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A MODULAR TOPOLOGICAL LATTICE

DoN E. EDMONDSON

The purpose of this paper is to present a construction of
a compact connected topological lattice which is modular and
not distributive. As a special case there will result the ex-
ample which is a two dimensional subset of R? not embed-
dable in R?2,

The existence of such an example is related to structure questions
in topological lattices considered by Dyer and Shields [3], Anderson
[1], and others.

The first step is to present a general method for constructing a
class of modular lattices. Let D denote a distributive lattice which
is a chain, S a nonempty set, and L the S-fold product lattice of D.
That is L={f|f:S— D} and f =g if and only if f(s) < g(s) for
every se S. It is known that (L, <) is a distributive lattice with its
operations v and A characterized by [f V ¢](s) = f(s) V g(s) and

[f A gl(s) = f(s) A g(s)

for every seS. Define
M = {f e L | there exists € S such that s, teS — {r} implies

fls) = fr) and  f(s) = f(O)} .

For intuition about M and the arguments that follow, note that
M simply consists of all of the constant functions of L and the func-
tions of L which are essentially constant in the sense that they as-
sume but two values — the larger value at exactly one point.

If the order of L, <, is restricted to M, it will be established
through a sequence of lemmas that (M, <) is a modular lattice. Re-
call a lattice (M, Vv, A) is modular if and only if for every a, b, ce M,
b < a implies that a A (b V ¢) =b V (¢ A ¢).

LemMA 1. If fe M and f is not constant, there exists a unique
re S such that s, teS — {r} tmplies f(s) < f(r) and f(s) = f(t).

The proof of the lemma is immediate from the definition of M,
and consequently for fe M and not constant, define index f to be the
unique element described in Lemma 1.

LEMMA 2. (M, £) is a sub A-semilattice of (L, <).

It suffices to show that if f,ge M, then f A ge M. If fand g are
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constant then f A g is constant and therefore in M. If f is constant
and g is not, let b = index g. Then s,t€ S — {b} implies

Lf A gl(s) = f(s) A g(s) = f(s) A\ g(b) = [f A 9](b)

and likewise [f A g1(s) = [f A g](t) and thus f A geM. If f and ¢
g are both not constant, let ¢ = index f and b = index g. If a = b,
then s, t € S — {a} implies [f A g](s) = [f Agl(a) and [f Agl(s)=[f Ag](?).
If a=#0b, [ A gl@) = fla) A g(a), [ A 9](b) = f(b) A g(b), and for

xeS —{a, B} [ A gl(@) = f(b) A 9(a) = [f A gl@) A L[F A gl®) .

Then since D is a chain, [f Agl(®) = [f Agl(a) or [fAgl(®) = [fAgl®)
depending upon which is minimal and therefore f A g€ M.

LEmMMA 3. If a, b, c are distinct elements of S and fe M, then
fla) A\ f(b) = f(b) A\ flc) = fle) A fa).

The facts of the lemma are an immediate consequence of the de-
finition and is stated as a lemma for convenient reference.

DEFINITION. For f, ge M define ¥ ¢g: S— D by the following

(i) if f is constant or ¢ is constant, or if f and ¢ are both not
constant and index f = index ¢, then fV g=fV g,

(ii) if f and ¢ are both not constant and index f=index g, let
a = index f and b = index g, then

[f V gl@) = f(@) v g(x) for wxe{a,b}
[f V gl@) = [f(@) V g@] A [f0) Vv g(d)] for xeS —{a,b}.

LEmMMA 4. If f, ge M, then
(1) fVgeMand fVg=fVyg, and
(2) heM, f<h, g=himplies fV g =< h.

In case (i) of the definition of fV g, easily fV ge M and the
other results are immediate from fV g = fVV g. In case (ii) let a =
index f and b=index g, then since D is a chain [fVgl(x) =[f Vgl(a)
or [fVgl(x)=[fVg]() for xe€ S—{a, b}. So in this case also fVge M
and £V g ¥V g. Also relative to this case, if he M, f<h, and g < h,
then f(x) \VV g(x) = [f V g]l(x) for © = a or x = b. But from Lemma 3,
xe€ S — {a, b} implies h(a) A h(b) < h(x) and thus for

xeS —{a, b} [[Vyl@) = [ VIS V]0b) = h(a) NR(b) = h(z) .
Therefore fV g < h.

LemmA 5. Iff,g,he M,a,be S, a+0b,[fVglx) = h(x) for x € {a, b}
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and [fV9l(®) < k(@) A\h() = h(x) for xe€S — {a, b}, then h = fV g.

