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A MODULAR TOPOLOGICAL LATTICE

DON E. EDMONDSON

The purpose of this paper is to present a construction of
a compact connected topological lattice which is modular and
not distributive. As a special case there will result the ex-
ample which is a two dimensional subset of Rz, not embed-
dable in R\

The existence of such an example is related to structure questions
in topological lattices considered by Dyer and Shields [3], Anderson
[1], and others.

The first step is to present a general method for constructing a
class of modular lattices. Let D denote a distributive lattice which
is a chain, S a nonempty set, and L the S-fold product lattice of D.
That is L = {/ | / : S-> D} and f ^ g if and only if f(s) ^ g(s) for
every seS. It is known that (L, <̂ ) is a distributive lattice with its
operations V and Λ characterized by [/ V g](s) = f(s) V g(s) and

[/ Λ g](s) = f(s) A g(s)

for every s e S. Define

M = {/ G L I there exists reS such t h a t s, t e S — {r} implies

f{s)^f(r) and f(s)=f(t)}.

For intuition about M and the arguments that follow, note that
M simply consists of all of the constant functions of L and the func-
tions of L which are essentially constant in the sense that they as-
sume but two values — the larger value at exactly one point.

If the order of L, g , is restricted to M, it will be established
through a sequence of lemmas that (M, ^ ) is a modular lattice. Re-
call a lattice (M, V, Λ) is modular if and only if for every α, b, c e M,
b ^ a implies that a A (b V c) = b V (& Λ c).

LEMMA 1. If feM and f is not constant, there exists a unique
r e S such that s, te S ~ {r} implies f(s) < /(r) and f(s) = f(t).

The proof of the lemma is immediate from the definition of ikf,
and consequently for fe M and not constant, define index f to be the
unique element described in Lemma 1.

LEMMA 2. (M, ^ ) is a sub A-semilattice of (L, ^ ) .

It suffices to show that if /, g e M, then / Λ g e M. If / and g are
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constant then / Λ g is constant and therefore in M. If / is constant
and g is not, let b = index g. Then s, t e S — {6} implies

[/ Λ g](s) = f(s) A 9(8) ̂  f(s) A gφ) = [f A g]φ)

and likewise [/ Λ g](s) = [/ Λ g](t) and thus / Λ g e M. If / and g
g are both not constant, let a = index / and b = index #. If α = 6,
then s , ίeS-{α} implies [fAg](s) ^ [/Λflr](α) and [/Λflr](8) = [/Λ0](ί).
If a Φ b, [/ Λ g](a) = /(α) Λ flr(α), [/ Λ g]φ) = /(δ) Λ g(6), and for

^ S - { α , i } [ / Λ g](x) = /(&) Λ flr(α) = [/ Λ g](a) A [f A g]φ) .

Then since D is a chain, [/Λflr](a?) - [/Λflf](α) or [f Ag]{x) = [fΛg]φ)
depending upon which is minimal and therefore / Λ g e M.

LEMMA 3. If a, 6, c are distinct elements of S and feM, then

f(a) A fφ) = fφ) A f(c) = f(c) A f(a).

The facts of the lemma are an immediate consequence of the de-
finition and is stated as a lemma for convenient reference.

DEFINITION. For /, geM define fVg:S-+D by the following
( i ) if / is constant or g is constant, or if / and g are both not

constant and index / = index g, then fVg=fVg,
(ii) if / and g are both not constant and index /Vdndex g, let

a = index / and b = index g, then

[/ V g](x) = f(x) V g(x) for x e {α, b}

[f V g](x) = [f(a) V g(a)\ A [fφ) V flr(δ)] for xeS- {a, b} .

L E M M A 4. If f, ge M, then
( 1 ) / V geM and fVg^fVg, and
(2) heM, f<ίh, g ^h implies f V g ^ h.

In case (i) of the definition of f\7g, easily f\/geM and the
other results are immediate from f\7g=fVg. In case (ii) let a —
index / and & = index g, then since D is a chain [f\7g](x) = [f\7g](a)
or [/V0](aO = [/V0](δ) for xeS-{a, &}. So in this case also fVgeM
and fVg\/g. Also relative to this case, if he M, f ^ h, and g tί h,
then /(#) V #(#) = [/ V ^](^) for # = α or x — b. But from Lemma 3,
x e S — {a, b} implies h(a) A hφ) ^ h(x) and thus for

xeS-{a,b} [fvg](x) = [fVg](a)Λ[f\7]φ) ^ h(a)Λhφ) ^ h(x) .

Therefore fVg^h.

LEMMA 5. Iff,g,heM,a, beS,aΦb, [f Vg](x) = h(x) forxe{a,b}
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a n d [f Vg](x) ^ h(a)Ah(b) = h(x) for x e S - {α, 6}, t h e n h = f V g.

