A RADON-NIKODYM THEOREM FOR VECTOR AND OPERATOR VALUED MEASURES

JORGE ALVAREZ DE ARAYA

The main result of this paper is a Radon-Nikodým theorem for measures taking values in a separable Hilbert space and on the bounded operators of such a space. The integral used for the representation is a Gelfand-Pettis integral, which in this case is also equivalent to the Bochner integral.

- 1.1. Basic definitions. We will consider the following objects: a measure space $(\Omega, \mathcal{A}, \mu)$, where \mathcal{A} is a σ -algebra of subsets of Ω and μ is a σ -finite nonnegative measure; a separable Hilbert space H and the space B(H) of bounded linear operators from H into H, and also the objects which we define below.
- 1.2. DEFINITION. By vector function and operator function we will understand functions defined on Ω and taking values in H and B(H) respectively. A vector function $x(\omega)$ is measurable if for each y in H, the function $(y, x(\omega))$ is measurable. An operator function $A(\omega)$ is measurable if for each x, y in H, the function $(A(\omega)x, y)$ is measurable. Obviously $A(\omega)$ is measurable if and only if $A(\omega)x$ is a measurable vector function for each x in H.
- 1.3. Lemma. If $x(\omega)$ is a measurable vector function, then $||x(\omega)||$ is measurable. If $A(\omega)$ is a measurable operator function, then $||A(\omega)||$ is measurable.
- *Proof.* Let $x(\omega)$ be measurable and let $\{e_1 e_2, \cdots\}$ denote an orthonormal basis for H. Then $(x(\omega), e_n)$ is measurable for each n and so $||x(\omega)||^2 \sum_{n=1}^{\infty} |(x(\omega), e_n)|^2$ is measurable. Now let $A(\omega)$ be measurable and let S_0 be a countable dense subset of the unit ball in H. Then $||A(\omega)|| = \sup \{||A(\omega)x||: x \in S_0\}$ is measurable.
- 1.4. DEFINITION. A measurable vector function $x(\omega)$ is *integrable* if $||x(\omega)||$ is integrable (i.e., it belongs to $L_1(\mu)$). A measurable operator function $A(\omega)$ is *integrable* if $||A(\omega)||$ is integrable.

Let $x(\omega)$ be integrable and let $y \in H$. Then $|(y, x(\omega))| \le ||y|| \cdot ||x(\omega)||$ and $(y, x(\omega))$ is integrable. $\int (y, x(\omega)) d\mu(\omega)$ is a linear functional bounded by $\int ||x(\omega)|| d\mu(\omega)$ and there is a unique vector $z \in H$ such that $\int (y, x(\omega)) d\mu(\omega) = (y, z)$. The vector z is by definition the integral

 $\int x(\omega)d\mu(\omega)$; we already proved that $\left\|\int x(\omega)d\mu(\omega)\right\| \leq \int ||x(\omega)|| d\mu(\omega)$. The integral is obviously linear. For each

$$x \in H$$
, $||A(\omega)x|| \leq ||A(\omega)|| \cdot ||x||$

so that $A(\omega)x$ is an integrable vector function. Since

$$\left\| \left| A(\omega) x d\mu(\omega) \right| \right\| \le \int \left\| A(\omega) x \right\| d\mu(\omega) \le \int \left\| A(\omega) \right\| d\mu(\omega) \cdot \left\| x \right\|,$$

 $\int \! A(\omega)x d\mu(\omega) \ \text{defines a bounded linear operator on } x. \quad \text{This operator is by definition the integral of } A(\omega), \text{ so that } \int \! A(\omega)x d\mu(\omega) = \left(\int \! A(\omega)d\mu(\omega)\right)\! x$ for each $x \in H$. Obviously $\left\|\int \! A(\omega)d\mu(\omega)\right\| \leq \int \! ||A(\omega)|| \ d\mu(\omega)$ and the integral is linear.

2.1. Indefinite integrals and the Radon-Nikodým theorem. If $x(\omega)$ is a measurable vector function and $E \in \mathcal{N}$, $\chi_{\mathbb{E}}(\omega)x(\omega)$ is also measurable and if $x(\omega)$ is integrable, so is $\chi_{\mathbb{E}}(\omega)x(\omega)$. Similarly, if $A(\omega)$ is an operator function, $\chi_{\mathbb{E}}(\omega)A(\omega)$ will be measurable or integrable if $A(\omega)$ has the same property. Thus, if $x(\omega)$ and $A(\omega)$ are integrable, $\int_{\mathbb{E}} x(\omega)d\mu(\omega) \equiv \int \chi_{\mathbb{E}}(\omega)x(\omega)d\mu(\omega)$ and

$$\int_{\mathbb{R}} A(\omega) d\mu(\omega) \equiv \int \chi_{\mathbb{R}}(\omega) A(\omega) d\mu(\omega)$$

will exist for all $E \in \mathcal{M}$.

