RANK k GRASSMANN PRODUCTS

M. J. S. Lim

Abstract

The general question concerning the structure of subspaces of a symmetry class of tensors in which every nonzero element has an irreducible representation as a sum of decomposable (or pure) elements of a given length is as yet largely unanswered. This problem relates to the problem of characterizing the linear transformations on such a symmetry class which map the set of tensors of 'irreducible length" k into itself; i.e., preserves the rank k of the tensors. Another related problem is: "Is it possible to obtain algebraic relations involving the components of a tensor which imply it has rank ('Irreducible length'') k, for any positive integer k ''?

This paper is concerned mostly with the third question for the $\binom{n}{r}$-dimensional Grassmann Product Space $\wedge^{r} U$, where U is an n dimensional vector space over a field F. It includes some discussion of the first question for F algebraically closed $r=2$.

A vector in $\wedge^{r} U$ is said to have rank k if it can be expressed as the sum of k, and not less than k, nonzero pure r-vectors in $\wedge^{r} U$. We denote the set of such vectors by $C_{k i}^{r}(U)$. The nonzero pure products in $\wedge^{r} U$ have rank one.

The results obtained in this paper are as follows: (i) the rank of a vector in $\wedge^{r} U$ is unchanged if we extend U, (ii) in the Grassmann Algebra $\wedge^{0} U+\wedge^{1} U+\cdots+\wedge^{r} U+\cdots$, multiplication of a Grassmann product by a nonzero vector in U either annihilates it or preserves its rank, (iii) we can associate with each vector z in $C_{k}^{r}(U)$ a unique subspace $U(z)$ in U, (iv) if $z \in C_{k}^{r}(U)$ and $\operatorname{dim} U(z)$ is $r k$, then z has rank k, $(v) x_{1} \wedge y_{1}+\cdots+x_{s} \wedge y_{s} \in C_{s}^{2}(U)$ if and only if $\left\{x_{1}, y_{1}, \cdots, x_{s}, y_{s}\right\}$ is independent. Finally, we discuss the rank two subspaces in $\wedge^{2} U$ when $\operatorname{dim} U=4$. If F is algebraically closed, these subspaces are of dimension one. Otherwise, they can be different, as the examples show.

In this paper, $Q(k, t, n)$ will denote the totality of strictly increasing sequences of k integers chosen from $t, t+1, \cdots, n ; S(k, t, n)$ the totality of sequences of k integers chosen from $t, t+1, \cdots, n$.

Let x_{1}, \cdots, x_{n} be a basis of U. For $\omega=\left(i_{1}, \cdots, i_{r}\right) \in Q(r, 1, n)$, we denote the product $x_{i_{1}} \wedge \cdots \wedge x_{i_{r}}$ by \boldsymbol{x}_{ω}.

Let p be an r-linear alternating function from $\pi_{i=1}^{r} E \rightarrow F, E=$ $\{1, \cdots, n\}$.

We will need the following known result.
Theorem 1. (See [2], p. 289-312.) Let

$$
z=\sum p(\omega) \boldsymbol{x}_{\omega},(\omega \in Q(r, 1, n))
$$

Then z is a pure vector if and only if

$$
\begin{equation*}
\sum_{\mu=0}^{r}(-1)^{\mu} p\left(\alpha, j_{\mu}\right) p\left(j_{0}, \cdots, j_{\mu-1}, j_{\mu+1}, \cdots, j_{r}\right)=0 \tag{1}
\end{equation*}
$$

for all $\alpha \in S(r-1,1, n)$ and all $\left(j_{0}, \cdots, j_{r}\right) \in S(r+1,1, n)$.
Furthermore, there are $(n-r)$ independent equations in the system of equations (1).

The following lemma will be useful.
Lemma 2. Let $z=\sum p(\omega) \boldsymbol{x}_{\omega},\left(\omega \in Q(r, 1, n) ; z \in C_{k}^{r}(U)\right)$. Let s, m be integers, $0 \leqq s \leqq r, 0 \leqq m \leqq n$, and let

$$
z^{\prime}=\sum p(1, \cdots, s, \alpha) x_{1} \wedge \cdots \wedge x_{s} \wedge \boldsymbol{x}_{\alpha}, \quad(\alpha \in Q(m-s, s+1, m))
$$

