ which satisfy
the property that for each integer N > 0

lim
i n J(N))

= oo .

LEMMA 2.5. // (ί7^) is a sequence such that F{e 3$Γ{%), then

Proof. Lemma (2.4) says that for ί sufficiently large

> — g ( ί — 1, N. n) —* co(ΐ —* oo) .

THEOREM 2.6. // (F<) e Sf and 4 c S , ίfee^

Proo/. Let iSΓ > 0. Then

β(A \ i WAΓ» < I A u J ( ^ ) ] ( ^ ) < ^ ( ^ ) + g ( ^ n
^ K ) ) = S{Ft) ~ S(F<)

Hence

HA u W » a ϋm

lim AIW + HE



ON ASYMPTOTIC DENSITY IN ^-DIMENSIONS 101

= lim
^ S(Fi)

Letting JV->oo we have the result.

The following theorem shows that δ(A) can always be obtained
as a limit of quotients A(Fi)/S(Fi) where (2^) is a sequence in Sf.
Actually, anticipating a subsequent application, a little more is proved.

THEOREM 2.7. For each Ac: S there exists (Ft) e S^ such that

Moreover, if δ(A) < 1, we may choose the F{ so that Ft c S\(A U 'J(i))

Proof. If δ(A) — 1, then for any sequence (F{) e S^

1 = δ(A) < lim A(Fi) < ίϊϊn -Ai^iL < l
}-ϊ^ S(F) ~i S(F) -

and the theorem is proved in this case.

Suppose that δ(A) < 1. For ί ;> 1, let M(i) be such that

g(M(ί) - 1, i, n) ^ 2ί+1

and choose F, e 5ίΓ so that F? c S\(A U J{M{i))) and

[A U

The existence of 2^ follows from (1) above. From the inclusions

Ft c S\(A U /(Λf(i))) c S\(A U J(i)) c S\J(i)

it follows that ^ e ^ ^ ) so that, by 2.5, (F,) e Sf. Since also
2̂ * c S\(A U /(i)) it remains only to show that δ(A) is the limit of
the quotients A(Fi)/S(Fi).

From the inequalities

0

[A U

" flf(Λf(i) - 1, i, w) "" 2*

it follows that

S(F<) S(Ft) J
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But also

for

d(A(iJ(ί)) < t A u

£ d(A U ^

where both ends approach δ(A) as i —•> oo. This proves the theorem.

THEOREM 2.8. jFor eαc& 4 c S ,

lim
S(Fζ)

Proof. Theorems 2.6 and 2.7.

For iSΓ ̂  0 and AaS define

THEOREM 2.9. δ(A) = l im f f _ ^(^4).

Proof. Since, for each F e J^"

[AϋJ(N)](F) ^ A(F) + S(Ff]J(N))
S(F) ~ S(F)

it follows that d(A U J{N)) ̂  dw(A). Let (F4) e ̂  such that

A(Ft)IS(Ft)

as ί —»• oo. Then

as ΐ—> oo. Hence, for each N, d(A U J(N)) ̂  ^ (A) ̂  δ(A) and the
theorem follows.

THEOREM 2.10. δ(A) = l im^^ dN(A u J(N)).

Proof. As in the proof of Theorem 2.9,
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d(A U J(N)) = d(A U J(N) U J(iSΓ)) ̂  cP(A U J(iV)) ̂  δ( A U J(JSΓ)) = δ(A) .

The last equality follows easily from the definition of δ.

In the next theorem the asymptotic density of certain sets is
calculated. They are applied in the proof of Theorem 5.1 below.

THEOREM 2.11. ( i ) If n^2 and A Π J(N) is finite for each
N^O, then δ(A) = 0.

(ii) If S\AdJ(N) for some N, then δ(A) = 1.

Proof. ( i ) For N^ 0, let xltN, x2>N, , xn-ltN be chosen so large
that xitN > N(i = 1, , n — 1) and

S(L((xι>Ni , xn_ltN, N))) > N-S(A Π J(N)) .