Let $\varphi(E)$ denote the integral over E of a vector or operator function. Then φ is σ -additive in norm, that is, if $\{E_n\}_{n=1}^{\infty}$ is a sequence of disjoint sets in \mathscr{A} , then $\varphi(\bigcup_{n=1}^{\infty}E_n)=\sum_{n=1}^{\infty}\varphi(E_n)$ in norm. Also φ is absolutely continuous with respect to $\mu(\varphi\ll\mu)$ in the sense that $(\mu E)=0$ implies $\varphi(E)=0$. Finally if $E\in\mathscr{A}$ and $\{E_n\}_{n=1}^{\infty}$ is a disjoint sequence of sets in \mathscr{A} such that $E=\bigcup_{n=1}^{\infty}E_n$, then we must have $\sum_{n=1}^{\infty}||\varphi(E_n)||<\infty$. We will denote this property saying that is σ -bounded on E.

2.2. Lemma. Let X be a normed space and φ a σ -additive function from $\mathscr A$ into X. Then there is a nonnegative measure ν on $\mathscr A$ such that for each $E \in \mathscr A$, $||\varphi(E)|| \leq \nu(E)$, and $\nu(E)$ is finite if and only if φ is σ -bounded on E. Furthermore if $\varphi \ll \mu$, then $\nu \ll \mu$. (Obviously in any case $\varphi \ll \nu$).

Proof. Let $\mathscr{T} = \{E_1, \dots, E_n\}$ be a (measurable) partition of $E \in \mathscr{L}$ and let $|\mathscr{T}|$ denote the number $\sum_{i=1}^n || \varphi(E_i) ||$. Temporarily we will say that E is *unbounded* if for each K > 0 there is a partition \mathscr{T} of E with $|\mathscr{T}| > K$. Assume that φ is σ -bounded on E, but

that E is unbounded. We claim that E contains disjoint measurable subsets E_0, E_1, \dots, E_n , $n \geq 1$ with E_0 unbounded and $\sum_{i=1}^n || \varphi(E_i) || > 1$. Otherwise each partition of E contains precisely one unbounded set and for positive integer n there is a partition \mathscr{P}_n with $|\mathscr{P}| \geq n+1$, containing the unbounded set F_n for which we must have $|| \varphi(F_n) || \geq n$. If necessary, by refining these partitions we may obtain that $F_{n+1} \supseteq F_n$ for each n. Since $F_n = F \cup \bigcup_{k=1}^\infty (F_k \backslash F_{k+1})$, where $F = \bigcap_{k=1}^\infty F_k$, and φ is σ -additive in norm, we have

$$n \le ||\varphi(F_n)|| \le ||\varphi(F)|| + \sum_{k=n}^{\infty} ||\varphi(F_k \setminus F_{k+1})||$$

which is impossible since $\sum_{k=1}^{\infty} || \varphi(F_k \backslash F_{k+1}) ||$ is convergent, E being σ -bounded. Having proved our claim, we arrive at a new contradiction, since then we may construct a disjoint sequence $\{E_n\}_{n=1}^{\infty}$ measurable of subsets of E with $\sum_{n=1}^{\infty} || \varphi(E_n) || = \infty$. Thus a σ -bounded set E is not unbounded, i.e., there is a constant $K_E > 0$ such that $\sum_{n=1}^{\infty} || \varphi(E_n) || < K_E$ for each disjoint sequence $\{E_n\}_{n=1}$ of measurable subsets of E.

Now we define ν on \mathscr{N} by $\nu(E)=\sup\{\sum_{n=1}^\infty || \varphi(E_n)|| : \{E_n\}_{n=1}^\infty \subset \mathscr{N}, \text{ disjoint and } \bigcup_{n=1}^\infty E_n=E\}$. Obviously $|| \varphi(E)|| \le \nu(E), \ \nu(E) < \infty$ if and only if φ is σ -bounded on E, and $\varphi \ll \mu$ implies $\nu \ll \mu$. We only need to prove that ν is σ -additive. Suppose that $E=\bigcup_{n=1}^\infty E_n$ where the E_n are disjoint and measurable. For any $\varepsilon>0$ there is a disjoint sequence $(G_m)_{m=1}^\infty$ of measurable subsets of E such that $E=\bigcup_{m=1}^\infty G_m$ and $\nu(E) \le \sum_{m=1}^\infty || \varphi(G_m)|| + \varepsilon$ (if $\nu(E) = \infty$, E is not σ -bounded and the G_m may taken such that $\sum_{m=1}^\infty || \varphi(G_m)|| = \infty$). Since

$$arphi(G_m) = \sum_{n=1}^{\infty} arphi(G_m \cap E_n)$$
 ,

we have $\|\varphi(G_m)\| \leq \sum_{n=1}^{\infty} \|\varphi(G_m \cap E_n)\|$ and therefore

$$u(E) \leqq \sum\limits_{m,n} || \, arphi(G_m \cap E_n) \, || \, + \, arepsilon \leqq \sum\limits_{n=1}^\infty
u(E_n) \, + \, arepsilon$$
 .

On the other hand, for each positive n there is a disjoint sequence $\{G_{nm}\}_{m=1}^{\infty}$ of measurable sets such that $\bigcup_{m=1}^{\infty} G_{nm} = F_n$ and

$$u(E_n) \leqq \sum\limits_{m=1}^{\infty} ||\, arphi(G_{n\,m})\,|| \,+\, 2^{-n} arepsilon$$
 .