Then $z^{\prime} \in C_{l}^{r}(U)$, for some $l, 0 \leqq l \leqq k$.
Proof. We prove first the case $k=1$.
Let $\omega=\left(i_{1}, \cdots, i_{r}\right) \in Q(r, 1, n)$. We set

$$
p^{\prime}\left(i_{1}, \cdots, i_{r}\right)=p\left(i_{1}, \cdots, i_{r}\right)
$$

if $i_{1}=1, \cdots, i_{s}=s$, and $s+1 \leqq i_{s+1}<\cdots<i_{r} \leqq m$. Otherwise, $p^{\prime}\left(i_{1}, \cdots, i_{r}\right)=0$. Then $z^{\prime}=\sum p^{\prime}(\omega) x_{\omega} ;(\omega \in Q(r, 1, n))$. It is easy to show that the system of equations (1) holds for the $p^{\prime} s$; (there are 3 cases to check; viz., $i_{t}>m$ or $j_{t}>m$ for some t; not all of the integers $1, \cdots, s$ are present in i_{1}, \cdots, i_{r-1} or not all of the integers $1, \cdots, s$ are present in j_{0}, \cdots, j_{r}; and, thirdly, all the integers $1, \cdots, s$ are present in i_{1}, \cdots, i_{r-1} and in j_{0}, \cdots, j_{r} with $i_{t} \leqq m(t=1, \cdots, r-1)$ and $\left.j_{l} \leqq m(l=0, \cdots, r)\right)$. Thus, by Theorem $1, z^{\prime} \in C_{1}^{r}(U)$ or is zero.

For $z=z_{1}+\cdots+z_{k} \in C_{k}^{r}(U), z_{i} \in C_{1}^{r}(U)(i=1, \cdots, k)$, we apply the above result to each term z_{i}, noting that

$$
z^{\prime}=\left(z_{1} \cdots+z_{k}\right)^{\prime}=z_{1}^{\prime}+\cdots+z_{k}^{\prime}
$$

Theorem 3. Let $U^{\prime} \subseteq U$ be a subspace.
Then $C_{k}^{r}\left(U^{\prime}\right) \subseteq C_{k}^{r}(U)$.
Proof. Let x_{1}, \cdots, x_{s} be a basis of U^{\prime}, and let x_{1}, \cdots, x_{n} be an extension of this basis to a basis of U. Let

$$
y_{1}+\cdots+y_{k} \in C_{k}^{r}\left(U^{\prime}\right), y_{i} \in C_{1}^{r}\left(U^{\prime}\right)
$$

Suppose $y_{1}+\cdots+y_{k}=z_{1}+\cdots+z_{l} \in C_{l}^{r}(U), z_{i} \in C_{1}^{r}(U)$. Clearly
$l \leqq k$.
To show $l \geqq k$, let

$$
z_{j}=\sum p^{(j)}(\omega) \boldsymbol{x}_{\omega}, \omega \in Q(r, 1, n), \quad 1 \leqq j \leqq l
$$

Since $y_{i} \in C_{1}^{r}\left(U^{\prime}\right), 1 \leqq i \leqq k$, then

$$
\sum_{j=1}^{l} p^{(j)}(\omega)=0
$$

whenever $\omega=\left(i_{1}, \cdots, i_{r}\right)$ and $\left\{i_{1}, \cdots, i_{r}\right\} \nsubseteq\{1, \cdots, s\}$. Hence

$$
z_{j}^{\prime}=\sum p^{(j)}(\omega) \boldsymbol{x}_{\omega}, \omega \in Q(r, 1, s)
$$

is in $C_{1}^{r}\left(U^{\prime}\right)$ by Lemma 2 , and since $z_{1}^{\prime}+\cdots+z_{l}^{\prime}=z_{1}+\cdots+z_{l}=$ y_{1}, \cdots, y_{k}, the $l \geqq k$.

Definition. For $z \in C_{k}^{r}(U)$, we define $R_{r}(z)=k$; i.e., $R_{r}: \wedge^{r} U \rightarrow J$ such that $R_{r}(z)=k$ if and only if $z \in C_{k}^{r}(U)$.

We will drop the index r when no confusion arises.
If $x \in U, z \in \wedge^{r} U$ such that $z=\sum p(\omega) x_{\omega}, \omega \in Q(r, 1, n)$, where x_{1}, \cdots, x_{n} is a basis of U, then we write $x \wedge z$ for the vector

$$
\sum p(\omega) x \wedge \boldsymbol{x}_{\omega}, \omega \in Q(r, 1, n)
$$

If $z=x_{1} \wedge \cdots \wedge x_{r}$ is a nonzero pure vector in $\wedge^{r} U$, then we shall denote the r-dimensional space $\left\langle x_{1}, \cdots, x_{n}\right\rangle$ by $U(z)$.