From the hypothesis fVg^h and therefore from Lemma 4
fVg^h. But Λ(α) - [/ V g](a) ^ [/ V flr](α) and hφ)^[f V <?](&).
Then from Lemma 3, for x Φ a and x Φ b

h(x) = h(a) A h(b) ̂  [/ V g](a) Λ [/ V </](δ) ̂  [/ V g](x)

and h^f\/g.

THEOREM 1. (M, ^) isa modular lattice with operations V and A.

Lemmas 2 and 4 establish that (ikf, ^ ) is a lattice with opera-
tions V and Λ, it remains to establish that it is modular. Let
f,g,heM and f^g. It suffices to establish gΛ(f V h) <Ξ / V (gΛh)
since in any lattice / V (g A h) ^ g A (f V). The argument will be
a case argument.

If / v h - / V h, then

g A ( f V h) = g A ( f V h ) = f V (g A h ) ^ f V (g A h )

since L is itself modular and g A h e M allows Lemma 4 to apply.
If h^g, then / V h ^ g and g A (f V Λ) = f V λ - / V (g A h).

If f^h, then / ^ r̂ Λ h and ^ Λ (/ V h) = g A h = f V (g A h).
If / and h are not constant, a — index /, 6 = index g> aΦb, hΦg,

and fikh. Then /(&) < /(α) and λ(α) < h(b). Further, f(a) £ h(a) im-
plies f^h and therefore h(a)<f(a). Also h(b)^g(b) and h(a)<f(a) ^
r̂(α) implies h ^ g and therefore h ^ g implies #(&) < Λ(6). Therefore

in this case h{a) < f(a) ^ g(a) and /(&) ̂  g(6) < h(b). Hence

[flf A (/ V h)](a) = g(a) A [f(a) V h(a)] = /(α)

= /(α) V [flr(α) Λ h(a)] = If V (g A h)](a) .

Likewise

[g A (f V λ)](6) = flr(6) = [ / V ( i / Λ Λ)](6) .

If x e S - {a, 6}, then

[gΛ(fV h)](x) = g(x) A [f{a) V h(a)] A [/(&) V hφ)]

= g(x)Λf(a)Λh(b) = g(x)Ag(a)Af(a)Ah(b)

= g(b) A g(a) A f(a) A h(b) = f(a) A g(b)

= [g A {f V h)](a) A [g A (f V h)](b) .

But [fV(gΛ h)](x) ̂ [g A(fV h)](x) and g A (f V h) e M, therefore
by Lemma 5 g A (f V h) = f V (g A h).
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COROLLARY. If card S < 3 , M is a distributive lattice. If 3 ^ card
S and 2 ^ card D, then M is a modular nondistributive lattice.

If card S < 3, then M = L and M is distributive. If 3 ^ card S
and 2 <; card D, let sx, s2, s3 be three distinct elements of S and c<d
be two elements of D. Define /x, /2, / 3 by /<(«) = d if a? = s< and
f(x) = c for a e S - {sj. Also define # and k by #(s) = d for every
s G S and fe(s) - c for every seS. Then /x Λ f2 = /2 Λ /3 Λ Λ = fc and
/i V /, - /2 V / 3 = / 8 V Λ = flf and {/,, /2, /3, #, &} is a modular five sub-
lattice of M. Therefore M is not distributive [2].

At this stage the algebraic nature of M has been established, in
the section that follows the topological nature of M will be studied.
It will be assumed in the following that D is topological chain, that
is D is a Hausdorff topological space with the operations V and Λ
continuous [3]. If L is considered with the product topology, it is as
usual a topological lattice and M may be considered as a topological
space in the relative topology that it inherits from L. In this con-
text, the following theorem results.

THEOREM 2. If D is a topological chain, then
( 1 ) M is a closed subset of L,
( 2 ) M is compact if D is compact, and
( 3) M is connected if D is connected.

Since with card S ^ 2, M = L, it suffices to consider 3 ^ card S
and to establish (1) and (3).

( 1 ) L — M is open for if fίM, then / is not constant and there
exist distinct a,b,ceS such that f(b) < f(a) and f(b) < f(c). Then
since D is a chain f(b) < f(a) Λf(c). If there exists zeD such that
f(b)<z<f(a)Λf(c), define W ={geL\z< g(a), z < g(c), and g(b)<z)
and define W = {g e L\f(b) < g(a), fφ) < g(c), and gφ) < f(a) A f(c)}
if no such z exists. In either case, fe W, W is open, and W Π M=0.

( 3 ) If D is connected, consider the map T: D —> M where for
each de D T(d) — kd and kd is the constant function generated by d.
Clearly T is continuous and K the set of all constant functions is a
connected subset of M. If fe M — K, let a = index f, m = max /,
and r = min / define the map H from [r, m] = {x e D \ r ^ x ^ m} into
Λf by iϊ(a ) = / , where fx(a) = a? and /^(s) = r for s e S - {α}. Again
H is continuous and since [r, m] is connected then the range of H is
a connected subset of ilf containing / and intersecting K. Therefore
M is connected.