Let FN = L((xltN, , xn-UN, N)) so that ^ e ^ (FN) e £f (since
FN e 3T(N - 1)) and FN c •/(iSΓ). Hence

J(N)](FV) < l i m JL ^ p .
N

lim
S(FN) -~N^ N S(AnJ(N))

(ii) If S\A c J(iV), then A U J(Λf) = S for M ̂  iV.
Thus d(A U /(M)) = d(S) = 1 and the result follows.

To conclude this section we prove that δ generalizes the usual
asymptotic density.

THEOREM 2.12. In the case n = 1, δ(A) is the usual asymptotic
density of A.

Proof. It is assumed the reader is familiar with the usual nota-
btion for this case. By 2.6,

and, by 2.7, there is a sequence of integers n{ such that n{ —•> oo as
i —-> oo and

3* Some addition theorems* Let A and B be subsets of S and
define A + 1? to be the set {α + 6 | a e A, b e B}. If A is a singleton
{JC}, then write A + B as x + B. Futhermore, if A c U{y), then define
A — y to be the set {x \ x e S, x + y e ̂ 4}. Addition of elements in S
is done coordinate wise.

LEMMA 3.1. If OeAnB and A(L(x)) + B(L(x)) ^ S(L(x)), then
xeA + B.
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Proof. This is done in the proof of Theorem 1 in [6].

THEOREM 3.2. If OeAnB and δ(A) + δ(B) > 1, then

S\(A + B) c J(N)

for some N. This last condition implies that δ(A + B) = 1.

Proof. The last statement is just Theorem 2.11 (ii).
Let e — δ(A) + δ(B) — 1. From the definition of asymptotic density

it follows that, for some integer No,

d(A U J(NQ)) + d(B U J(N0)) > 1 + 4

Since L(x) e <βt~ for each x e S\0, it follows from the last expression
that

[A U J(N0)](L(x)) + [BΌ J(N0)](L(x)) > S(L(x)) + -1 S(L(x)) .
Δ

Let Λf be so large that g{M, No, n) > 4/β. By Lemma 2.2, if x

then

s(L(x) Π J(N0))

Hence, for x$J(M),

A(L(x)) + B(L(x)) ^ [ A U J(N0)]((L(x)) + [B U J(N0)](L(x))
- 2S(L(x) Π

= 2

= S(L(x)) .

Therefore, by Lemma 3.1, x e A -{- B so that S\(A + B) c J(M).

The following theorem shows that the asymptotic density of a set
is invariant under translation.

THEOREM 3.3. δ(x + A) = δ(A) for each AaS and x e S.

Proof. If x = 0, then x + A = A and the theorem is trivial.
Hence it is assumed that x^O. Furthermore, since x + A and
x + (A\0) differ in at most one point, it may be assumed that Oe A.

It is first shown that δ(x + A) ̂  δ(A). Let N = max{x19 , xn).
It is sufficient to prove that, for each M ̂  N,
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d((x + A) U J{M)) ^ d(A U J(M - N)) .

Let DM = (x + A) U J(M) and ^ = A u J(M) and let G e X If
x ί G\G*, then G c J(iV). To see this let z e G\J(N). Then s< > N ^
a?i(ΐ = 1, , w) and so x e L(^) c G. Since x ^ z, x e G\G*, contradiction.
Thus, in the case x$G\G*, for M^N,

Hence, suppose that xeG\G*. It is easily shown that

G' = [G n U(x)] - J c

Now, for M ^> N,

DM{G) = DM{G\U(x)) + DM(G n

= S(G\U(x)) + ([D^ Π U(x)] - x)(G') + 1

^ S(GP[U(x)) + ^_. V (G') + 1 .

