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The main result is

THEOREM, If A is a simple Lie-admissible power-associative
ring with characteristic prime to six, and if A has an idem-
potent ¢ relative to which A has a Peirce decomposition such
that A,,=0, then either ¢ is a unity element of A or A = B,
where B is a three-dimensional algebra having a basis {e, x, ¥}
such that e?=e¢, ex=2, ye=y, xy=—yr=e and re=ey=x2=y*=0,

If A is a simple Lie-admissible power-associative ring then A be-
longs to a class of rings which includes associative rings, Lie rings,
commutative power-associative rings, Jordan rings, anti-flexible rings,
rings of type (v,d) and others. Lie rings do not have idempotent
elements, and simple (v, ) rings with an idempotent e == 1 have been
shown [2, 3, 4, 5, 6, 8] to be associative. Thus if A has an idem-
potent element e = 1 then A belongs to a class which includes rings
of the associative, commutative power-associative, and antiflexible
types. Assuming that A has an idempotent e satisfying,

(1) (6,6,3’7)2(6,37,6):(90,6,6):0,
suffices to establish a Peirce decomposition,
A:A11+A10+A01+A00y

where A;; = {vre A|ex = iz, xe = ja} for ¢,5 = 0,1. This assumption
eliminates the possibility that A is commutative, for then A4, = 4,, =0,
so [2] A= A,D A, and simplicity implies that A = A,;, hence ¢ is
a unity element for A.

The class of rings under consideration does contain members which
are not associative. Kosier [7] has given examples of simple Lie-
admissible power-associative finite-dimensional algebras, the so-called
anti-flexible algebras. These have the property that A = 4,, + A, in
every Peirce decomposition.

There are no rings with unity element, 1, which possess a Peirce
decomposition with respect to an idempotent ¢ = 1 in which A, = 0.
This is because 1 — e A,.

The algebra B of our theorem was introduced in [9]. It has the
property that B2 is a simple Lie algebra.

The associator, (z,v, ) = (xy)z — #(yz), and the commutator,
[z, y] = ®y — yx, are functions which, defined on any ring, are linear
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in each variable and related by the identity,

(2) [y, 2] + [yz, o] + [22,9] = (@, 9,2) + (¥, 2,2) + (2,2, 9) .
A Lie-admissible ring satisfies,

(3) [y — yx, 2] + [yz — 2y, 2] + [20 — 22, 9] = 0,

and a power-associative ring whose characteristic is prime to two
satisfies

(4) [vy + yx, 2] + [yz + 2y, %] + [20 + %2, 9] =0,
hence in the ring A the function

Hx,y,2) = (%,9,2) + (4,2, 2) + (2,2, 9)
=[xy, 2] + [yz, 2] + [22, ¥]

is identically zero. Also, the fourth-power-associativity identities
(«* x,2) =0 and (x,x,2*) = 0 may be linearized to yield functions
Pla, b, z,y) =3, (ab, z,y) and Q(a, b, z,y) = 3, (a, b, 2zy) which are
identically zero. The > here in both cases indicates a sum to be
taken over the twenty-four permutations of a, b, and y.

We will use - as well as juxtaposition in denoting products, with
juxtaposition taking precedence. Thus a-bc = a(bc).

LEMMA. Let A be a ring whose characteristic is prime to six
and in which the functions H, P and Q vanish identically. Suppose
A contains an idempotent e relative to which A has a Peirce decom-
position. If a,, denotes the component of an element a in the
module A, then

(5) vy =0,

(6) Tl + Yuu € Ay,

(7) xhe Ay,

(8) Tili; = (@alfss)is + @alis)ss € Ais + Ass
(9) Yii®s = @ilis)is € Ass

(10) Y5 = (Yi®i) i + (Usa)s; € Aj + Ays
(11) Tl = (Yiiis)is € Ay

(12) Tilis = Yaia; € Ai + Ay;

(13) %Y € A + Ajj

(14) @Y € As + Ay,
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(15) [A%, A + A + 4551 =0,