Note. It is clear that Λ will be continuous as an operation on
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M since it is continuous on L. Thus when D is a topological chain
M is a closed topological sub- Λ -semilattice of L. In order to study
the operation v relative to continuity, it is necessary to restrict S to
being finite, in view of the following lemma.

LEMMA 6. If D is a topological chain and 2 <Ξ card D and S is
infinite, then \7 is not continuous.

Let c < d in D and define k: S —> D by k{s) = c for every seS.
Then kvk = k. Let r e S and define Wr = {feM\ f(r) < d}; then
Wr is an open subset of M containing k. Let U be any open set of
M containing k, then there exist s19 s2, , sn distinct elements of S
and U19 U2, •••, Un open sets of D such that if W={feM\f(si)e Ut

for i = 1, 2, , ri\, keWaD. Now & e W implies

ce niUili = 1,2, ...,%} .

Since S is infinite there exist a,be S — {sί9 s2, , s%} such that α ^ δ .
Define /̂  and g by /ι(α) = ώ and h(x) = c if x e S — {a}, and g(b) = d
and flf(a ) = c if ^ e S — {&}. Therefore h, g e W and h \7 g ί Wr since
/& V ^ is the constant function defined by d. Therefore U V U<£ Wr

and V is not continuous.

DEFINITION. For S finite and 2 <: card S, denote max

/ = max {/(s) I s e S} , /(/) = {s e S | /(s) = max /} .

Then define f~:S->D by

( 1 ) if /(/) is not a unit set, /~(s) = m a x / for every s e S , and
( 2) if /(/) is a unit set, f~(s) = max / for s e / (/) , and

f-(s) = max {/(ί) \teS - /(/)} for s e S - I(f) .

LEMMA 7. // S is finite and 2 <J card S, then
(1) feL implies f~M and feMiΐ and only if / = / - ,
( 2 ) f £ / - , / — = / - , α^cί / ^ flr implies f~ ^ βr~,
( 3 ) f,geM implies fVg = (fV g)~.

The lemma is a straight forward catalog of the properties follow-
ing from the definition directly.

LEMMA 8. // S is finite, 2 <̂  card S and D is a topological chain,
then the function J: L —> M defined by J(f) — f~ is a retraction of
L onto M.
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From Lemma 7 it suffices to show that J is continuous. This is
done by letting U be an open set in D and reS, defining W =
{feM\f(r)e U} and showing that J~\W) is open. It is shown to be
open by case argument. Let g e L and g~ e W. If I(g) is not a unit
set, then g~~ is constant and max g e U. Define VΊ — {fe L \ f(s) e U
for every s e S}. Since S is finite, VΊ is open and contains g. Fur-
ther he V1 implies hr(r) e U. If I(g) — {r}, let b be an element of
S - {r}. Define V2 = {fe L | /(r) e I7i, and f(s) e U2 for S G S - {r}}
where Z7L = C7 Π {x e D \ z < x) and i72 = {x e D | a < 2} if there exist
zeD such that flπ(δ) < z < g~{r), and if there does not exist such an
element 2, E/i = J7 Γ) {α e Z> | g~(b) < }̂ and ί/2 = {x e D | α < ^~(r)}.
Then gre F2, F 2 is open and fe V2 implies f~(r) e U. The other case
is handled in a similar fashion.

THEOREM 3. If D is a topological chain and S is finite, then
(Mf ^) is a modular topological lattice which is nondistributive if
card S > 2 and card D > 1.

If card S = 1, M = L and therefore (ikf, ^ ) is a topological dis-
tributive lattice. If card S ^ 2, then Lemma 7 and 8 establish that
V is continuous since it is the composition of continuous maps. There-
fore (M, ^ ) is a topological lattice since Λ is continuous for every S.
Theorem 1 establishes the modularity of M while its corollary the
nondistributive nature of M when 3 ^ card S and 2 ^ card D.

DEFINITION. Let n be a positive integer and 3 <Ξ n, then let ikfn

denote the lattice constructed as the ikf above in the case where S =
{1,2, , n} and D = {xeR\0^x^l} with its usual order and the
operations of D being xVy = max {a;, y) and xf\y = min{x, 7/}. When
S is the set of positive integers and D as previously described let
Moo denote the lattice M constructed. Then the following results are
immediate.

THEOREM 4. For each positive integer n ^ 3, Mn is a compact
connected topological lattice which is modular and not distributive.

COROLLARY 1. ikf3 is a compact connected topological lattice, mo-
dular and not distributive, which is a two dimensional subset of Rz

that cannot be embedded in R2.

COROLLARY 2. M^ is a compact connected topological semilattice,
which is a modular lattice, and not a topological lattice.
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