The second equality follows from the fact that, first, G\U(x)aJ(M)(zDM,
and, second, if xeZczU(x) and xeH(zU(x) with i ί finite, then
Z(H) = (Z- x)(H - x) + 1. Above we have Z = !>„ Π Z7(x) and i ϊ -
G Π Z7(JC). The last inequality follows for the fact that

EM-N c [DM n U(x)] - x .

To see this let z e EM-N and suppose first that z e A. Then

z + x 6 (x + A) Π Σ7(x) c An Π Σ7(ΛΓ)

and so z = (^ + x) - x e [D^ Π Z7(ΛΓ)] - X. If z e J(M — N), then
z + x G J(M) Π Ϊ7(x) c D^ Π U(x) so again z e [DM Π ?7(x)] — x. Here we
have used the fact that if w e J{i), v e L((j, , j)), then w + v e J(i + j)m

In a similar manner, we obtain

S(G) = S(G\U(x)) + S(G') + 1 .

Thus,

DM(G) ^ EM-N(G') + S(G\U(x)) + 1
S(G) ~ S(G') + S(G\U(x)) + 1

Hence it follows that d(DM) ^ d{EM-N).
It remains to show that δ(x + A) <£ δ(A). Clearly, for each G e

(x + A)(G) ̂  A(G) + 1. Let (G{) e S^ such that l i m ^ A(Gt)/S(G^ = δ(A).
Then
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δ(x + A) ^ lim (χ + A ) ( G ^ ^ lim^lHiZJ£L£ = δ(A) .

Let A g S and define the generalized Erdδs density of A to be

dJ^A) = gibs———-—̂ —— JPG Jst^A(F) < Sίί7)}- .
I S(F) + 1 J

This density has been studied by Kvarda in [7] where the following
important result is proved.

T H E O R E M 3 .4. ( K v a r d a ) . Let A , BcS, OeAnB and
such that {A + B) (F) < S(F) and for each b e B Π F there exists
g G F\(A + B) with b e L(g). Then

(A + B)(F) ^ dL(A)-(S(F) + 1) + B(F) .

In particular, the hypotheses of 3.4 will be satisfied if F is taken
so that F * c S\(A + B). Using 3.4 the following "mixed" density
result is proved.

THEOREM 3.5. // O e A n B and AΦ S, then δ(A + B) ^ min
{1, d,(

Proof. If δ(A + B) = 1, the theorem is obvious. Hence assume
that δ(A + B)< 1 and denote A + B by C and d^A) by αL. For any

with F c S \ C , by 3.4,

^ +
S(F)

Thus, for any N ^ 0,

S(FΠJ(N)) > „ , B(F) + S(FΠJ(N))
S(F) ~ S(F)

U

By 2.7, there exists a sequence (F{) e Sf such that Ft c S\C
and l i m ^ C W S ί F , ) = δ(C).
Then, for each N ^ 0,

ί(C) = lim -gfij. = lim

u
Letting N—> °° we obtain
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δ(C) ^a, + δ(B)

and the theorem is proved.

As an example of an application of Theorem 2.10 the following
theorem is proved.

THEOREM 3.6. // A Π B c J(N) for some N, then δ(A U B) ̂
lβ(A) + δ(B). In particular, if OeAnBcz J(N), then δ(A + B) ̂
J(A) + δ(B).

Proof. The second statement follows easily from the first since
A + BIDADB if OeApiB.

Let C = A U B. If M ̂  N, then Af]Bcz J(M) and so for any

[C U J(M)](F) = A(F\J(M)) + B(F\J(M)) +
- [A U J(ΛΓ)](F) + [SU J(M)](F) - S(F n J"(ΛΓ)) .

Thus, for ikf ̂  iV, Fe 3T,

[C U J(AΓ)Ί( F) + S(F n J(M)) _ [A U J(M)]( F) [ ΰ u J(M)](F)
S(F) S(F) S(F)

^ d(A U J(AΓ)) + d(B U J(M)) .