(16) [4i;4;5 A1 =0,

a7 [4::4;;, Ai] =0,

(18) [4;;4:, 4] =0,

(19) Qi Tiilis = Cilig @i = (1/2)(@i;* Yis)ss + (@islfijTis)is)
(20) @i @5l i = iige Oz = (1/2)(C 5 Ysi)ii + (Y5iltis50)ii)
(21) (@(@iY3i + Yi®in))e = (@i Yiodio + Ysilhia )i
and

(22) (i + Vi) @ii)is = (Yjir Qaii)ic + (CigY5ahas)sa «

Proof of the lemma. Identities (5), (6) and (7) arederived in [1]
using only the fact that the functions H, P and @ vanish identically.
All of the identities are obtained by relatively straightforward substi-
tution of elements into H, P and . Due to the excessive length of
many of the computations involved we leave the proofs to the reader.

Since our theorem hypothesizes that 4, = 0 the multiplicative pro-
perties stated in (8) through (14) of the preceding lemma can be more
compactly exhibited in our case by the module multiplication table:

Ay | Aw | Ay

Ay | Au | Ao | 0
®) A, | 0 | A, | A
Ay | An | An | Ay

We will henceforth make free use of the properties shown in this
table. Note also that (12) can be written

(24) [4i0 Au] = [Any Au] =0,

and (15) can be written

(25) [4%, A, + Ayl =44, A4, + A,]=0.

From (16) we have

(26) [40,4,, A1 =0,

and (19) through (22) specialize to

(27) Uiy B0 = Trlro* O = (1/2)(A010° Yso + @ilso* o)

(28) @y ToYor = ToYor* by = (1/2) (X0 Yoo + YorOui Tor)
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(29) @ (® Yoy + Yoris) = Cu%io* Yoo + Yoryy* Xo
and

(30) (%10Yor + Yor®10) s = Yor* A0 + Lio° Youlbyy »
respectively.

We assume throughout that e is not a unity element for A. We
will show

(31) (Ay Alu Au) = (Aus A’ Au) = (Alu Alu A) =0.

The submodule 4,, is a subring of A, and for ¢ % j, two of the
associators in H(x., Y., @) = (¥u, Yo, @iz) + Y, iy B0 + (A, @, Y1) = 0,
are equal to zero, hence all three are equal to zero. Thus it suffices
to show that A, is associative.

We assert that the submodule I = (A, 4,,, A4,) + (A, A,,, A)A,
is an ideal of A. We will use the fact that the function T'(a, %, y, d) =
(az, ¥, b) — (a, 2y, b) + (a, x, yb) — a(x, ¥, d) — (a, z, ¥)b is identically
zero in any nonassociative ring. Thus 0 = T(@n., X, Yu, b;;), With
m+n=1+7j =2 implies that A,(4,,4,,A,)< 1, and with m +n =2,
1+ 7 =1, implies that (A4,, 4., 4,) A;; =0, using the fact that
(A4,A,4;)=0. If m+n=1 and 2+ 5 =2 then we get
A,.(A, AL ALY =0, Thus (4,4, A0)A+ A(44,AL, A is in I
Furthermore,

(All? All? AII)AIL.A g ((A119 A119 A11)7 A117 A) + (A].l! All! AII)A g I ’
so IJA< I. Finally,

A'(Any A11y Au)Au g (A, (Auy All’ An)y Au)
+ A(Auy Au’ Au)'An EI + IAu gI y
and it follows that AISI. Hence I is an ideal of A. If A = I then
¢ is a unity element for A, which contradicts our assumption, There-
fore I = 0 and in particular (A4,, 4,,, 4,)) = 0, which proves (31).

