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ADDITIONAL RESULTS ON MODULES
OVER POLYDISC ALGEBRAS

E. L. STOUT

This paper deals with a class <f%ΓN of domains in Stein
manifolds and with certain algebras of holomorphic functions
naturally associated with them.

The class ^N consists of those relatively compact domains
J in iV-dimensional Stein manifolds such that for some neigh-
borhood Ω of Δ and some neighborhood W of ΰN, the closure
of UN = {(zi, , zN) e CN: \ z, |, , | zN \ < 1}, the unit polydisc
in CN, there exists a proper holomorphic map Φ: Ω —» W which
is nonsingular at every point of φ-^T*), TN the distinguished
boundary of UN, and which has, in addition, the property that
J = φ-ι(JJN). The collection of all such maps Φ is denoted by
^gr(d9U

Iί)f and if J , J ' e J J , ^ r ( J , J ' ) denotes the set
of all maps Ψ: Δ-±Δf such that if Φe^€(Δ', UN\ then
Φo¥e^(J, UN). For Δe 3tTN let J^(J) = {fe ^{Δ): f is
holomorphic in Δ}, and let H°°(Δ) = {/: / is holomorphic and
bounded in J}. If Φe^?(Δ,Δf), then S/{ά) is a module over
its subalgebra Φ*J*T(Δ') = {foφ: feJ^W)}, and this paper
treats the structure of J&(Δ) as a ^J^JO-niodule. The
first section of the paper presents an example to show that
S/(£) need not be free over Φ*J^(Jr)9 and the second section
shows that it is a finitely generated, projective Φ*J^(Δf)-
module. The final section establishes certain conditions suffi-
cient for the freeness of S/(fi). Parallel results obtain for
H°°(Δ) as a Φ#°°(J0-module.

These results supplement results obtained in [7]. In that paper
some of these questions were treated for the special case that Δ= UN.
For example, it was shown there that if Φ e ^(Δ, UN), then j^f(Δ)
is a free module over Φ*S^(UN). We refer to this paper for some of
the elementary properties of the elements of J%£ and of ^P(Δ', Δ).

Given Δ',ΔeSrNi and Ψe^t(Δ\Δ)9 the triple (Δ;Ψ\Δ',Δ) is an
analytic cover in the sense of [5] and consequently has a well defined
multiplicity λ: λ is that integer such that for all points 3 e Δr off a
variety, the set Ψ~ι(%) consists of λ points.

If M is a complex manifold, £f a sheaf on M, and g a point of
M, then £>% denotes the stalk of Sf at 5 and έ?u denotes the sheaf
of germs of functions holomorphic on M. We will usually write ^
instead of (^¥)δ. If if is a subset of M, ^{K) denotes the sections
of ^M over K.

1. An example. If Δ, Δ' e 3% and Ψ e ^T(J', Δ), then [1] J ^ (Δr)
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is a free module over Ψ*j*f{Δ) whose rank is the multiplicity of Ψ.
In higher dimensions the analogous result is not true as the following
example shows.