Then $\sum_{n=1}^{\infty} \nu(E_n) \leq \sum_{n,m} \|\varphi(G_{nm})\| + \varepsilon \leq \nu(E) + \varepsilon$. Since ε was arbitrary, we obtain $\nu(E) = \sum_{n=1}^{\infty} \nu(E_n)$.

2.3. Lemma. Let $f(\omega)$ and $r(\omega)$ be integrable functions, the first complex and the second nonnegative, such that for each $E \in \mathscr{A}$, $\left| \int_{E} f(\omega) d\mu(\omega) \right| \leq \int_{E} r(\omega) d\mu(\omega)$. Then $|f(\omega)| \leq r(\omega)$ almost everywhere.

Proof. If the lemma is false, there is a positive integer n such that $\mu(\{\omega \in \Omega \colon |f(\omega)| > r(\omega) + 1/n\}) > 0$ since then $\{\omega \in \Omega \colon |f(\omega)| > r(\omega)\}$ has positive measure. Also, for some open circle S of radius 1/2n on the complex plane we must have $0 < \mu(F) < \infty$, where F denotes a subset of $\{\omega \colon |f(\omega)| > r(\omega) + 1/n\} \cap \{\omega \colon f(\omega) \in S\}$. Let z_0 be center of S. Then for each $\omega \in F$, $|f(\omega) - z_0| < 1/2n$ and $|f(\omega)| > r(\omega) + 1/n$. Integrating the identity $f(\omega) = z_0 - (z_0 - f(\omega))$ over F and taking absolute values we obtain

$$\left| \int_{F} f(\omega) d\mu(\omega) \right| \ge \left| \int_{F} z_{0} d\mu(\omega) \right| - \left| \int_{F} (z_{0} - f(\omega)) d\mu(\omega) \right|$$
$$\ge |z_{0}| \ \mu(F) - 1/2n \ \mu(F) > r(\omega)\mu(F)$$

for all $\omega \in F$, since $r(\omega) < |f(\omega)| - 1/n < 1/2n \div |z_0| - 1/n$. Integrating again over F and dividing by $\mu(F)$ we obtain

$$\left|\int_F f(\omega) d\mu(\omega)
ight| > \int_F r(\omega) d\mu(\omega)$$
 ,

which contradicts our hypothesis.

2.4. Theorem. Let φ be a measure defined on $\mathscr A$ and taking values in H or B(H). If φ is σ -additive in norm, σ -bounded and absolutely continuous with respect to μ then φ is the indefinite integral with respect to μ of an integrable vector function or operator function which is unique almost everywhere.

Proof. We consider first the case in which φ takes values in H. Since for each $z \in H$, $(x, \varphi(E))$ is a complex, finite measure, absolutely continuous with respect to μ , the Radon-Nikodým theorem says that there is a complex integrable function $f_{\omega}(x)$ (with respect to ω) such that

$$(1) (x,\varphi(E)) = \int_{E} f_{\omega}(x) d\mu(\omega)$$

and the function $f_{\omega}(x)$ differs from another with the same properties at most in a μ -null set. If α , β are complex and $x, y \in H$, it is clear that $f_{\omega}(\alpha x + \beta y) = \alpha f_{\omega}(x) + \beta f_{\omega}(y)$ except in a μ -null set. Also

$$\left| \int_{E} f_{\omega}(x) d\mu(\omega) \right| = \left| (x, \varphi(E)) \right| \leq \| \varphi(E) \| \cdot \| x \| \leq \nu(E) \| x \|,$$

where ν is the measure defined in Lemma 2.2. Since $\nu \ll \mu$ and ν is finite, there is a nonnegative, finite and integrable function r_{ω} such that $\nu(E) = \int_{E} r_{\omega} d\mu(\omega)$. From the inequality

$$\left| \int_{E} f_{\omega}(x) d\mu(\omega) \right| \leq \int_{E} r_{\omega} ||x|| d\mu(\omega)$$

for each $E \in \mathcal{M}$, by Lemma 2.3. we conclude that $|f_{\omega}(x)| \leq r_{\omega} ||x||$ for almost all ω .

The next steps of the proof lead to the construction for each $x \in H$ of a particular function $f_{\omega}(x)$, which for each ω will be a continuous linear functional in x. Let $\{e_1, e_2, \cdots\}$ be an orthonormal base for H and let H_0 be the set of linear combinations with rational complex coefficients of the base vectors.