Theorem 4. Let $y=y_{1}+\cdots+y_{k} \in C_{k}^{r}(U), y_{i} \in C_{1}^{r}(U), 1 \leqq i \leqq k$.
(i) Suppose $x \wedge\left(y_{1}+\cdots+y_{k}\right)=0, x \in U$. Then $x \in U\left(y_{i}\right)$, $i=1, \cdots, k$.
(ii) Suppose $x \in U, x \notin U\left(y_{1}\right)+\cdots+U\left(y_{k}\right)$. Then $x \wedge y \in C_{k}^{r+1}(U)$.

Proof. (i) Suppose on the contrary that $x \notin U\left(y_{1}\right)$. Then

$$
x \wedge y_{1}=x \wedge\left(-\sum_{i=2}^{k} y_{i}\right) \neq 0
$$

Thus, we can choose a basis x_{1}, \cdots, x_{n} of U such that

$$
x=x_{1}, y_{1}=x_{2} \wedge \cdots \wedge x_{r+1}
$$

Then

$$
\left(-\sum_{i=2}^{k} y_{i}\right)=x_{2} \wedge \cdots \wedge x_{r+1}+\sum p(1, \alpha) x_{1} \wedge \boldsymbol{x}_{\alpha},(\alpha \in Q(r-1,2, n))
$$

Hence $\left(-\sum_{i=2}^{k} y_{i}\right)=y_{1}+x \wedge v$, where $v=\sum p(1, \alpha) \boldsymbol{x}_{\alpha} \in \wedge^{r-1} U$. Taking
$s=1, m=n$ in Lemma 2, it is easy to see that since $R\left(-\sum_{i=2}^{k}\right)=$ $k-1$, then $R(x \wedge v) \leqq k-1$. But $x \wedge v=-\left(y_{1}+\cdots+y_{k}\right)$ which implies $R(x \wedge v)=k$. We have a contradiction. Therefore $x \in U\left(y_{1}\right)$. Similarly, $x \in U\left(y_{i}\right), i=2, \cdots, k$.
(ii) Suppose that

$$
x \wedge y=z_{1} \cdots+z_{l} \in C_{l}^{r+1}(U), z_{i} \in C_{1}^{r+1}(U), \quad 1 \leqq i \leqq l
$$

Clearly $l \leqq k$.
To show $l \geqq k$, we choose a basis x_{1}, \cdots, x_{n} of U such that $x=$ x_{1} and x_{2}, \cdots, x_{s} is a basis of $U\left(y_{1}\right)+\cdots+U\left(y_{k}\right)$. Then

$$
y=\sum p(\omega) \boldsymbol{x}_{\omega},(\omega \in Q(r, 2, n))
$$

Using (i) and the fact that $x \wedge(x \wedge y)=x_{1} \wedge\left(z_{1}+\cdots+z_{l}\right)=0$, we can express each $\left.z_{j}=x_{1} \wedge\left(\sum p^{(j)}(\omega) \boldsymbol{x}_{\omega}\right) ; \omega \in Q(r, 2, n)\right), 1 \leqq j \leqq l$.

Now $\sum_{j=1}^{l} p^{(j)}(\omega)=0,\left(\omega=\left(i_{1}, \cdots, i_{r}\right)\right)$, unless

$$
\left\{i_{1}, \cdots, i_{r}\right\} \subseteq\{2, \cdots, s\}
$$

In the latter case, $\sum_{j=1}^{l} p^{(j)}(\omega)=p(\omega)$. Therefore, $z_{1}+\cdots+z_{l}=$ $z_{1}^{\prime}+\cdots+z_{l}^{\prime}=x \wedge y$ where

$$
z_{j}^{\prime}=\sum p^{(j)}(\omega) x_{1} \wedge \boldsymbol{x}_{\omega},(\omega \in Q(r, 2, s))
$$

Hence $y=z_{1}^{\prime \prime}+\cdots+z_{l}^{\prime \prime}$, where $z_{j}^{\prime \prime}=\sum p^{(j)}(\omega) \boldsymbol{x}_{\omega},(\omega \in Q(r, 2, s))$, which implies $R(y) \leqq l$, i.e., $k \leqq l$.

Theorem 5. Let $y_{i} \in C_{1}^{r}(U), z_{i} \in C_{1}^{r}(U),(i=1, \cdots, k)$ such that $y_{1}+\cdots+y_{k}=z_{1}+\cdots+z_{k}$.