We will show that for N = 4, 5, 6, , there exist Δ, Af e ^TN

and Ψ G ̂ {Δ1', Δ) such that j^(Δf) admits no set of generators over
Ψ*Jϊf(Δ) consisting of λ elements, λ the multiplicity of Ψ. In our
example Ψ will be two-to-one and a local homeomorphism at each
point of Δ. Denote by PN(C) and PN{R) respectively iV-dimensional
complex and real protective space. In PN(C), iV^4, consider the
manifold V consisting of those points with homogeneous coordinates
(z0, •• ,zN) such that z\ + + z\ Φ 0. In the case N = 2, this
manifold was considered in another connection by Forster [3]. The
manifold V is connected since it is the complement in PN(C) of a
variety, and, as Forster remarked, it is a Stein manifold. The space
PN(R) is contained in a natural way in V: PN(R) is the set of all
points which admit real homogeneous coordinates, and, moreover, PN(R)
is a deformation retract of V. This was the fact which made V
useful for Forster, and it is the essential point in the present example.
A deformation of V onto PN(R) c a n be given explicitly as follows [3].
If 5G F, let (zQ, , zN) be homogeneous coordinates for g such that
z\ + + z\f > 0. Given t e [0,1], define Ht{%) to be the point with
homogeneous coordinates (x0 + ity0, , xN + ityN) if zά = xό + ίyό. Thus,
V and PN(R) are of the same homotopy type and in particular they
have the same fundamental group, Z%. Consequently, if V denotes
the universal covering manifold of V and η: V—•> V the natural
projection, then η is a local homeomorphism and each fiber η~\p)
consists of exactly two points. The manifold V admits a complex
structure with respect to which η is a holomorphic map, and when V
is endowed with this complex structure, it becomes a Stein manifold.
(For the fact that V is Stein, see [8]).

We set S = 7)~\PN(R)), and we shall show that S is, topologically,
the iV-sphere. Since η is a local homeomorphism, S is evidently an
JV-dimensional manifold. A priori it is not clear that S is connected;
let So be a component of S. Then rj carries So onto PN(R), and with
the projection η, So is a covering space of PN(R). Let p0 e PN(R) and
let s0 G y-\po)n So. L e t i : (P*(#), po)~> (V, p0) and j : (So> 80)-+(V, s0)
be inclusion maps. We then have induced homomorphisms of the
fundamental groups

I So)*: ^(So, So) — π£PN{R), p0) .

1 The integers mod 2.
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There is the commutativity relation η* j * = i*{η \ So)*. Since V is the
universal covering space of V, r)* = 0, and since PN(R) is a deformation
retract of V, i* is an isomorphism. Consequently (η \ So)* = 0. From
the uniqueness of covering spaces corresponding to a given subgroup
of the fundamental group (see, e.g. [6, Th. 6.6.16]) it follows that
SQ is homeomorphic to the universal covering space of PN(R), i.e., to
the JV-sphere and that η \ So is two-to-one. Since η is two-to-one on
V, we have that S — So and consequently that S is an iV-sphere.

Next we show the existence of a Δ e ^ί^ which contains PN(R) and
which is contained in V. For this purpose, define a map Φ: V—>CN

by setting

zl + + z2

N zl+ + z2

N J

if ge V has homogeneous coordinates (z0, •• , ^ Λ ) . The Φ so defined
is proper. If not, there is a sequence {ζ(fc)}Γ=i in CN which converges
to C0)eCN such that for some choice of points fa e 0~%{k)), fa~^
go e PN(C)\V. Let g0 have homogeneous coordinates (40), , z$). Then
Σ(z{P)2 = 0. We can choose homogeneous coordinates (z{

o

k), , z^]) for
3, so that for fixed j , 0 ̂  j ^ N, zf — zf. Let ζ(0) = (ζ{0), . , ζ ^ ) .
Since Φ(g,) -> ζ(0), we have, for 1 ̂  j ^ N,

CP - lim (4fc))2(te(fc))2 + + mY1 ,

and since gΛ—> go and g0 ί V, this implies that zf] —*0. From z{jk)~->zf,
we conclude that zf = 0 for 1 ̂  j ^ N. The fact that I^zf)2 = 0
implies that z(

0

0) — 0, so (zΓ, , z^) = (0, , 0) which is impossible.
Thus Φ is proper. A short calculation shows that with the exception
of the points in the variety

every point of C^ has exactly 2^ preimages under Φ so the multiplicity
of Φ is 2V. This remark also indicates that Φ is regular at each point
of the sets Φ-\{(ζίf , ζ*): | G | - = | ζN \ = R}). If g e V has real
homogeneous coordinates, the definition of Φ(g) shows that Φ(ι) lies in
UN, so if s > 0, then the set