- Step 1. We choose finite functions $\widetilde{f}_{\omega}(e_k)$ such that $(e_k, \varphi(E) = \int_{\mathbb{R}} \widetilde{f}_{\omega}(e_k) d\mu(\omega)$ for each $E \in \mathscr{M}$.
 - Step 2. We define \widetilde{f}_{ω} on H_0 by linearity.
- Step 3. We choose a nonnegative, finite function r_ω such that $\nu(E)=\int_E r_\omega d\mu(\omega)$ for each $E\in\mathscr{N}$.
- Step 4. Since H_0 is countable and for each $x \in H_0$, $|\widetilde{f}_{\omega}(x)| \leq r_{\omega} ||x||$ for almost all ω , we choose a μ -null set N such that $|\widetilde{f}_{\omega}(x)| \leq r_{\omega} ||x||$ for all $x \in H_0$ and $\omega \in \Omega \backslash N$.
- Step 5. We define $f_{\omega}(x)$ for $\omega \in \Omega$ and $x \in H_0$ by $f_{\omega}(x) = \widetilde{f}_{\omega}(x)$ if $\omega \in \Omega \setminus N$ and $f_{\omega}(x) = 0$ if $\omega \in N$. The functions we have defined have the following properties:
 - (a) $(x, \varphi(E)) = \int_E f_\omega(x) d\mu(\omega)$, for each $x \in H_0$ and $E \in \mathscr{A}$.
 - (b) $|f_{\omega}(x)| \leq r_{\omega} ||x||$ for each $x \in H_0$ and $\omega \in \Omega$,
- (c) if α , β are rational complex numbers and x, $y \in H_0$, then $f_{\omega}(\alpha x + \beta y) = \alpha f_{\omega}(x) + \beta f_{\omega}(y)$, for all $\omega \in \Omega$.

Step 6. Let $x \in H$ and $\{x_n\}_{n=1}^{\infty}$ be a sequence in H_0 converging to x. For each $\omega \in \Omega$, $|f_{\omega}(x_n) - f_{\omega}(x_m)| = |f_{\omega}(x_n - x_m)| \leq r_{\omega} ||x_n - x_m||$. Therefore $\lim_{n \to \infty} f_{\omega}(x_n)$ exists and obviously it is independent of the particular sequence $\{x_n\}_{n=1}^{\infty}$. We define $f_{\omega}(x) = \lim_{n \to \infty} f_{\omega}(x_n)$. From the continuity of the norm we obtain $|f_{\omega}(x)| \leq r_{\omega} ||x||$. Also $(x, \varphi(E)) = \lim_{n \to \infty} (x_n, \varphi(E)) = \lim_{n \to \infty} \int_E f_{\omega}(x_n) d\mu(\omega) = \int_E f_{\omega}(x) d\mu(\omega)$, the last equality being valid by the dominated convergence theorem. Finally, if α, β are arbitrary complex numbers and x, y are any two vectors in H, there are sequences $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ of rational complex numbers and sequences $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ of vectors in H_0 such that $\lim_{n \to \infty} \alpha_n = \alpha$, $\lim_{n \to \infty} \beta_n = \beta$, $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} y_n = y$. Then $f_{\omega}(\alpha x + \beta y) = \lim_{n \to \infty} f_{\omega}(\alpha_n x_n + \beta_n y_n) = \lim_{n \to \infty} (\alpha_n f_{\omega}(x_n) + \beta_n f_{\omega}(y_n)) = \alpha f_{\omega}(x) + \beta f_{\omega}(y)$.

Thus for each ω , $f_{\omega}(x)$ is a continuous linear functional and by the Riesz theorem there is a unique vector $x(\omega)$ such that $f_{w}(x)=(x,x(\omega))$ for each $x\in H$. Since $f_{\omega}(x)$ is measurable, $x(\omega)$ is measurable and since $||x(\omega)||=||f_{\omega}||\leq r_{\omega}$, $x(\omega)$ is also integrable. From the equation $(x,\varphi(E))=\int_{E}(x,x(\omega))d\mu(\omega)=(x,\int_{E}x(\omega)d\mu(\omega))$ we obtain $\varphi(E)=\int_{E}x(\omega)d\mu(\omega)$. The uniqueness almost everywhere of the vector function $x(\omega)$ is trivial.

The proof for the case when φ takes values in B(H) follows along the same lines. Now we obtain $(\varphi(E)x,y)=\int_E f_\omega(x,y)d\mu(\omega)$, where $f_\omega(x,y)$ is for all $x,y\in H$ an integrable function and for each $\omega\in\Omega$ is a bilinear functional in x,y, bounded by some Radon-Nikodým derivative r_ω of the measure ν . By a corollary of the Riesz theorem, $f_\omega(x,y)=(A(\omega)x,y)$ for some linear operator $A(\omega)$, with $||A(\omega)||=||f_\omega||\leq r_\omega$ and as before we obtain $\varphi(E)=\int_E A(\omega)d\mu(\omega)$ for each $E\in\mathscr{M}$. The uniqueness a.e. of $A(\omega)$ is again trivial.

2.5. Remark. From the proof of Theorem 2.4., we have that $||x(\omega)|| \leq r_{\omega}$ (a.e.), where $r_{\omega} = d\nu/d\mu$ (a.e.). It is easy to see that $||x(\omega)||$ is actually equal to r_{ω} (a.e.). In fact, from $||\varphi(E)|| \leq \nu(E)$ and the definition of $\nu(E)$, we obtain $\int_{E} ||x(\omega)|| \, d\mu \geq \nu(E)$ since

$$\sum_{n=1}^{\infty} || \varphi(E) || \leq \sum_{n=1}^{\infty} \int_{E} || x(\omega) || d\mu = \int_{E_{n}} || x(\omega) || d\mu$$

for each countable partition of E. Also $\int_E ||x(\omega)|| d\mu \leq \int_E r_\omega d\mu = \nu(E)$ and therefore $||x(\omega)|| = r_\omega$ (a.e.). If we write $x(\omega) = d\varphi/d\mu$, $r_\omega = d\nu/d\mu$, we have $||d\varphi/d\mu|| = d\nu/d\mu$. Of course, the same formula holds for operator valued measures.