From the hypothesis f\VV g < h and therefore from Lemma 4
fVg=h But hie)=[fVygle)=[fVgla) and AO)=[f V g](b).
Then from Lemma 3, for © # a and x == b

k@) = k(@) A\ k() = [V gl@) ALfV gld) = [f V gl(x)
and n < fVg.
THEOREM 1. (M, <) is a modular lattice with operations V and A.

Lemmas 2 and 4 establish that (M, <) is a lattice with opera-
tions V and A, it remains to establish that it is modular. Let
frg,heM and f<g. It suffices to establish gA(FfV k) < £V (gAh)
since in any lattice fV (g A h) < g A (f V). The argument will be
a case argument.

If fV h=fVh, then

INUSFVR=gN(VR=FVE@NN=FV(AR)

since L is itself modular and g A k€ M allows Lemma 4 to apply.

If h<g, then fVR=gand g A (fVh)=FVh=FfV(9ADh).
If f<h, then f<gAhand gA(fF VR =9gAh=FV(9Ah).

If £ and % are not constant, a=index f, b=index ¢, a+#b, h+g,
and f £ h. Then f(b) < f(a) and h(a) < h(b). Further, f(a) < h(a) im-
plies f < & and therefore h(a)<<jf(a). Also h(b)=g(b) and A(a)<f(a) <
g(a) implies & < g and therefore 7 £ g implies g(b) < A(b). Therefore
in this case h(a) < f(a) < g(a) and f(b) < g(b) < h(b). Hence

9 A (FV B)(@) = g(a) A [fla) V ka)] = fla)
= fla) V [g(a) A H(@)] =[fV (g A B)](@) .
Likewise
g A(F VRO =gb) =[f V(9 A RO .
If xeS — {a, b}, then
g A (FV B(=) = g@) A [fa) vV a)] A [(B) vV k(D)
= g@) A fl@) Ar(b) = g(x) Ag(a) A\ fla) \h(b)

= 9(b) A g(a) A fla) A 1(b) = fla) N 9(b)
=lg A (FV W@ Alg AV R)IO) .

But [fV (g AWE@Z[gA(fFV R and g A (FV k) e M, therefore
by Lemma 5 g A (fV h) = fV (g A\ h).
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COROLLARY. If card S<3, M is a distributive lattice. If 3=card
S and 2 < card D, then M is a modular nondistributive lattice.

If card S< 8, then M = L and M is distributive. If 3 <card S
and 2 < card D, let s, s,, s, be three distinct elements of S and c¢<d
be two elements of D. Define f,, fi f: by fi(®) =d if v =s; and
fx) = ¢ for xS — {s;}. Also define g and £ by g(s) = d for every
seS and k(s) = ¢ for every s€S. Then f,Afi=fiANfs A fi=Fk and
ALV S =LVAE=fLVi=g and {f,, 2, fs 9, k} is a modular five sub-
lattice of M. Therefore M is not distributive [2].

At this stage the algebraic nature of M has been established, in
the section that follows the topological nature of M will be studied.
It will be assumed in the following that D is topological chain, that
is D is a Hausdorff topological space with the operations \V and A
continuous [3]. If L is considered with the product topology, it is as
usual a topological lattice and M may be considered as a topological
space in the relative topology that it inherits from L. In this con-
text, the following theorem results.

THEOREM 2. If D s a topological chain, then
(1) M is a closed subset of L,

(2) M is compact tf D is compact, and

(38) M 1s connected if D tis connected.

Since with card S <2, M = L, it suffices to consider 8 < card S
and to establish (1) and (3).

(1) L—M is open forif f¢ M, then f is not constant and there
exist distinet a, b,ce S such that f(b) < f(a) and f(b) < f(c). Then
since D is a chain f(b) < f(a) A f(c). If there exists ze D such that
f)y<z< fla)A f(c), define W ={ge L |z < g(a), z < g(c), and g(b)<z}
and define W = {ge L| f(b) < g(a), f(b) < g(c), and g(b) < fla) A f(c)}
if no such z exists. In either case, fe W, W is open, and WnN M=g.

(3) If D is connected, consider the map 7T:D — M where for
each de D T(d) = k, and k, is the constant function generated by d.
Clearly T is continuous and K the set of all constant functions is a
connected subset of M. If feM — K, let ¢ = index f, m = max f,
and » = min f define the map H from [r, m]={xe D |r <z <m} into
M by H(x) = f, where f,(a¢) = 2 and f,(s) = r for se S — {a}. Again
H is continuous and since [#, m] is connected then the range of H is
a connected subset of M containing f and intersecting K. Therefore
M is connected.