Then $U\left(y_{1}\right)+\cdots+U\left(y_{k}\right)=U\left(z_{1}\right)+\cdots+U\left(z_{k}\right)$.
Proof. Suppose on the contrary that there exists a vector $x \in$ $U\left(y_{1}\right)$ such that $x \notin U\left(z_{1}\right)+\cdots+U\left(z_{k}\right)$. Since $x \wedge\left(y_{1}+\cdots+y_{k}\right)=$ $x \wedge\left(z_{1}+\cdots+z_{k}\right)$, then

$$
R\left(x \wedge\left(y_{1}+\cdots+y_{k}\right)\right)=R\left(x \wedge\left(z_{1}+\cdots+z_{k}\right)\right) \leqq k-1
$$

But, by Theorem 4 (ii), $R\left(x \wedge\left(z_{1}+\cdots+z_{k}\right)\right)=k$, which is a contradiction.

Definition. Let

$$
z=z_{1}+\cdots+z_{k} \in C_{k}^{r}(U), z_{i} \in C_{1}^{r}(U), \quad i=1, \cdots, k
$$

Then we define $U(z)$ to be the subspace $U\left(z_{1}\right)+\cdots+U\left(z_{k}\right)$.
Theorem 6. Let $z_{i} \in C_{1}^{r}(U), i=1, \cdots, k$, and let

$$
\operatorname{dim}\left[U\left(z_{1}\right)+\cdots+U\left(z_{k}\right)\right]=r k
$$

Then $R\left(z_{1}+\cdots+z_{k}\right)=k$.
Proof. Suppose the Theorem is false. Let k be the smallest integer for which it fails. Clearly $k \geqq 2$. Let

$$
z_{1}+\cdots+z_{k}=y_{1}+\cdots+y_{l} \in C_{l}^{r}(U), y_{i} \in C_{1}^{r}(U)
$$

Let $x \in U\left(z_{1}\right)$. Then $x \notin U\left(z_{2}\right)+\cdots+U\left(z_{k}\right)$. By the choice of

$$
k, z_{2}+\cdots+z_{k} \in C_{k-1}^{r}(U)
$$

Hence, by Theorem 4 (ii),
$x \wedge\left(z_{2}+\cdots+z_{k}\right)=x \wedge\left(z_{1}+\cdots+z_{k}\right)=x \wedge\left(y_{1}+\cdots+y_{l}\right)$,
and $l \geqq k-1$. But we assumed $l<k$. Therefore $l=k-1$.
By Theorem 5,

$$
U\left(x \wedge z_{2}\right)+\cdots+U\left(x \wedge z_{k}\right)=U\left(x \wedge y_{1}\right)+\cdots+U\left(x \wedge y_{k-1}\right)
$$

Hence $\langle x\rangle+U\left(z_{2}\right)+\cdots+U\left(z_{k}\right)=\langle x\rangle+U\left(y_{1}\right)+\cdots+U\left(y_{k-1}\right)$.
Now let $x^{\prime} \in U\left(z_{1}\right)$, independent of x. Then again

$$
\left\langle x^{\prime}\right\rangle+U\left(z_{2}\right)+\cdots+U\left(z_{k}\right)=\left\langle x^{\prime}\right\rangle+U\left(y_{1}\right)+\cdots+U\left(y_{k-1}\right) .
$$

Taking intersections, we obtain

$$
U\left(z_{2}\right)+\cdots+U\left(z_{k}\right)=U\left(y_{1}\right)+\cdots+U\left(y_{k-1}\right) .
$$

By a similar argument,

$$
\begin{aligned}
V_{i} & =U\left(z_{1}\right)+\cdots+U\left(z_{i-1}\right)+U\left(z_{i+1}\right)+\cdots+U\left(z_{k}\right) \\
& =U\left(y_{1}\right)+\cdots+U\left(y_{k-1}\right)
\end{aligned}
$$

Hence $U\left(y_{1}\right)+\cdots+U\left(y_{k-1}\right)=\bigcap_{i=1}^{k} V_{i}=\{0\}$, which is impossible. The result follows.

Theorem 7. $\quad \sum_{i=1}^{s} x_{i} \wedge y_{1} \in C_{s}^{2}(U)$ if and only if $\left(\left\{x_{1}, y_{1}, \cdots x_{s}, y_{s}\right\}\right.$ is independent.