We assert next that A%, = 4% =0. First we prove that J= A%
A% A, is an ideal of A. We have

AmA;og A10A11 =0 ) A01A%0 = A%oAm gAuAm =0

by using (25), and A4, A% = A}A,, S A}, by (27). Thus ALA+ AA} S J.
Moreover, (A%LA)A, S AA, =0, and, by using (31), A, (4%4,) =
(A,A%)A, S ALA, = J. Letting a,, = u,w, in (29) we have

UiV10o(T1Yor + Yor®i0) = (UgV0° Tuo)Yor + (You* UsoV10) %10

But 9o UiV = UVie Yo = 0 by using (25), so
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(UsV10* Tuo)Yor = UnoVso(@iYor + YouZio) € ALAL S J

and therefore A%A,,-A, < J. Finally, H(u,v,, %, Yo) = 0 implies

Yo UiV10* 10) = (UrVi0* Tuo)Yor € AAsr A EJ

Thus J is an ideal of A.
Since A is simple either J=0 or J =A4. If J= A then 4% =A4,,
A, A,= A, and A, = 0. Thus we may write

e = Et‘, LTI
But o
0 = H(xy, i, Y1) = [, Yuol + [B1Y10, Tio] + [¥16%10, o]
BiYio + 2210Y10° o

Il

and

0 = (1/4)P(2.0, %10y Y10y Yio)

= (%o, Y10y Y10) T 2(T16Y 105 Tr0y Y10) T 2(Z1Y105 Y10y Tuo) + (Yo, Troy To)
Tl 10 Yo — TioYho + 2(TioY10 T0)Yi0 — 2200Y10* BiYro T 2(10Y10" Y10) 1o
— 20.0Y10° Y110 + Yoo Too — Yio%lo »

Il

so using the fact that A% is in the center of the associative subring
A, we obtain x}yl = —2(x,y,)’. It follows that
(Y1) = (1/4)(90?0?/%0)2 = (1/4)aty =0

since a}, = x,,+x% = 0. But then we have

, ¢ o \3t+1
e= et = (Saiur) =0,
=1

since every term in the multinomial expansion must contain, for some
j, a factor (x{{y{¥)* = 0. From this contradiction we conclude that
J = 0, hence 4% = 0. Then also A} = (4%)* = 0, where 4 is a ring
which is anti-isomorphic to A.

We may now replace (23) with the table,
A, | Aw | Aa
All All AIO 0
A10 0 0 Au
AOI AOL All 0

(32)

We will continue to make free use of these multiplicative properties
in the sequel. Of special interest are the identities,

(33) Yor*20li0 = —Zo* Tl

and
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(34) Y1Ro1* Ly = —2u%10* Y10 »

obtained by using the function H and (32).
We show next that the subring A,, is itself a simple ring.
Let B,, be any nonzero ideal of A,, and consider the submodule,

L = Bu + BuAm + onBu + A01'B11A10
+ A01B11'A10 + (AOL'BuAlo)Au + An(AoiBu'Alo) .

We will show that L is an ideal of A.
Evidently, AB,, + B,A< L. Also B A, A, S A,A, =0; and by
(31), A11'B11A10 = AuBn'AmanAmgL- By (24)9

Am'BnAw = Bquo'Amg A?o =0.

Noting that B, 4,,-4, < A, B,,-A,,+B,<= L by (29), and A,-B,A,S L
by the definition of L, we see that A-B A, + B,A,-AS L. More-
over, A-A,B, + A,B,,-AS L from the left-right symmetry of our
identities. Similarly, verification that the fourth and sixth terms in
in the definition of L yield elements of L when multiplied on the left
or right by an element of A implies the same result for the fifth and
seventh terms.

By (26), [Am‘BnAmyAu] = [AonAmy Au] = 0. Since (A01'B11A10)A11gL
by definition of L, it follows that A, (A4, -B.A4,) &L also. Clearly,
Alo(Am'Bqu);AwAu:Oy and by (34)y (A01'BnAlo)AngwAm‘BuAlogL-
Also (A,,-B,A)A, S A4, A, = 0, and by (30) and (33),

A(u(Am 'B11A10) s A01(Bu + Alo' A01B11) S L
+ Am(Alo‘AmBu) S L + onBu’onAxo S L.

Thus A(Am‘BuAlo) + (Am’BuAlo)AgL-
Since [A,-B, A, A lS[Andn, ALl = 0 it suffices to show that
(Am'BuAm)An'A and A'Au(AOL'BuAlo) are in L. By (31)9

(Am * Bqu)Au ‘A= (Am * BuAm) * AuA S (A01 * BuAlo)A S L

and A°A11(A01'B11A10) = AAu'(Am'BnAlo) S A(Am'Bqu) S L. This com-
pletes the verification that L is an ideal of A.