4β = Φ~1{(zί, •• , ^ ) G C Λ : | ^ | < l + ε for j = 1, ...,iV}

is an element of 5ίΓN with the desired property.
Let PN(R) c J c F , Δe 5ίΓN, and let Δf = η~\Δ). The mapping η:

V—* V is a covering map and so is certainly an element of Λί(Δ\ Δ).
Assume that <Ssf(Δr) is generated as a module over ^J^(Δ) by two
elements, Fγ and F2, so that if / G J / ( J ' ) then for some &
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we have that /(j) = F^g.iviz)) + F2(i)g2(r)&)). In particular, the func-
tions Fλ and F2 must separate points on each of the fibers y]~\%),
$ePN(R). Let SN be the standard iV-sphere in RN+1 and denote by
ξ: SN —> PN(R) the usual covering map which identifies antipodal points.
If τ: SN —• S is a homeomorphism such that ζ = η o r, then the mapping
SN-^C2 given by J—•CFΊ(r(j)), î 2(τ(3))) is continuous and separates
antipodal points. Since C2 is, topologically, R\ and since we have
assumed JV ̂  4, we have obtained a contradiction to the Borsuk-Ulam
Theorem [6, Corollary 4.3.7]. Consequently, J*f(Af) is not generated by
two elements over η*j&(Δ). This argument shows, in fact, that any
set of generators for Ssf{A') must contain more than N/2 generators.

2 J^(zf) as a module over Ψ*J&(Δ). Complementing the
previous example, we have the following result.

THEOREM 2.1. // / , J e χ and F e ^ ( / , 4 ίfcew J^(J') and
ίZ"°°(J') are finitely generated projective modules over Ψ^J^(J) and
Ψ^H^i/J) respectively.

Proof. It is easy to see that Jzf(A') is finitely generated over
Ψ*Jzf(Δ) and that a similar result obtains concerning H°°(/l'). Let
Ψ e ^f(Δ, UN). Then φoψ e ^f(Δ', UN), and consequently J*f(Ar) is
finitely generated over (Φoψ)*jϊf(UN): We know by [7, Th. 1.4]
that for some Bu , Bm e έ?(Δ'), each feSsf(A) is of the form

for some choice of f3- in Ssf(UM). Since foφ is in J%f(A), this shows
that J^(J ') is finitely generated over Ψ*J^(A). The case of H°°(A')
can be treated in the same way. Somewhat more is required to show
that these modules are projective.

Since We^r(Δr

9Δ)9 there is a neighborhood Ωr of A' which is
mapped properly onto a neighborhood Ω of A by Ψ. We know [7,
Lemma 1. 2] that the direct image sheaf Ψ*^^, is locally free of rank
λ, λ the multiplicity of Ψ on Ω. Let W be a relatively compact open
set which is a Stein manifold and which satisfies Ωz> WZD W~D A. By
Cartan's Theorem A and compactness, there exist

Flf ---,FqeΓ(Ω,Ψ*έ?Ω)

such that if j e W, then the germs (Fs)h generate {Ψ*^Ω,)£. Thus,
if H is the sheaf homomorphism £7q —• ^ ?̂V given by i/"(/Ί, •• ,fq) =

^ for all f, e ^ δ then

2 By a result of Forster and Ramspott [4, Satz 2], we can take q = λ + [N/2],
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( 1 ) ^ — Ψ+<?Q. >0

is exact over W.
We now need a lemma which is surely well known but for which

we are unable to provide a reference. (Remarks of the referee have
enabled us to abbreviate our discussion of this lemma).

TT

LEMMA 2.2. // <5f > £ζ —* 0 is an exact sequence of locally
free sheaves over a complex manifold M, then ker i ϊ is locally free.

Proof. The sheaves £^ and Si are locally free and the question
is local, so we can suppose 6^[—^>v

1 P? = &q. Since ker if is
coherent, it suffices to prove that for each g e M, the stalk (ker H)h

is a free ^-module. (See Lemma 1.2 of [7]). We have the exact
sequence

0 > k e r # >£?* > έ?Q >0

so we can invoke [2, 1.2.5, Proposition 5 and II. 5.2, Corollary 2] to
conclude that (ker i ϊ ) 5 is a projective ^-module. Since projective
modules over local rings are free, we can conclude that (ker H)% is free
as desired.