Proof. If $\left\{x_{1}, y_{1}, \cdots, x_{s}, y_{s}\right\}$ is dependent, it is easy to show that $R\left(\sum_{i=1}^{s} x_{i} \wedge y_{i}\right) \leqq s-1$. It follows that the condition is necessary.

The converse follows easily from Theorem 6.
Corollary 8. Let $f=\sum_{i=1}^{s} x_{i} \wedge y_{i}$, and $\operatorname{dim}\left\langle x_{1}, y_{1}, \cdots, x_{s}, y_{s}\right\rangle$ $\langle 2 k, k \leqq s$. Then $R(f) \leqq k-1$.

We shall now direct our attention to the rank 2 subspaces of $\wedge^{2} U$.

Definition. A rank 2 subspace H in $\wedge^{2} U$ is a subspace whose nonzero members are in $C_{2}^{2}(U)$.

In this paper, we shall restrict our considerations to the case $\operatorname{dim} U=4$. It is clear from Theorem 7 that $C_{2}^{2}(U)$ is empty when $\operatorname{dim} U<4$.

Lemma 9. Let $f \in C_{2}^{2}(U)$ and let $\left\{y_{1}, \cdots, y_{4}\right\}$ be any basis of $U(f)$. Then f has a representation $f=y_{1} \wedge u+v \wedge w$, where $\langle u, v, w\rangle=$ $\left\langle y_{2}, y_{3}, y_{4}\right\rangle$.

Proof. Since $f \in \wedge^{2}\left\langle y_{1}, \cdots, y_{4}\right\rangle$, then

$$
\begin{aligned}
f & =\sum p(\omega) \boldsymbol{y}_{\omega},(\omega \in Q(2,1,4)), p(\omega) \in F, \\
& =y_{1} \wedge\left(\sum_{j=2}^{4} p(1, j) y_{j}\right)+\sum p(\alpha) \boldsymbol{y}_{\alpha} ; \quad(\alpha \in Q(2,2,4)),
\end{aligned}
$$

which is of the form $y_{1} \wedge u+v \wedge w$. It follows from Theorem 7 and its corollary, and the fact that $R(f)=2$ that

$$
\langle u, v, w\rangle=\left\langle y_{2}, y_{3}, y_{4}\right\rangle .
$$

Theorem 10. Let $\operatorname{dim} U=4$ and let H be a rank 2 subspace in $\wedge^{2} U$. Then $\operatorname{dim} H=1$, provided F is algebraically closed.

Proof. Let f be a nonzero member of H. Then f has a representation $f=x_{1} \wedge x_{2}+x_{3} \wedge x_{4}$ in $C_{2}^{2}(U)$. By Theorem 7,

$$
U=U(f)=\left\langle x_{1}, \cdots, x_{4}\right\rangle
$$

If f^{\prime} is any other nonzero member of H, then $U\left(f^{\prime}\right)=\left\langle x_{1}, \cdots, x_{4}\right\rangle$. By Lemma 9, $f^{\prime}=x_{1} \wedge u+v \wedge w,\langle u, v, w\rangle=\left\langle x_{2}, x_{3}, x_{4}\right\rangle$. Hence $\operatorname{dim}\langle v, w\rangle \bigcap\left\langle x_{3}, x_{4}\right\rangle \leqq 1$. Without loss of generality, we shall assume $x_{3} \in\langle v, w\rangle \bigcap\left\langle x_{3}, x_{4}\right\rangle$. Hence

$$
f^{\prime}=x_{1} \wedge u+x_{3} \wedge w^{\prime},\left\langle u, w^{\prime}\right\rangle \subset\left\langle x_{2}, x_{3}, x_{4}\right\rangle
$$

Let $u=\sum_{i=2}^{4} b_{i} x_{i} ; w^{\prime}=\sum_{i=2,4} d_{i} x_{i} ; b_{i}, d_{i} \in F$. Then for

$$
\begin{aligned}
\lambda \in F, z=\lambda f & +f^{\prime}=x_{1} \wedge\left(\lambda x_{2}+b_{2} x_{2}+b_{3} x_{3}+b_{4} x_{4}\right) \\
& +x_{3} \wedge\left(\lambda x_{4}+d_{2} x_{2}+d_{4} x_{4}\right)
\end{aligned}
$$