Hence, by definition of dM,

dM(C U J(M) ^ d(A U /(Λf)) + d(B U

Letting M—> <», we obtain by 2.10,

^ δ(A)

The proofs of the following two results are left for the reader.
The results are to be compared with Buck's measure theoretic deve-
lopment of asymptotic density in [1],

THEOREM 3.7. Let AaS and let k, j be positive integers. 1 <̂
j <; n. Suppose that, for each xeA,k\ xjm Define the set

Then δ(B) = kδ(A).

THEOREM 3.8. Let {aj + 6̂  \j = 0,1, 2, •} = P(aif b^ be n arith-
metric progressions fa > 0, b{ ί> 0(i = 1, , n)) Let

A = P(a1,b1) x . . . x P(an,bn)dS .
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Then

δ(A) = Π — .

4. Extensions to the infinite dimensional case* For this section
the following notation is adopted. The set of all w-tuples of nonne-
gative integers will be denoted by In. The set of all infinite sequences
x = (xlf x2, •) of nonnegative integers with the property that only
finitely many terms are different from 0 will be denoted by Q. For
xeQ, let k(x) be the largest index k such that xk Φ 0. For AczQ,
n a positive integer, let

Au = {a?lf -, xn) I x = (xιy xz, •) e A, k(x) ^ }̂ .

The asymptotic density of a set 4 c Q is defined to be

Although if-density can easily be extended to Q (see [5]), there
does not seem to be any direct way of obtaining a good definition of
asymptotic density from it as was done in the finite dimensional case.
In particular, it is not clear how one should define the J(N) (if, indeed,
this approach is at all possible). The definition given here, however,
seems worthy enough as the following results indicate.

THEOREM 4.1. (Extension of 3.2). // A, BaQ,0eAf)B, and
δ(A) + δ(B) > 1, then there exists an integer M and a sequence of
nonnegative integers NM, NM+1, such that, if x e Q\(A + B) and
k(x) ^ M, then x{ ^ Nk{χ) for some i, 1 ^ i ίg k(x). This condition
implies that δ(A + B) — 1.

Proof. From δ(A) + δ(B) > 1, it follows that there exists an
M > 0 such that, if n ^ M, then δ(An) + δ(Bn) > 1. Thus, by 3.2,
for n ^ Mf there exists an integer Nn such that IΛ\(An + Bn) c J(Nn).
Observe that, for each n, An + Bn = (A + B)n. Hence, if x e Q\(A + B)
and k(x) = k^M, then (x19 ., xk) e Ik\(A + B)k = Ik\(Ak + Bk) c J(Nk)
so that there is an i, 1 ^ i ^ k, such that xt <S Nk.

To prove the last statement observe that, for n ^ M, 8(An + Bn) = 1.
Thus

δ(A + B) = ljm δ((A + B)n) - lim δ(An + Bn) = 1 .
n—>oo n—»oo

THEOREM 4.2. {Extension of 3.3). If AczQ and xeQ, then
δ(x + A) = S(A).
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Proof. Define yn = (xly ,.xn) where x = (x19x2, •) and observe
that, for n ^ k(x), we have (x + A)n = yn + An. Hence, using 3.3,
δ(x + A) = limn_ δ((x + A)n) = l i m ^ δ ( ^ + AJ = lπnn^δ(An) = δ(A).

We proceed to extend Theorem 3.5. For xeQ, let L(x) =
{y\y€Q,Vi^ %i(i = 1, 2, •)}• Then let Ĵ r" be the class of all non-
empty finite subsets F of Q with at least one nonzero element satisfying
the condition: x e F ==> L(x) c ί7.

For 4 c Q , define

= glb

THEOREM 4.3. For

= lim dΛ

Proof. Denote by 3%, the class 3ίΓ defined in In. Since A Φ Q.
there exists N such that, for all n ^ N, A Φ In. Let Fe 3^n such
that An(F) < In{F). Define F' e JT~ by

Ff = {x I x e Q, k(x) ^ n, (x19 , xn) e F} .

