A BILATERAL GENERATING FUNCTION FOR THE ULTRASPHERICAL POLYNOMIALS

S. K. Chatterjea

The following differentiation formula for the Ultraspherical polynomials $P_{n}^{\lambda}(x)$ was given by Tricomi:

$$
\begin{equation*}
P_{n}^{\lambda}\left(\frac{x}{\sqrt{x^{2}-1}}\right)=\frac{(-1)^{n}\left(x^{2}-1\right)^{\lambda+1 / 2 n}}{n!} D^{n}\left(x^{2}-1\right)^{-\lambda} \tag{1.1}
\end{equation*}
$$

The object of this paper is to point out that the formula of Tricomi leads us to the following bilateral generating function for the Ultraspherical polynomials:

Theorem.

$$
\text { If } F(x, t)=\sum_{m=0}^{\infty} a_{m} t^{m} P_{m}^{\lambda}(x)
$$

then

$$
\begin{equation*}
\rho^{-2 \lambda} F\left(\frac{x-t}{\rho}, \frac{t y}{\rho}\right)=\sum_{r=u}^{\infty} t^{r} b_{r}(y) P_{r}^{\lambda}(x) \tag{1.2}
\end{equation*}
$$

where

$$
b_{r}(y)=\sum_{m=0}^{\infty}\binom{r}{m} a_{m} y^{m}, \quad \text { and } \quad \rho=\left(1-2 x t+t^{2}\right)^{1 / 2}
$$

Starting from the formula (1.2), one can derive a large number of bilateral generating functions for the Ultraspherical polynomials by attributing different values to a_{m}.
2. Proof of the main formula (1.2). We first note from (1.1) that

$$
\begin{equation*}
\left(\frac{1}{\sqrt{x^{2}-1}}\right)^{n} P_{n}^{\lambda}\left(\frac{x}{\sqrt{x^{2}-1}}\right)=\frac{(-1)^{n}}{n!}\left(x^{2}-1\right)^{\lambda} D^{n}\left(x^{2}-1\right)^{-\lambda} . \tag{2.1}
\end{equation*}
$$

Now let

$$
F\left(\frac{x}{\sqrt{x^{2}-1}}, \quad \frac{t}{\sqrt{x^{2}-1}}\right)=\sum_{m=0}^{\infty} a_{m}\left(\frac{t}{\sqrt{x^{2}-1}}\right)^{m} P_{m}^{\lambda}\left(\frac{x}{\sqrt{x^{2}-1}}\right)
$$

be a given generating function for $P_{n}^{\lambda}(x)$. Replacing t by $t y$ and multiplying both sides by $\left(x^{2}-1\right)^{-2}$ and then operating $e^{-t D}$, we get

$$
\begin{align*}
& e^{-t D}\left(x^{2}-1\right)^{-\lambda} F\left(\frac{x}{\sqrt{x^{2}-1}}, \frac{t y}{\sqrt{x^{2}-1}}\right) \\
& \quad=e^{-t D}\left(x^{2}-1\right)^{-\lambda} \sum_{m=0}^{\infty} a_{m}\left(\frac{t y}{\sqrt{x^{2}-1}}\right)^{m} P_{m}^{\lambda}\left(\frac{x}{\sqrt{x^{2}-1}}\right) . \tag{2.2}
\end{align*}
$$

Since we know that

$$
\begin{equation*}
e^{-t D} f(x)=f(x-t) \tag{2.3}
\end{equation*}
$$

the left member of (2.2) is equal to

$$
\left\{(x-t)^{2}-1\right\}^{-\lambda} F\left(\frac{x-t}{\sqrt{(x-t)^{2}-1}}, \quad \frac{t y}{\sqrt{(x-t)^{2}-1}}\right) .
$$

But the right member of (2.2) is equal to

$$
\begin{aligned}
\sum_{m=0}^{\infty} & a_{m}(t y)^{m} e^{-t D}\left(x^{2}-1\right)^{-\lambda}\left(\frac{1}{\sqrt{x^{2}-1}}\right)^{m} P_{m}^{\lambda}\left(\frac{x}{\sqrt{x^{2}-1}}\right) \\
& =\sum_{m=0}^{\infty} a_{m}(t y)^{m} e^{-t D}\left\{\frac{(-1)^{m}}{m!} D^{m}\left(x^{2}-1\right)^{-\lambda}\right\} \\
& =\sum_{m=0}^{\infty} a_{m}(t y)^{m} \sum_{r=0}^{\infty} \frac{(-t)^{r}}{r!} D^{r}\left\{\frac{(-1)^{m}}{m!} D^{m}\left(x^{2}-1\right)^{-\lambda}\right\} \\
& =\sum_{m=0}^{\infty} a_{m} y^{m} \sum_{r=0}^{\infty} \frac{(-t)^{r+m}}{r!m!} D^{r+m}\left(x^{2}-1\right)^{-\lambda} \\
& =\left(x^{2}-1\right)^{-2} \sum_{m=0}^{\infty} a_{m} y^{m} \sum_{r=0}^{\infty}\left(r_{m}^{r+m}\right) t^{r+m}\left(\frac{1}{\sqrt{x^{2}-1}}\right)^{r+m} P_{r+m}^{\lambda}\left(\frac{x}{\sqrt{x^{2}-1}}\right) \\
& =\left(x^{2}-1\right)^{-\lambda} \sum_{r=0}^{\infty}\left(\frac{t}{\sqrt{x^{2}-1}}\right)^{r} P_{r}^{\lambda}\left(\frac{x}{\sqrt{x^{2}-1}}\right) \sum_{m=0}^{r}\binom{r}{m} a_{m} y^{m} .
\end{aligned}
$$