To continue with the proof of the theorem, we apply the lemma
to the sequence

(2) 0 > ker H • <?* -^U Ψ*£?Ω, > 0

over W obtained from (1), and we find that this is an exact sequence
of locally free sheaves. Consequently [4, Th. VIII C 7], the sequence
(2) splits, and in particular there is a sheaf isomorphism L of Ψ*έ?Ω.
into &q such that RoL is the identity on Ψ*έ7Ω, and LoR is a
projection of &q onto the range of L. Apply this to the spaces of
sections over Δ and pull the resulting statement back to Δr by way of
the map Ψ. We find that there are exact sequences of f*^(J)-module
homomorphisms

L' /w

0 —

and

> 0 .

Here H\f o Ψ, . -. ,fq o ψ) = ^ Fάfά o Ψ where Fά e έ?(Δ') corresponds to
the section Fό of Ψ*έ?0,, LΌH' projects ?F*^(J) onto the range of
L', and Ή.ΌL' is the identity on έ?(Δ'). This establishes ^{Δf) as a
finitely generated, projective ^^( iO-module .

To treat Ssf{Af) and H°°(Δ'), note that since L is a sheaf isomor-
phism, U extents to an isomorphism L" of ^{Δ') into (Ψ^^>(Δ))q and
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that H' extends to a homomorphism H" of (Ψ* ̂ {Δ))q to έ?(Δ').
The form of H shows that H" carries (Ψ*sf{Δ))q into j&(Δ') and
(ψ*H°°(Δ))q into H~(Δ'). In fact # " carries {Ψ*J*f{Δ)Y and (Ψ*H°°(Δ)y
onto j&(Δ') and H°°(Δ') respectively. As we noted at the beginning
of the proof, if / e j / ( / ) , then f=ΣιB,'fi°Φ f ° r some
and some JBy e £?(/'). We have B3 = #'(£,) for some 5,6 (
On (Ψ*j^(Δ))q, H" acts as a f*jy(J)-module homomorphism, so we
have f=H"(ΣjBjfj°Φ). The case that / lies in H~{Δ') may be
treated in a similar way.

Also, L" carries J^(zf) into (Ψ*J^(Δ))q and ff-(J') into (Ψ*H~(Δ))<.
If / G J^(J '), we write / = Σ BjfoW as above. Then L"/= Σfj°L>"B3.
We have ZΛB.e (f *<^(J))*c (?Γ*J^(J))«. Thus Z,"/ is in (f*j^(zθ)*
as asserted. The H°° case follows in the same way.

The operator L"°H" acts on (Ψ*j^(Δ))q as a projection with
range the range of L" on j&(Δ'). To see this, note first that the
range of L"°ΈL" is L"{j*f{Δ')), for J ϊ " carries {Ψ*Ss?(Δ))q onto
J^(J ') . If / e j / ( / ) , then since H'ΌL" is the identity, we find that
L'ΌH"{L"f) - L'7, so L'Όff" is a projection. Since L" takes j*(Δ')
isomorphically into (Ψ*J*f(Δ))q, we have proved that j&(Δ') is a pro-
jective ?F*j^(z/)-module. In the same way, it follows that H°°(Δ') is a
protective ?Γ*JH

Γoo(z/)-module, and the proof of the theorem is concluded.