- 2.6. If $x(\omega)$ is a measurable function which is not necessarily integrable, we may still integrate it on those sets in $\mathscr M$ where $||x(\omega)||$ is integrable. In fact, since $||x(\omega)||$ is everywhere finite and μ is σ -finite, there is a countable covering of Ω consisting of such sets. On each of these sets the indefinite integral is σ -bounded. Reciprocally, if there is a countable covering of Ω by measurable sets Ω_n and a vector (or operator) valued measure φ defined on the measurable subsets of each Ω_n , which is σ -additive and σ -bounded on each Ω_n , then φ is the indefinite integral of some unique (a.e.) $\mathscr M$ -measurable vector (or operator) function, and this function will be integrable if and only if the (unique) extension of φ to all of $\mathscr M$, is σ -additive in norm and σ -bounded.
- 2.7. A COUNTEREXAMPLE. We may exhibit a vector (or operator) measure φ which is σ -additive on \mathscr{A} , absolutely continuous with respect to some non-negative measure μ , but σ -bounded only on sets of μ -measure zero. In fact there is a vector measure γ defined on the Borel subsets of [0,1], such that for each Borel set E, $||\gamma(E)|| = \sqrt{\lambda(E)}$, where λ is the Lebesgue measure of E (so that $\gamma \ll \lambda$), and furthermore, if $E_1 \cap E_2 = \varnothing$ then $(\gamma(E_1), \gamma(E_2)) = 0$, i.e., $\gamma(E_1)$ and $\gamma(E_2)$ are

orthogonal. It is easy to see that such a measure is σ -additive in norm, absolutely continuous with respect to λ , and if $\gamma(E) \neq 0$ (or equivalently, $\lambda(E) \neq 0$), then γ is not σ -bounded on E.

In fact, let \mathscr{B} denote the Borel sets on [0,1] and let $\{E_k\}_{k=1}^{\infty}$ be a disjoint sequence in \mathscr{B} , $\bigcup_{k=1}^{\infty} E_k = E$. Then $||\gamma(E) = \sum_{k=1}^{n} \gamma(E_k)|| = ||\gamma(E) - \gamma(\bigcup_{k=1}^{n} E_k)|| = ||\gamma(\bigcup_{k=n+1}^{\infty} E_k)|| = \sqrt{\lambda(\bigcup_{k=n+1}^{\infty} E_k)} \to 0$ as $n \to \infty$ and therefore $\gamma(E) = \sum_{k=1}^{\infty} \gamma(E_k)$.

Now let $\gamma(E) \neq 0$. Consider the sequence $\{t_n\}_{n=1}^{\infty}$ in [0,1] defined by $t_n = \inf\{t \colon \lambda(E \cap [0,t]) > 6\lambda(E)/\pi^2 \sum_{k=1}^n 1/k^2\}$ for $n \geq 1$ and $t_0 = 0$. We define $E_n = E \cap [t_{n-1}, t_n]$ so that $\{E_n\}_{n=1}^{\infty}$ is a disjoint sequence in and $\bigcup_{n=1}^{\infty} E_n \subseteq E$. Also $\lambda(E_n) = 6\lambda(E)/\pi^2 n^2$ and therefore

$$||\, \gamma(E_{\scriptscriptstyle n})\, || = rac{\sqrt{\, 6 \lambda(E)}}{\pi} \cdot rac{1}{\pi}$$
 ,

so that $\sum_{n=1}^{\infty} || \gamma(E_n) ||$ diverges, although $\sum_{n=1}^{\infty} \gamma(E_n)$ is obviously convergent and equal to $\gamma(E)$. (Let $E_0 = E \setminus \bigcup_{n=1}^{\infty} E_n$, then $\lambda(E_0) = 0$ and therefore $\gamma(E) = 0$).

- 2.8. Construction of γ . We construct first inductively a sequence of sets $\{A_n\}_{n=1}^{\infty}$ in H having the following properties:
- (i) A_n consists of 2^n mutually orthogonal vectors $a_n^1, a_n^2, \dots, a_n^{2^n}$ each of length $2^{-n/2}$.
 - (ii) For each $n \ge 0$ and $1 \le p \le 2^n$, $a_n^p = a_{n+1}^{2p-1} + a_{n+1}^{2p}$.