It follows therefore that: If

$$
F\left(\frac{x}{\sqrt{x^{2}-1}}, \quad \frac{t}{\sqrt{x^{2}-1}}\right)=\sum_{m=0}^{\infty} a_{m}\left(\frac{t}{\sqrt{x^{2}-1}}\right)^{m} P_{m}^{\lambda}\left(\frac{x}{\sqrt{x^{2}-1}}\right),
$$

then

$$
\begin{align*}
& \left\{\frac{(x-t)^{2}-1}{x^{2}-1}\right\}^{-\lambda} F\left(\frac{x-t}{\sqrt{(x-t)^{2}-1}}, \quad \frac{t y}{\sqrt{(x-t)^{2}-1}}\right) \\
& \quad=\sum_{r=0}^{\infty}\left(\frac{t}{\sqrt{x^{2}-1}}\right)^{r} b_{r}(y) P_{r}^{\lambda}\left(\frac{x}{\sqrt{x^{2}-1}}\right), \tag{2.4}
\end{align*}
$$

where $b_{r}(y)=\sum_{m=0}^{r}\binom{r}{m} a_{m} y^{m}$. Now changing $x\left(x^{2}-1\right)^{-1 / 2}$ into x and then t into $t\left(x^{2}-1\right)^{-1 / 2}$, we obtain the theorem mentioned in the introduction.
3. Some applications of the theorem.
(A) First we consider the generating function of Truesdell:

$$
\begin{equation*}
e^{x t}{ }_{\circ} F_{1}\left(-; \lambda+\frac{1}{2} ; \frac{t^{2}\left(x^{2}-1\right)}{4}\right)=\sum_{m=0}^{\infty} \frac{t^{m}}{(2 \lambda)_{m}} P_{m}^{\lambda}(x) . \tag{3.1}
\end{equation*}
$$

Thus if we take $\alpha_{m}=1 /(2 \lambda)_{m}$ in our theorem, we obtain

$$
\rho^{-2} \exp \left\{\frac{y t(x-t)}{\rho^{2}}\right\}{ }_{\circ} F_{1}\left(-; \lambda+\frac{1}{2} ; \frac{y^{2} t^{2}\left(x^{2}-1\right)}{4 \rho^{4}}\right)=\sum_{r=0}^{\infty} t^{r} b_{r}(y) P_{r}^{\lambda}(x) .
$$

But we notice that

$$
b_{r}(y)={ }_{1} F_{1}(-r ; 2 \lambda ;-y)=\frac{r!}{(2 \lambda)_{r}} L_{r}^{(2 \lambda-1)}(-y)
$$

Hence we derive the following generating function of Weisner [3].

$$
\begin{align*}
& \rho^{-2 \lambda} \exp \left\{\frac{-y t(x-t)}{\rho^{2}}\right\}{ }_{\circ} F_{1}\left(-; \lambda+\frac{1}{2} ; \frac{y^{2} t^{2}\left(x^{2}-1\right)}{4 \rho^{4}}\right) \\
& \quad=\sum_{r=0}^{\infty} \frac{r!L_{r}^{(2 \lambda-1)}(y)}{(2 \lambda)_{r}} t^{r} P_{r}^{\wedge}(x) . \tag{3.2}
\end{align*}
$$