Then An(F) - A(F') and 7W(F) = Q{Ff) so that

In(F) + 1 Q(F')

Thus d^AJ ^ di(A) for all n^N.
Next, note that d^AJ forms a nonincreasing sequence. To see

this, let Fe 3Tn such that An{F) < In(F). Then

Fo = {(*» , *„, 0) I (a?!, , a;,) 6 JF1} 6 X + 1

and

+ 1 lκ+ι(i<o) + 1

so that cί1(An) ^ (Zj^+i). Hence lim,^ d^AJ exists and is
Now let Fe J T such that A(2 )̂ <Q(F). Let w = max{k(x) \xeF}

and set F' = {(x^ , xn)\ (xu x2, •) e F}. It follows that
F' e JZ, An{F') = A(F) and In(F') = Q(F). Thus

A(F) _ An{F') > d ( A )
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Hence dλ(A) ^ lim,^ dλ(An) and the theorem is proved.

THEOREM 4.4. (Extension of 3.5). If A,BaQ, 0eAf]B and
A Φ Q, then

δ(A + B) ^ min {1, dλ(A)

Proof. By 3.5, for all sufficiently large n,

δ((A + B)n) = d(An + Bn) ^ min {1, ^(AJ + δ(B)} .

Thus

B) = lim S((A + 5)n)

^ lim min {1, d^AJ + δ(Bn)}

= min {1, gn. (d^AJ + δ(Bn))}

^ min {1, lim d^AJ + lim

The proof of the following extension of 3.6 is omitted. Note that
for A, B c Q, (A n 5) . = AΛ Π 5 n .

THEOREM 4.5. If A, B (z Q and for all sufficiently large n there
exists an integer Nn such that (A Π B)naJ(Nn), then

δ(A U 5 ) ^ δ(A) + δ(J?) .

5. Natural density. In this section we return to consideration
only of the (finite) ^-dimensional case, and to the notation of § 1 — § 3.

For a set A c S, define the upper iΓ-density of A to be

and the upper asymptotic density of A to be

δ(A) = lim d(A\J(N)) .

Since d(A\J(N)) forms a nonincreasing sequence it follows that δ(A)
always exists.

If δ(A) = δ(A), then we say that the natural density of A exists
and write v(A) = δ(A) = δ(A).

R. C. Buck [2] has defined asymptotic density, upper asymptotic
density and natural density for subsets of a measure space X. Briefly,
the procedure is this: Take a countable increasing sequence K{i) of
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subsets of X which covers X and a sequence μi of measures defined
on the same class of sets which includes the sets K(ϊ). The following
properties are assumed: (i) μt{X) = 1 for all i; (ii) μζ {K{j)) —> 0
as i —> co (fixed j); (iii) for each i there exists α(i) such that, if
A Π K(a(i)) = ^, then μ*(A) = 0. Then define the asymptotic density of
A to be D(A) = lim^^^^A), and the upper asymptotic density to be
D(A) = lim^oβ/iiίA), and the natural density D(A) as usual.

It seems surprising that for n Ξ> 2, X = S, it always happens
that <5 is different from Z) no matter how the measures μ{ are chosen.
Moreover, to prove this fact we only use property (i) of the preceding
paragraph.

THEOREM 5.1. If the dimension n~^>2, and if μt is a sequence
of measures on S such that μ^S) = 1 for all i, then there is a set
Acz S such that δ(A) Φ lim

Proof. We must assume that μ^A) is defined for each Ac: S and
i i> 1. (It is evident that limited representations of δ in terms the μζ

may be obtained, if the class of μrmeasurable sets is restricted). It
follows that, since S is countable, each μ{ has the form

nμAA) - Σ μt({x}). (AczS).
xeA

Two cases are distinguished:
Case I. For each ikΓ, Km^ μ^JiM)) = 0. Let j(0) = 1 and, for