Since A is simple and 0 = B, < L we must have L = A, hence
BllAIO = AlO and Ao1B11 = Am-

If bu € Bn then bu(anwlo)'ym + ymbu'a’uxlo € Bn and

(01,010 Yor + You(b11011) - € By,

by (29). Taking the difference of these two elements and using (31)
gives (Yo.b)ay % — Yub,y a2, € B,. Since A,B, = A, it follows that
(AOIY All! AlO) ; Bll'

If the intersection of all proper ideals of A, is the zero ideal,
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then (A4,, 4., A,,) = 0. Hence, by (31) and (33),

zm(au * xwym) = 203y TyoYon = — ym(zmau ° xm)
—Yor(Ror* @3 %10) = Z01(A11 %10 You) ;

Il

ie., 2u(@y, %, Yo) = 0.

Since the set N, of elements of A,, which annihilate 4, is an
ideal of A,, and since 0 = A4, N,, = A,, it follows that N, = 0, hence
(4,, A, Ay) = 0. Thus A4, = (B, A4, = B,(4,,4,) = B, and, by
using (29), 4,4,, = (4,B.)A, < B,,A,,-A,, + B, S B,,. This implies that
the ideal L is given by L = B,, + B,,A,, + A, B,,. Since A is simple,
B,= A, and Ay, is simple.

The other possibility is that A, contains a unique minimal ideal,
M, If (4., 4, A,) =0 we may proceed as above. Thus assume
that there exists a nonzero element b, of the form (y,, a,, ®,). Since
(Ay, A,,, Ay) S B,, for every nonzero ideal B,, of A,, we see that
b,e M,. Moreover b, is in the center of A, by (26). Since M, is
minimal, M, = b,A,,. If b,c, = 0 then, since A,M, = A,, Ayc, =
AyA,b.c, =0, Thus ¢,e N,=0; i.e., no nonzero element of A, an-
nihilates b,,. Hence b% == 0 and M,, = bi A,,. Then there exists b,,€ 4,
such that b, =b%d,, or b,(e—b,d,) =0. It follows that e=>b,d,, € M,
hence M,, = A,, is simple in this case also.

By (31)’ (33)7 and (26)9 zm(xloym'au):(zm'xwym)an:_(ym'zmxlo)au:
—Yau(oZi0 @) = —Yol@i*Zu) = — Yol 2a@in = 2T Yuly,); 1.€., 202y,
Yo, &) = 0, or (A4,, Ay, A1) EN,, = 0. Then (30) reduces to ¥,&,-a,;,=
Yor* Ay %y, Which, in view of (26), implies that 4,4, is an ideal of A,,.
If A4,,A,, = 0 then (34) implies that A4,,4,, annihilates A,,, hence 4,4, =
0. But then we easily see from (32) that both A, and A4, are ideals
of A, hence A, = A, = 0, which implies that ¢ is an unity element
for A = A,,. From this contradiction we conclude that A4,A4, = A,
hence by (26), A,, is commutative and therefore a field.

Let A,, = ®e. To prove that A, is one-dimensional over @, choose
0 +#« 2z, € A, such that 2,4, = A4,, = ®e. Suppose z,x,, = e. Then for
every ¥, € A, we have, by (33), ¥, = —2u %Yy = @2, for ac®. Also
A,, = A% is one-dimensional over Q.

We now have A, = @e, A,, = @2 and A, = Oy. Since (34) gives
(xy + yx)x = 0 and zy + yx € @e, we must have vy + yx = 0. Without
loss of generality we may take xy = —yx = e, which completes the
proof of the theorem.

This paper is based on a portion of the authors doctoral disser-
tation written under the direction of Professor Erwin Kleinfeld, to
whom the greatest appreciation is expressed. Thanks are also due the
referee who indicated modifications in the original proof allowing for
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an extension to rings of the theorem originally proved only for finite-
dimensional algebras.
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