Thus we remark that the bilateral generating function of Weisner is a particular case of our theorem. Moreover we have obtained the theorem by a method different from that used by Weisner or from that used by Rainville [2].
(B) If we consider the formula of Brafman:

$$
\begin{align*}
(1 & -x t)^{-\gamma}{ }_{2} F_{1}\left(\frac{1}{2} \gamma, \frac{1}{2} \gamma+\frac{1}{2} ; \lambda+\frac{1}{2} ; \frac{t^{2}\left(x^{2}-1\right)}{(1-x t)^{2}}\right) \\
& =\sum_{m=0}^{\infty} \frac{(\gamma)_{m} t^{m}}{(2 \lambda)_{m}} P_{m}^{\lambda}(x), \tag{3.3}
\end{align*}
$$

then we put $a_{m}=(\gamma)_{m} /(2 \lambda)_{m}$ in our theorem and we obtain

$$
\begin{align*}
& \rho^{2(\gamma-\lambda)}\left\{\rho^{2}+y t(x-t)\right\}^{-r}{ }_{2} F_{1}\left(\frac{1}{2} \gamma, \frac{1}{2} \gamma+\frac{1}{2} ; \lambda+\frac{1}{2} ; \frac{y^{2} t^{2}\left(x^{2}-1\right)}{\left(\rho^{2}+y t(x-t)\right)^{2}}\right) \tag{3.4}\\
& \quad=\sum_{r=0}^{\infty}{ }_{2} F_{1}(-r, \gamma ; 2 \lambda ; y) t^{r} P_{r}^{\lambda}(x) .
\end{align*}
$$

(C) Next we consider the following generating function of Bateman:

$$
\begin{align*}
& { }_{0} F_{1}\left(-; \lambda+\frac{1}{2} ; \frac{t(x-1)}{2}\right)_{0} F_{1}\left(-; \lambda+\frac{1}{2} ; \frac{t(x+1)}{2}\right) \\
& \quad=\sum_{m=0}^{\infty} \frac{t^{m}}{(2 \lambda)_{m}\left(\lambda+\frac{1}{2}\right)_{m}} P_{m}^{\lambda}(x) . \tag{3.5}
\end{align*}
$$

Here we set $a_{m}=1 /\left\{(2 \lambda)_{m}(\lambda+1 / 2)_{m}\right\}$ in our theorem and we derive

$$
\begin{align*}
& \rho^{-2 \lambda}{ }_{0} F_{1}\left(-; \lambda+\frac{1}{2} ; \frac{y t(t-x+\rho)}{2 \rho^{2}}\right)_{0} F_{1}\left(-; \lambda+\frac{1}{2} ; \frac{y t(t-x-\rho)}{2 \rho^{2}}\right) \\
& \quad=\sum_{r=1}^{\infty}{ }_{1} F_{2}\left(-r ; 2 \lambda, \lambda+\frac{1}{2} ; y\right) t^{r} P_{r}^{\lambda}(x) . \tag{3.6}
\end{align*}
$$

(D) Lastly if we consider the following generating function of Brafman:

$$
\begin{align*}
& { }_{2} F_{1}\left(\gamma, 2 \lambda-\gamma ; \lambda+\frac{1}{2} ; \frac{1-t-\rho}{2}\right) x \\
& { }_{2} F_{1}\left(\gamma, 2 \lambda-\gamma ; \lambda+\frac{1}{2} ; \frac{1+t-\rho}{2}\right) \tag{3.7}\\
& \quad=\sum_{m=0}^{\infty} \frac{(\gamma)_{m}(2 \lambda-\gamma)_{m}}{(2 \lambda)_{m}\left(\lambda+\frac{1}{2}\right)_{m}} t^{m} P_{m}^{\lambda}(x)
\end{align*}
$$

we put

$$
a_{m}=\frac{(\gamma)_{m}(2 \lambda-\gamma)_{m}}{(2 \lambda)_{m}\left(\lambda+\frac{1}{2}\right)_{m}}
$$

in our theorem and thus we obtain

$$
\begin{align*}
& \rho^{-2 \lambda}{ }_{2} F_{1}\left(\gamma, 2 \lambda-\gamma ; \lambda+\frac{1}{2} ; \frac{\rho+y t-\omega}{2 \rho}\right) x \\
& { }_{2} F_{1}\left(\gamma, 2 \lambda-\gamma ; \lambda+\frac{1}{2} ; \frac{\rho-y t-\omega}{2 \rho}\right) \tag{3.8}\\
& \quad=\sum_{r=0}^{\infty}{ }_{3} F_{2}\left(-r, \gamma, 2 \lambda-\gamma ; 2 \lambda, \lambda+\frac{1}{2} ; y\right) t^{r} P_{r}^{\lambda}(x) ;
\end{align*}
$$

where

$$
\omega=\left[1-2 x t(1-y)+t^{2}(1-y)^{2}\right]^{1 / 2} .
$$

References

1. A. Erdelyi, et al., Higher transcendental functions, McGraw Hill Book Co., New York, 1953.
2. E. D. Rainville, Special functions, Macmillan Co., New York, 1960.
3. L. Weisner, Group-theoretic origins of certain generating functions, Pacific J. Math. 5, (1955), 1033-1039.

Received April 20, 1968.
Bangabasi College
Calcutta