M ^ 1, let j(M) be so large that j(M) > j(M - 1) and, if i ^ j(M),
then μ^JiM)) < 2~M. Now by (*), for each M ^ 0, there exists a
finite set HM c S such that μι{HM) > 1 - 2rM for all i with j(M) ^
i<j(M+l). LetA=[JM=ΛHM\J(M)). By Theorem 2.11(i), δ(A) = 0.
For each i, i(ilf) ^ ΐ < i(ikf + 1) we have

μάA) ^ μ^HMiM)) = μi(HM) - μi(HM Π J(M))
> i _ 2~M - 2~M = 1 - 2- ( ¥-X ) .

Hence l j m ^ μt(A) ^ l im*— 1 - 2~ίM~1) - 1.

Case II. There exists M such that limi-,̂  μi(J(M)) = k > 0. Here
Let A = S\J(M). By 2.11(ii), δ(A) = 1. However, for infinitely many i,

μί(A) = μi(S) - μmM)) S 1 - k + e, (£<-> 0) ,

and so limi-.̂  μ%(A) g 1 — k < 1. This completes the proof.
Observe that, for a finite set f c S , μ(A) = A(F)/S(F) defines a

measure on S. Let (i7^ e S^, and define //̂  by

S(Ft)
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Then μi is a sequence of measure each defined on every subset of S
and satisfying μ{(S) = 1. By the previous theorem, there is a set
AdS such that δ(A) Φ l i m ^ μ{(A) = l i m ^ A(Fi)/S(Fi). This shows
that there is no "universal" sequence (Ft) e 6^, i.e., one such that
δ(A) = lim^o, A(Fi)IS(Fi) for all AaS. It also shows that the density
in [3] is different from δ.

We proceed to prove an equivalent form of the definition of v.
By using methods similar to those in Theorems 2.6 and 2.7 it is
easy to prove the "duals" of these theorems for δ. Namely, it can
be proved:

THEOREM 5.2. If (F{) e•& and 4 c S , then

THEOREM 5.3. For A c S , there exists (Ft)eS^ such that

THEOREM 5.4. The natural density of A c S exists if and only
if, for each (Fi) e «j^ the quotients A(Fi)/S(Fi) form a convergent
sequence. In this case

for each sequence (F{) e 6^.

Proof. If v(A) exists, then, for each sequence (Fi) e S^, by 2.6
and 5.2,

v(A) = δ(A) < IJm^Sv ^ Ϊ Ϊ ^ ^ T P Γ ^ HA) = v(A) .

Suppose A(Fi)/S(Fi) is convergent for each (Ft) e Sf. All the limits
must be the same, for, if (F^ and (G{) are two sequences in £f such
that A(Fi)/S(Fi) and A(Gi)/S(Gi) converge to different limits, then the
sequence (H^, defined by

H == (Ft for i odd

^Gi for i even

is in Sf and l i m ^ A(Hi)/S(Hi) does not exist. Thus by 2.7 and 5.3,
there exist (F{) and (G{) in S? such that

δ(A) = lim ̂ - = lim ̂ g s L = 3(A) .
6 ( P ) ( C )
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Hence v(A) exists and the last statement of the theorem is obvious.

This paper is concluded by nothing that v is a finitely additive
set function.

THEOREM 5.5. Let A19 •••, Am be sets with natural density such
that, for each pair i, j with i Φ j there is an Ni3 such that
Ai Π Aj c J(Nij). Then A = A1 U U Am has natural density and

v{A) = Σ "(A*) .

Proof. Let N = max^^ {N^}. Clearly B{ — A\J(~N) has natural
density and v(Bi) = v{A^. The B{ are disjoint. Thus, for any sequence

Am(Ft) ^ A(F<)

S(F<) - S(Ft) ~ S(F<)

where both ends converge to ΣΓ=i v(Aj) as i—* oo. By 5.4 the theorem
is proved.
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