3. Criteria for the freeness of J^(J') over Ψ*J^(Δ). There
are certain cases in which j^(Δ') is necessarily free over Ψ*j&(Δ).
To introduce some of these we need to consider products. Suppose
Λ e ^ , J 2 e J i 2 , and let Φ5e^e(Δό, UNή. If βy is a neighborhood
of J; which is mapped properly into the neighborhood W3- of TJN*,
j = 1,2, then the map Ψ: Ωλ x Ω2-+ W1 x W2 given by

is proper, and Δ1 x Δ2 = ψ-\ZJN1+m). Moreover, Ψ is a local homeo-
morphism at each point of ψ-\τm+m). Thus Δ, x z/2 € <βΓN1+N2, and
?" G ̂ T(Λ x Δi9 Um+m). Similarly, if we are given Δ[ and Δ[ in STN1

and ^ ; , 2 respectively and if Φ^^^Δ^Δ^), j — 1,2, then the map
Φ1 x Φ2 from 4 x Δ'2 to Λ x Δ2 defined by Φx x Φfa, j2) - (ΦiίSi), Φ2(32))
is an element of ^t(Δ[ x J{, ^ x zί2). If Φd has multiplicity λ̂  , then
Φι x Φ2 has multiplicity λ ^

THEOREM 3.1. If for j = 1, 2, J, , Δ) e 5fNp if Φ3 e ^t(Δf

j9 Δd) is of
multiplicity λ, , and if S>f{Δf

3) is free of rank X3- over Ψ*jzf{Δ3), then
Δί x Δ[) is free of rank λxλ2 over (Φί x Φ2) **s&(Δγ x Δ2).

Before giving the proof of this theorem, let us mention that by
Theorem 2.3 of [7], if Φ e ^f(UN, UN), then in an obvious extension
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of the above notation, Φ — φι x ••• x φN where each φάe^/έ{TJ, U)
is a finite Blaschke product.

Proof. Let {F?\ , Fg} be a free basis for j*(Δ[) over Φ*
and let {Fx

(2), -- ,F%} be one for J ^ ( 4 ) over Φ*j&(Δ2). We assert
that the set {F^ Fk

i2): l ^ j ^ X ^ l ^ k ^ λ2} is a free basis for
J&(Δ[ x 4 ) over (Φ, x Φ2)* J ^ ( 4 x Δ2).

Define £^(3) for s e J ; to be the set ΦT^Φi(i))9 and define E2($) for
5 6 Ja in an analogous way. In general Efa) will consist of X1 points.
Since {Fk

{1)} is a free basis for J^(Δ[) over Φ f j ^ ^ ) , each fejy?(Δ[)
has a unique expression in the form

fti) ^ ^(1)(8)/i(Φi(δ)) + ••• + ^ ( ί ) / ^ ) )

with /x, , fh 6 j y ( 4 ) . The functions / y o φ1 can be computed explic-
itly by Cramer's rule: fό(ΦM)) — D5{^)D~ι(^) where, for 3 e Δr such that
£Ί(g) consists of λj. distinct points, say JS71(g) = {ĝ  •• ,8 1̂}, we have

2?(8) - det (^"(j*))^/,^^ ,

and jDyίg) is obtained from D{%) by replacing the j t h column by the
column vector (/(&), , /(j^)).

If we are given an element G e J ^ ( J ί x Δ'3), then for fixed w e Δ'2,
the preceding remarks may be applied to the element G(-,w) of

where, for fixed w, fs( , w) e J^(ΔJ). The expression for fs as a certain
quotient of determinants shows that //(0i(8)> ^) is in fact an element
of J*f(Δ[ x Δ[). Thus, for fixed 3, we can write

Σ

Again, we can compute the functions gj)k explicitly: If E2(w) =
{wιy , wh], then flri>A(j, Φ2(w)) = Dk($, Φ2(w)) D(i, Φ2(w))~ί where, as
before,

5 = det {F^(wm))lsk,mSh

and 5^(3, Φ2(w)) is obtained by replacing the kth column of D by the
column vector {fj(Φι{l),wι), * ,fj(Φί($),wλ2)). This representation for
gjtk shows that for fixed w, gjtk(i9 ΦJiw)) is, as a function of 3, constant
on the set Efa). Thus, we can write gitk($, Φ2(w)) = h^Φ^i), Φ2{w))
for some suitably chosen hjΛ e «J^(Λ x Λ) We now have the repre-
sentation

G(3, w) - IFV(i)FP(w)hj,kMi), Φ2{w))



434 E. L. STOUT

for G. Thus, {F^F^} is a set of generators for j*f(Δ[ x Af

2) over
(Φx x Φ2)* j^(A x 4).