We start choosing a unit vector which we denote by a_0^1 and call $A_0 = a_0^1$. Having constructed A_0 , A_1 , \cdots , A_n , we construct A_{n+1} in the following way. Choose 2^n vectors b_1 , b_2 , \cdots , b_{2^n} , each of length $2^{-n/2}$, orthogonal with respect to each other and to a_n^1 , a_n^2 , \cdots , $a_n^{2^n}$. Now define $a_{n+1}^{2p-1} = 1/2(a_n^p + b_p)$, $a_{n+1}^{2p} = 1/2(a_n^p - b_p)$, $a_{n+1}^{2p} = 1/2($

Now we begin the construction of our measure. A basic interval of order n will be an interval of the form $[p-1/2^n, p/2^n]$ where n and p are integers and $n \geq 0$, $1 \leq p \leq 2^n$. \mathscr{F} and \mathscr{G} will denote respectively the class of all finite unions and the class of all countable unions of basic intervals and \mathscr{G} will denote the Borel sets of [0,1). A set in \mathscr{F} (or in \mathscr{G}) can always be expressed as a finite (or countable) union of disjoint basic intervals. For a set in \mathscr{F} this is obvious and for a set in \mathscr{G} a simple inductive process will give us the required decomposition. It is clear that \mathscr{F} is an algebra, that is, it is closed with respect to finite unions and finite intersections. The latter follows from the identity $(\bigcup_{j=1}^{\infty} F_i) \cap (\bigcup_{j=1}^{\infty} H_j) = \bigcup_{i=1}^{\infty} (F_i \cap H_i)$, where $\{F_i\}_{i=1}^{\infty}$ and $\{H_i\}_{i=1}^{\infty}$ are nondecreasing sequences of sets in \mathscr{F} .

If V is the basic interval $[p-1/2^n, p/2^n)$, we define $\gamma(V) = a_n^n$. If $V_1 = [2p-2/2^{n+1}, 2p-1/2^{n+1})$ and $V_2 = [2p-1/2^{n+1}, 2p/2^{n+1})$, so that $V = V_1 \cup V_2$, by (ii) we have that $\gamma(V) = \gamma(V_1) + \gamma(V_2)$. By induction we obtain that if V_1, V_2, \dots, V_{2^m} denote the 2^m basic subintervals of V of order n+m, then $\gamma(V) = \sum_{n=1}^{\infty} \gamma(V_i)$. Finally if V_1, V_2, \dots, V_n are disjoint basic intervals, not necessarily of the same order, such that $V = \bigcup_{i=1}^n V_i$ and n+m is the highest order among the V_i , we decompose each V_i in basic subintervals of order n+m, say $V_i = \bigcup_i W_j^{(i)}$, so that $\gamma(V_i) = \sum_i \gamma(W_j^{(i)})$ and we obtain

$$\sum_{i=1}^{n} \gamma(V_i) = \sum_{i} \sum_{j} \gamma(W_j^{(i)}) = \gamma(V)$$
 .

Thus γ is additive on the basic intervals.

If $F \in \mathscr{F}$ and $F = \bigcup_{i=1}^n V_i$, where the V_i are disjoint basic intervals, we define $\gamma(F) = \sum_{i=1}^n \gamma(V_i)$. From the additivity of γ on the basic intervals it follows immediately that $\gamma(F)$ is well defined, i.e., it doesn't depend upon the particular decomposition of F and that γ is additive on \mathscr{F} .

If $V=[p-1/2^n,\,p/2^n),\,\,||\,\gamma(V)\,||^2=||\,a_n^p\,||^2=||\,2^{-n}=\lambda(V),\,\,$ where λ denotes Lebesgue measure. If V_1 and V_2 are disjoint basic intervals, $\gamma_2(V_1)$ and $\gamma(V_2)$ are mutually orthogonal, which implies that $||\,\gamma(F)\,||^2=||\,\sum_{i=1}^n\gamma(V_i)\,||^2=\sum_{i=1}^n||\,\gamma(V_i)\,||^2=\sum_{i=1}^n\lambda(V_i)=\lambda(F),\,\,$ where $F\in\mathcal{F},\,F=\bigcup_{i=1}^nV_i$ and V_i are disjoint basic intervals.

Suppose now that $V = \bigcup_{i=1}^{\infty} V_i$, where the V_i are disjoint basic intervals and V is also a basic interval. Then $V \setminus \bigcup_{i=1}^n V_i \in \mathscr{F}$ for each $n \geq 1$ and therefore $||\gamma(V) - \sum_{i=1}^n \lambda(V_i)|| = ||\gamma(V \setminus \bigcup_{i=1}^n V_i)|| = \sqrt{\lambda(V \setminus \bigcup_{i=1}^n V_i)} \to 0$ as $n \to \infty$, which implies that $\gamma(V) = \sum_{i=1}^{\infty} \gamma(V_i)$, i.e., γ is σ -additive on the basic intervals.