The condition that the vectors

$$
x_{1},\left(\lambda x_{2}+b_{2} x_{2}+b_{3} x_{3}+b_{4} x_{4}\right), x_{3},\left(\lambda x_{4}+d_{2} x_{2}+d_{4} x_{4}\right)
$$

be independent; i.e., $R(z)=2$, is equivalent to the condition that the determinant

$$
\Gamma\left(\lambda, f_{1}, f_{2}\right)=\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \lambda+b_{2} & b_{3} & b_{4} \\
0 & 0 & 1 & 0 \\
0 & d_{2} & 0 & \lambda+d_{4}
\end{array}\right| \quad b e
$$

nonzero. Now

$$
\Gamma\left(\lambda, f_{1}, f_{2}\right)=\lambda^{2}+\lambda\left(d_{4}+b_{2}\right)+\left(b_{2} d_{4}-d_{2} b_{4}\right)=g(\lambda) .
$$

Since u, w^{\prime} are independent, $\left(b_{2} d_{4}-d_{2} b_{4}\right) \neq 0$. Hence $g(\lambda)$ is a nontrivial polynomial in λ, and hence, for some nonzero λ in $F, g(\lambda)=0$; i.e., $\Gamma\left(\lambda, f_{1}, f_{2}\right)=0$. For such a $\lambda, R(z) \leqq 1$. It follows that dim $H=1$.

The above theorem is false when F is nonalgebraically closed. For example, the vectors

$$
f_{1}=x_{1} \wedge x_{2}+x_{3} \wedge x_{4}
$$

and

$$
f_{2}=x_{1} \wedge\left(x_{3}+x_{4}\right)+\left(x_{3}-x_{2}\right) \wedge x_{4}
$$

in $C_{2}^{2}(U)$, where $U=\left\langle x_{1}, \cdots, x_{4}\right\rangle, \operatorname{dim} U=4, F \equiv$ Reals, generate a 2-dimensional rank 2 subspace in $\wedge^{2} U$.

It is interesting to note that if F (nonalgebraically closed) has an irreducible quadratic polynomial $h(\lambda)$, and $\operatorname{dim} U=4$, then we can construct 2 independent vectors f_{1}, f_{2} in $C_{2}^{2}(U)$, which will generate a 2 -dimensional rank 2 subspace in $\wedge^{2} U$, and such that $\Gamma\left(\lambda, f_{1}, f_{2}\right)=$ $h(\lambda)$ (see Theorem 10). The construction is as follows:

Let $\operatorname{dim} U=4, U=\left\langle x_{1}, \cdots, x_{4}\right\rangle$. Let $h(\lambda)=\lambda^{2}+a_{1} \lambda+a_{0}$ be irreducible in F. The companion matrix of $h(\lambda)$ is

$$
B=\left[\begin{array}{cc}
0 & 1 \\
-a_{0} & -a_{1}
\end{array}\right] ; \quad \lambda I-B=\left[\begin{array}{cc}
\lambda & -1 \\
a_{0} & \lambda+a_{1}
\end{array}\right]
$$

Now

$$
\operatorname{det}(\lambda I-B)=\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \lambda & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & a_{0} & 0 & \lambda+a_{1}
\end{array}\right|=h(\lambda) \neq 0
$$

Taking this determinant to be $\Gamma\left(\lambda, f_{1}, f_{2}\right)$ corresponding to $z=\lambda f_{1}+f_{2}$, where $f_{1}, f_{2} \in C_{2}^{2}(U), \lambda \in F$, we have

$$
\begin{aligned}
& f_{1}=x_{1} \wedge x_{2}+x_{3} \wedge x_{4} \\
& f_{2}=x_{1} \wedge\left(-x_{4}\right)+x_{3} \wedge\left(a_{0} x_{2}+a_{1} x_{4}\right)
\end{aligned}
$$

The construction is complete. Thus, for example, if $F \equiv$ Rationals and $h(\lambda)=\lambda^{2}-2$, then

$$
f_{1}=x_{1} \wedge x_{2}+x_{3} \wedge x_{4}
$$

and

$$
f_{2}=x_{1} \wedge\left(-x_{4}\right)+(-2) x_{3} \wedge x_{2}
$$

and f_{1}, f_{2} generate a 2 -dimensional rank 2 subspace in $\wedge^{2} U$.
For the work in this paper, I am greatly indebted to Dr. R. Westwick for his generous assistance.

References

1. N. Bourbaki, Elements De Mathematique, Algebre, Chap. III, Algebre Multilineare, 1948.
2. W. V. D. Hodge, and D. Pedoe, Methods of algebraic geometry, Vol. I, Cambridge, 1947.
3. R. Westwick, Linear transformations on Grassmann spaces, Pacific J. Math. 14 (1964).

Received May 10, 1968.
University of British Columbia