That F^1]Fί2) are free generators is now clear: If there were a
nontrivial relation

0 - ΣFFtoWPMhUΦiii), Φ«(w))

Then for some fixed choice of w we could regard this as a nontrivial
relation among the functions Fix\ •• ,JF7jJ). But since {Ff]} is a free
basis for j&(Δ\), no such relation can exist, and the theorem is proved.

It is clear that a similar result obtains for products of more than
two elements of 3ίΓN and that an analogous theorem holds for bounded
functions.

We saw in [7] that if J e X and Φ e ̂ t(Δ, UN), then j*f(A) is
a free module over Φ*j%f(UN). The essential ingredient of this proof
is the fact that for some neighborhood Ω of I and some neighborhood
W of UN, the sheaf Φ^Ω is a free sheaf over W. The relation
between the freeness of Jzf(A) over Φ*j%f(UN) and the freeness of
the sheaf Φ^Ω is one which persists in more general settings.

THEOREM 3.2. // A, A' e 3ίΓN, if Φe ̂ t(Δ', A), and if J^f{Δf) is
free of rank λ, λ the multiplicity of Φ, over Φ*Ssf{A), then for some
neighborhood Ω of Δ' on which Φ is defined, the sheaf Φ^Ω is free
over ^Φ[Ω).

Before proving the theorem, a simple preliminary observation is
needed.

LEMMA 3.3. // Δ, Ar e 3TN, if Φe ̂ f(Af, A), and if Jϊf(A') is free
over Φ*j&(Δ), then there exists a set of free generators for Sf(A')
which consists of functions holomorphic on a neighborhood of Δf.

Proof. By hypothesis there exists an isomorphism

L:

it is of the form

for some fixed elements Fl9 , Fq e Ssf{A'). The operator L is contin-
uous and so it has a continuous inverse L~\ If S: Φ*J*f{A)q-+Ssf{A')
is near L in the norm topology of J^{Φ*s/{Δ)q, s^(A')),3 then S^L"1

3 We use J5f(X, Y) to denote the continuous linear operators from the Banach
space X to the Banach space Y.
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is near the identity of £f{J*f{Δ'), J*f{Δ')) and so is invertible. Thus,
if S is near L, S is also an isomorphism. Therefore if we choose
functions G19 , Gg holomorphic on a neighborhood of I' so that G3

is uniformly near F3- on Δf and if we define

S:

by S(f o Φ, , fq o φ) = ΣGjfj o 0, then S is a 0*j^(J)-module isomor-
phism, i.e., {£?!, , Gq} is a free basis for Sif(Δ') over Φ*jy(J) . That
the desired approximating functions exist is contained in [7, Corollary
I. 6].

Proof of Theorem 3.4. Let Flf , Fλ e ^(Δr) be a free basis for
over Φ*J^(Δ), and let Ω be a neighborhood of J such that

F19 * ,Fχ are all holomorphic in Ωf = Φ~ι(Ω). We have a homomorphism
J^ϊ ^ έ — Φ*<?V defined by j T ^ , •••,/•,) = 2 ^ - ) / ; for all

(fl9 ...,fλ)eέ?l,zeΩ' .

Here jFy is the section of Φ*έ?Ω, corresponding to F3 , and {Fj)h is its
germ at g. We shall show that ^ is a sheaf isomorphism at least
when we restrict attention to some, possibly smaller neighborhood of Δ.