Note. It is clear that A will be continuous as an operation on
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M since it is continuous on L. Thus when D is a topological chain
M is a closed topological sub- A -semilattice of L. In order to study
the operation V relative to continuity, it is necessary to restrict S to
being finite, in view of the following lemma.

LEMMA 6. If D s a topological chain and 2 < card D and S s
mnfinite, then N/ 1s mot continuous.

Let ¢ < d in D and define k: S— D by k(s) = ¢ for every se 8.
Then kV k =k. Let reS and define W, = {fe M| f(r) < d}; then
W, is an open subset of M containing k. Let U be any open set of
M containing k, then there exist s, s,, ---, s, distinct elements of S
and U, U,, ---, U, open sets of D such that if W={fe M| f(s;) e U,
for 1 =1,2,---,n}, ke Wc D. Now ke W implies

ce N{U;|i=1,2 -, m}.

Since S is infinite there exist a,be S —{s,, s;, -+, s,} such that a=b.
Define h and g by h(a) = d and h(z) = ¢ if xS — {a}, and ¢(b) = d
and g(x) = ¢ if xe S — {b}. Therefore h,ge W and n V g¢ W, since
h ¥V g is the constant function defined by d. Therefore UV Uz W,
and V is not continuous.

DEFINITION. For S finite and 2 < card S, denote max

f=max{f(s)|seS}, I(f)={seS|f(s) =max f}.
Then define f—: S— D by

(1) if I(f) is not a unit set, f~(s)=max f for every se .S, and
(2) 1if I(f) is a unit set, f~(s) = max f for seI(f), and

f7(s) =max{f(¢)|teS — I(f)} for seS — If).

LemMA 7. If S is finite and 2 < card S, then

(1) feL vmplies f~M and fe M if and only if f=f-,
(2) f=r~Hrf—=7"and f<g implies f~ =g,

(3) figeM vmplies f\V g=(fV 9.

The lemma is a straight forward catalog of the properties follow-
ing from the definition directly.

LEmMA 8. If S s finite, 2 < card S and D is a topological chain,
then the function J: L — M defined by J(f) = f~ is a retraction of
L onto M.
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From Lemma 7 it suffices to show that J is continuous. This is
done by letting U be an open set in D and re S, defining W =
{feM| f(r)e U} and showing that J (W) is open. It is shown to be
open by case argument. Let ge L and g-¢ W. If I(g) is not a unit
set, then g~ is constant and max ge U. Define V,={feL|f(s)eU
for every se S}. Since S is finite, V, is open and contains g. Fur-
ther he V, implies A=(r)e U. If I(g) = {r}, let b be an element of
S — {r}. Define V,={feL|f(r)eU, and f(s)e U, for seS — {r}}
where U, = UNn{reD|z<a} and U,={rxeD|x <z} if there exist
ze D such that ¢g=(b) < z < g~(r), and if there does not exist such an
element 2z, U, =UNn{xeD|g () <« and U,={xeD|xz < g (1)}
Then ge V,, V, is open and fe V, implies f~(r)e U. The other case
is handled in a similar fashion.

THEOREM 3. If D is a topological chain and S is finite, then
(M, <) is a modular topological lattice which is nondistributive if
card S > 2 and card D > 1.

If card S =1, M = L and therefore (M, <) is a topological dis-
tributive lattice. If card S = 2, then Lemma 7 and 8 establish that
V is continuous since it is the composition of continuous maps. There-
fore (M, <) is a topological lattice since A is continuous for every S.
Theorem 1 establishes the modularity of M while its corollary the
nondistributive nature of M when 3 < card S and 2 < card D.

DEFINITION. Let % be a positive integer and 3 < n, then let M,
denote the lattice constructed as the M above in the case where S=
{1,2,---,m} and D = {xe R|0 < o < 1} with its usual order and the
operations of D being xVy = max {z, ¥y} and £ Ay = min {x, y}. When
S is the set of positive integers and D as previously described let
M., denote the lattice M constructed. Then the following results are
immediate.

THEOREM 4. For each positive integer n =3, M, is a compact
connected topological lattice which is modular and mot distributive.

COROLLARY 1. M, is a compact connected topological lattice, mo-
dular and not distributive, which is a two dimensional subset of R®
that cannot be embedded in R*.

COROLLARY 2. M., is a compact connected topological semilatiice,
which 1s a modular lattice, and not a topological lattice.
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