Now we define γ on \mathscr{G} by $\gamma(G) = \sum_{i=1}^{\infty} \gamma(V_i)$, where $G = \bigcup_{i=1}^{\infty} V_i$ and the V_i are disjoint basic intervals. First we observe that since the vector $\gamma(V_i)$ are pairwise orthogonal and $\sum_{i=1}^{\infty} ||\gamma(V_i)||^2 = \sum_{i=1}^{\infty} \gamma(V_i) = \sum_{i=1}^{\infty} \gamma(V_i)$ $\lambda(G) \leq 1$, the series $\sum_{i=1}^{\infty} \gamma(V_i)$ converges and $||\gamma(G)||^2 = \lambda(G)$. If G = 1 $\bigcup_{i=1}^{\infty} V_i = \bigcup_{j=1}^{\infty} W_j$ are two decompositions of G into disjoint basic subintervals, $\sum_{i=1}^{\infty} \gamma(V_i) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \gamma(V_i \cap W_j) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \gamma(V_i \cap W_j) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \gamma(V_i \cap W_j) = \sum_{i=1}^{\infty} \gamma(V_i \cap W_i)$ $\sum_{j=1}^{\infty} \gamma(W_j)$ (the sums commute because the vectors are orthogonal) so that $\gamma(G)$ is well defined. If $\{F_i\}_{i=1}^{\infty}$ is a nondecreasing sequence in \mathscr{F} with $G = \bigcup_{n=1}^{\infty} F_n$, then $\gamma(G) \lim_{n \to \infty} \gamma(F_n)$. In fact there is a sequence $\{V_i\}_{i=1}^{\infty}$ of disjoint basic intervals such that $F_n = \bigcup_{i=1}^{r_n} V_i$, where $r_1 \leq r_2 \leq \cdots$ are integers with $\lim_{n\to\infty} r_n = \infty$, so that $\gamma(G) =$ $\lim_{n\to\infty}\sum_{i=1}^n\gamma(V_i)=\lim_{n\to\infty}\sum_{i=1}^{r_n}\gamma(V_i)=\lim_{r\to\infty}\gamma(F_n)$. Suppose now that G_1 and G_2 are in $\mathscr G$ and that $\{F_n\}_{n=1}^\infty$, $\{H_n\}_{n=1}^\infty$ are nondecreasing sequences in \mathscr{F} with $G_1 = \bigcup_{n=1}^{\infty} F_n$, $G_2 = \bigcup_{n=1}^{\infty} H_n$. Then we have that $G_1 \cup G_2 = \bigcup_{n=1}^{\infty} (F_n \cup H_n), G_1 \cap G_2 = \bigcup_{n=1}^{\infty} (F_n \cap H_n), \text{ and taking limits,}$ from the relation $\gamma(F_n \cup H_n) + \gamma(F_n \cap H_n) = \gamma(F_n) + \gamma(H_n)$ we obtain

 $\gamma(G_1 \cup G_2) + \gamma(G_1 \cap G_2) = \gamma(G_1) + \gamma(G_2)$, i.e., γ is modular in \mathscr{G} .

It is clear that $\mathscr G$ contains all open sets in [0,1). Therefore, if $E\in\mathscr G$, for each $\varepsilon>0$, there is some $G\in\mathscr G$ such that $G\supseteq E$ and $\lambda(G\backslash E)<\varepsilon$. Let $G_1,G_2\in\mathscr G,G_1\subseteq G_2,G_1=\bigcup_{i=1}^\infty V_i$, the V_i disjoint basic intervals. Then for each $n,G_2\backslash\bigcup_{i=1}^n V_i\in\mathscr G$ and expressing $G_2\backslash\bigcup_{i=1}^n V_i$ as a union of disjoint basic intervals we see that $\gamma(G_2\backslash\bigcup_{i=1}^n V_i)$ $\gamma(G_2)-\sum_{i=1}^n \gamma(V_i)$. Therefore

$$||\gamma(G_2)-\gamma(G_1)||^2=\lim_{n o\infty}||\gamma(G_2)-\sum_{i=1}^n\gamma(V_i)||^2 \ =\lim_{n o\infty}||\gamma(G_2ackslash_i^nV_i)||^2=\lim_{n o\infty}\gamma(G_2ackslash_i^nV_i)=\lambda(G_2)-\lambda(G_1)$$
 .

This implies that if the sequence $\{G_n\}_{n=1}^{\infty}$ of sets in $\mathscr S$ is nonincreasing, each G_n contains $G\in\mathscr B$ and $\lim_{n\to\infty}\lambda(G_n)=\lambda(E)$, then $\{\gamma(G_n)\}_{n=1}^{\infty}$ is a Cauchy sequence in H. We define $\gamma(E)$ as the limit of this sequence and obviously $||\gamma(E)||^2=\gamma(E)$. In order to prove that $\gamma(E)$ does not depend upon the particular sequence $\{G_n\}_{n=1}^{\infty}$, we take another such sequence, say $\{\widetilde{G}_n\}_{n=1}^{\infty}$. Evidently $\lim_{n\to\infty}\lambda(G_n\backslash\widetilde{G}_n)=\lim_{n\to\infty}\lambda(\widetilde{G}_n\backslash G_n)=0$ and since

$$|| \gamma(G_n) - \gamma(\widetilde{G}_n) || \leq || \gamma(G_n) - \gamma(G_n \cap \widetilde{G}_n) || + || \gamma(\widetilde{G}_n) - \gamma(G_n \cap \widetilde{G}_n) || = \sqrt{\lambda(G_n \setminus \widetilde{G}_n)} + \sqrt{\lambda(\widetilde{G}_n \setminus G_n)},$$

we have $\lim_{n\to\infty}||\gamma(G_n)-\gamma(\widetilde{G}_n)||=0$ and therefore $\lim_{n\to\infty}\gamma(G_n)=\lim_{n\to\infty}\gamma(\widetilde{G}_n)$. If $G\in\mathscr{G}$ and $G\supseteq E,\ E\in\mathscr{G}$, there is a nonincreasing sequence $\{G_n\}_{n=1}^{\infty}$ of sets in \mathscr{G} , $G\supseteq G_n$ and such that $\gamma(E)=\lim_{n\to\infty}\gamma(G_n)$. Then $||\gamma(G)-\gamma(E)||^2=\lim_{n\to\infty}||\gamma(G)-\gamma(G_n)||^2=\lim_{n\to\infty}\lambda(G\backslash G_n)=\lambda(G\backslash E)$.