Consider a point j e I. We shall show that the stalk map given
by ά?~ is an isomorphism in the stalk over j . Since Φ*έ7Ω, is locally
free of rank λ, there is an isomorphism L: ^\—> {Φ^Ω)h. Denote
by eό the element (0, , 0, 1, 0, , 0) (1 in the j t h place) of <^\, and
let gό e (Φ*^Ω,)h be the image of e3- under L. There is a neighborhood
W of 5 in which all the germs g3 can be represented by sections of
Φ*έ?Q,, call these sections g5. Thus, g5 e έ?(Φ~\ W)). If Va W is a
small neighborhood of 5, then on (Φ"-1(F))", the functions ^ will admit
uniform approximation by functions Gό e <S?{Δ). We can choose the
approximating functions G3 so that in the expression

the functions h{

k

j) lie in <^(Δ). The Go give sections Gά of Φ*&Ω, which
lie in the range of J^7 Moreover, for any choice of G3 , we obtain a
homomorphism U: &>\—>(Φ^Ω)h by setting L'(e3) = (G3)h If the
functions G3 approximate the functions g3 sufficiently well, the 1/ so
obtained will be an isomorphism since L is. Fix a choice of the G3

so that U is an isomorphism.
Using U', we can see that ^ ^ is onto (in the stalk over g), for

the range of a?' contains {Gίy •• ,G^} and so it contains the module
generated by this set. Since Lr is onto, it follows that this module
is the whole of (Φ*έ?Ω,\.

The fact that j ^ ~ is one-to-one in the stalk over 3 follows from
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Cartan's Theorem A. If &~(f» , fλ) = 0, (fίf . . . , fλ) e ^ _
the sheaf of relations among Flf * ,Fχ is nontrivial over I. Thus
by Cartan's Theorem A, there is a nontrivial section of J%~ over J",
i.e., there exist hlf , hλ e &(!) not all of which are the zero function,
such that ΣhjFj = 0, i.e., ΣF3hjθφ = 0. This is impossible since
{Flf -—,Fλ] is a free basis for J ^ ( / ) over Φ*J^(j).

Thus, for all gG j , ^ carries &\ isomorphically onto (Φ*^Ωt)h.
Consequently, the same assertion holds for all 5 in a neighborhood of
Δ, and the theorem is proved.

Note added in proof. My colleague S.J. Sidney has observed that
with a somewhat more careful use of the Borsuk-Ulam theorem, it is
possible to show that the example of Section I is valid in dimensions
two and three as well as in higher dimensions. Consider, in the
notation of that section, a z ί e 3ΓN, N^2 with PN(R) c J c F , and
let Δ' = η~ι{A). Assume that F and G generate A(Δ') as a module
over η*j^(Δ). If / is any element of j&(Δ'), we can write /' = fβ+ f0,
fet /o£ J^f(Δf) where fe is even in the sense that it is constant on the
fiber ^ ( ^ j e J , and f0 is odd in that if ^ ( j ) = (5', 5"), then /0(8') =
- /0(δ"). To obtain such a decomposition, write /.(j) = i(/(j') + f{f))
where η-\η(i)) = {3', 5"}, and define /0 to be / - /e. It is clear that
fe is, in fact, even, and that f0 is odd. It is easily verified that this
decomposition of / into a sum of even and odd parts is unique.

By hypothesis, if h e Ssf{Ar), we have h = fF + gG for some choice
of /, g e r]*s*f(A). The functions /and g are both even, and it follows
that if h = he + h0, then

K = fF0 + gGe

and

h0 =

By suitable choice of hej^(Δ), we can arrange that the pair
ô(δ)) be any point of C2, so it follows that the

determinant b($) = is zero for no choice of 5.

However, b is an odd function. Thus, continuing with the notation
of Section I, boξ is a C-valued function on SN which is zero-free and
odd in that if p and q are antipodal points in SN, then boξ(p) =
— bo£(gr). Since C is topologically R2 and since JV ^ 2, the Borsuk-
Ulam theorem implies that such an odd function has a zero, and the
desired contradiction has been reached.
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