Our next step is to show that γ is finitely additive in \mathscr{D} . Let E_1 and E_2 be disjoint sets in \mathscr{D} and let G_1 and G_2 in \mathscr{D} be such that $G_1 \supseteq E_1$, $G_2 \supseteq E_2$, $||\gamma(G_1) - \gamma(E_1)|| < \varepsilon$ and $||\gamma(G_2) - \gamma(E_2)|| < \varepsilon$, where $\varepsilon > 0$ is given. Then

$$egin{aligned} &||\ \gamma(G_1 \cup G_2) - \gamma(E_1 \cup E_2)\ || \ &= \sqrt{\lambda(G_1 \cup G_2) - \lambda(E_1 \cup E_2)} \leqq \sqrt{\lambda(G_1 ackslash E_1) + \lambda(G_2 ackslash E_2)} < \sqrt{2arepsilon} \ . \end{aligned}$$

Also since γ is modular in \mathcal{G} ,

$$egin{aligned} &||\, \gamma(G_1 \cup G_2) - \gamma(G_1) - \gamma(G_2) \,|| = ||\, \gamma(G_1 \cup G_2) \,|| \ &= \sqrt{\lambda G_1 \cap G_2} \leqq \sqrt{\lambda (G_1 ackslash E_1)} + \lambda (G_2 ackslash E_2) < \sqrt{2arepsilon} \;. \end{aligned}$$

Therefore

$$egin{aligned} \| \, \gamma(E_1 \cup E_2) - \gamma(E_1) - \gamma(E_2) \, \| & \leq \| \, \gamma(E_1 \cup E_2) - \gamma(G_1 \cup G_2) \, \| \ & + \| \, \gamma(G_1 \cup G_2) - \gamma(G_1) - \gamma(G_2) \, \| + \| \, \gamma(G_1) - \gamma(E_1) \, \| \ & + \gamma(G_2) - \gamma(E_2) \, \| < (2 + 2\sqrt{2}) arepsilon \, . \end{aligned}$$

which implies that $\gamma(E_1 \cup E_2) = \gamma(E_1) + \gamma(E_2)$.

In 2.7, we proved that γ is countable additive under the assumption that it is finitely additive and $||\gamma(E)||^2 = \lambda(E)$ for $E \in \mathscr{B}$. Thus γ is countably additive.

Next, in order to prove the orthogonality property, we observe that since disjoint basic intervals have orthogonal measures, if G_1 and G_2 are disjoint sets in \mathscr{G} , $\gamma(G_1)$ and $\gamma(G_2)$ must be orthogonal. If K_1 and K_2 are disjoint compact sets, there are nonincreasing sequences $\{G_n\}_{n=1}^{\infty}$ and $\{\widetilde{G}_n\}_{n=1}^{\infty}$ of sets in \mathscr{G} such that $G_n \cap \widetilde{G}_m = \mathscr{O}$ for all n and m, and $\lim_{n\to\infty}\gamma(G_n)=\gamma(K_1)$, $\lim_{n\to\infty}\gamma(\widetilde{G}_n)=\gamma(K_2)$, which implies that $\gamma(K_1)$ and $\gamma(K_2)$ are orthogonal. Finally if E_1 and E_2 are disjoint sets in \mathscr{G} , there are nondecreasing sequences $\{K_n\}_{n=1}^{\infty}$, $\{K_n\}_{n=1}^{\infty}$ of compact subsets of E_1 and E_2 such that $\lambda(E_1)=\lim_{n\to\infty}\lambda(E_n)$, $\lambda(E_2)=\lim_{n\to\infty}\lambda(K_n)$, so that $\gamma(E_1)=\lim_{n\to\infty}\gamma(K_n)$, $\gamma(E_2)=\lim_{n\to\infty}\gamma(K_n)$, and this implies that $\gamma(E_1)$ and $\gamma(E_2)$ are orthogonal. We may extend γ to the Borel subsets of [0,1] defining $\gamma(\{1\})=0$, and even "complete" it, defining $\gamma(E)=0$ if E is a subset of a Borel set of λ -measure zero.

BIBLIOGRAPHY

- 1. S. Bochner, Integration von Funktionen, deren Wert die Elemente eines Vektorraumes sind, Fund. Math. 20 (1933), 262-276.
- B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.
- 3. K. Yosida, Functional analysis, Springer-Verlag, Berlin, 1965.

Received April 20, 1967.

UNIVERSIDED DE CHILE