MATRICES WITH PRESCRIBED CHARACTERISTIC POLYNOMIAL AND A PRESCRIBED SUBMATRIX-II

Graciano N. de Oliveira

Abstract

Let $A=\left[a_{i j}\right]$ be an $n \times n$ complex matrix and $f(\lambda)$ be a polynomial with complex coefficients of degree $n+k$ and leading coefficient $(-1)^{n+k}$. In the present paper we solve the following problem: under what conditions does there exist an $(n+k) \times(n+k)$ complex matrix B of which A is the submatrix standing in the top left-hand corner and such that $f(\lambda)$ is its characteristic polynomial?

In [3] we solved this problem for $k=1$. It can be seen that from our Theorem 2 in [3] the solution of the general case $(k>1)$ comes out very easily when A is real symmetric (hermitian) and B is required to be of the same kind. This last problem had actually already been solved by Ky Fan and G. Pall (see [1]). Now we will prove the following

Theorem. Let A be an $n \times n$ complex matrix whose distinct characteristic roots are $w_{i}(i=1, \cdots, t)$. Let us suppose that in the Jordan normal form of A, w_{i} appears in r_{i} distinct diagonal blocks of orders $v_{1}^{(i)}, \cdots, v_{r_{i}}^{(i)}$ respectively. Let us assume that $v_{1}^{(i)} \leqq \cdots \leqq v_{r_{i}}^{(i)}$. Let $\theta_{i}=\sum_{j=1}^{r_{i}-k} v_{j}^{(i)}$, with $\theta_{i}=0$ if $r_{i}-k<1$. There exists an $(n+k) \times(n+k)$ complex matrix B having A in the top left-hand corner and with $f(\lambda)$ as characteristic polynomial if and only if $f(\lambda)$ is divisible by $\prod_{i=1}^{t}\left(w_{i}-\lambda\right)^{\theta_{i}}$.

First we prove that the condition is necessary. Let T be a nonsingular matrix that transforms A into its Jordan normal form J : $T A T^{-1}=J$, with $J=\operatorname{diag}\left(J_{1}, \cdots, J_{m}\right)$. The block J_{i} will be of the form

and we will suppose that J_{i} is of type $s_{i} \times s_{i}$. Let

$$
B=\left[\begin{array}{cc}
A & X_{1} \\
Y_{1} & S_{1}
\end{array}\right]
$$

where X_{1}, Y_{1}, S_{1} are blocks of type $n \times k, k \times n, k \times k$ respectively. Let us assume that $f(\lambda)=\operatorname{det}\left(B-\lambda E_{n+k}\right)$ where E_{n+k} denotes the identity matrix of order $n+k$. If

$$
T_{\mathrm{\imath}}=\left[\begin{array}{cc}
T & 0 \\
0 & E_{k}
\end{array}\right]
$$

we will have

$$
B_{1}=T_{1} B T_{1}^{-1}=\left[\begin{array}{cc}
J & X \\
Y & S
\end{array}\right]
$$

with $X=T X_{1}, Y=Y_{1} T^{-1}$ and $S=S_{1}$. As $i \neq j$ implies $w_{i} \neq w_{j}$ all we need to prove is that $\operatorname{det}\left(B_{1}-\lambda E_{n+k}\right)$ is divisible by $\left(w_{i}-\lambda\right)^{\theta_{i}}$ $(i=1, \cdots, t)$. We will do it for $\left(w_{1}-\lambda\right)^{\theta_{1}}$ as the proof is the same for the other cases. We can assume that w_{1} appears in the first u diagonal blocks of J and that $s_{1} \leqq s_{2} \leqq \cdots \leqq s_{u}$. Let us expand $\operatorname{det}\left(B_{1}-\lambda E_{n+k}\right)$ by Laplace rule in terms of its first $\sum_{i=1}^{u} s_{i}$ rows. The necessity of the condition of the theorem will be proved if we show that all the nonzero minors contained in the first $\sum_{i=1}^{u} s_{i}$ rows have determinants which are divisible by $\left(w_{1}-\lambda\right)^{\theta_{1}}$. These minors are $\operatorname{diag}\left(J_{1}-\lambda E^{(i)}, \cdots, J_{u}-\lambda E^{(u)}\right)\left(E^{(i)}\right.$ denotes the identity matrix of the same order as J_{i}) and all the minors obtained from this one by replacing no more than k of its columns by the same number of columns taken from the matrix which remains after suppressing the last $\sum_{i=u+1}^{m} s_{i}$ rows of X. As $J_{i}(i=1, \cdots, u)$ are diagonal matrices with w_{1} in the principal diagonal our assertion follows.

Let us now prove that the condition is sufficient. For this we need an auxiliary proposition.

Lemma. Let A be an $n \times n$ complex matrix whose distinct characteristic roots are w_{1}, \cdots, w_{t}. Let us assume that in the Jordan normal form of $A, w_{i}(i=1, \cdots, t)$ appears in r_{i} diagonal blocks of orders $v_{1}^{(i)} \leqq v_{2}^{(i)} \leqq \cdots \leqq v_{r_{i}}^{(i)}$. Then it is possible to construct a matrix A_{1} of type $(n+1) \times(n+1)$ containing A in its top left-hand corner and such that: (α) The characteristic polynomial of A_{1} is $\prod_{i=1}^{t}\left(w_{i}-\lambda\right)^{\sigma_{i}} \varphi(\lambda)$, where $\sigma_{i}=\sum_{j=1}^{r_{i}-1} v_{j}^{(i)}$ and $\varphi(\lambda)$ is any polynomial in λ of degree $\rho=n+1-\sum_{i=1}^{t} \sigma_{i}$, leading coefficient $(-1)^{\rho}$ and such that $\varphi\left(w_{i}\right) \neq 0(i=1, \cdots, t)$. (β) In the Jordan normal form of A_{1} the characteristic root w_{i} appears in exactly $r_{i}-1$ diagonal blocks of orders

$$
v_{1}^{(i)}, \cdots, v_{r_{i}-1}^{(i)} \quad(i=1, \cdots, t)
$$

Proof. We can suppose, without loss of generality, that A is in its Jordan normal form.

The matrix A_{1}, if it exists, will have the form

$$
A_{1}=\left[\begin{array}{ccccc}
J_{1} & 0 & \cdots & 0 & X_{1} \\
0 & J_{2} & \cdots & 0 & X_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & J_{m} & X_{m} \\
Y_{1} & Y_{2} & \cdots & Y_{m} & q
\end{array}\right]
$$

with $X_{i}=\left[x_{1}^{i} \cdots x_{s_{i}}^{i}\right]^{T}$ and $Y_{i}=\left[y_{1}^{i} \cdots y_{s_{i}}^{i}\right]$. The x_{j}^{i} and y_{j}^{i} must satisfy

$$
\sum_{j=1}^{h+1}(-1)^{s_{i}-h} y_{j}^{i} x_{j+s_{i}-1-h}^{i}=b_{i h} \quad\left(h=0, \cdots, s_{i}-1\right)
$$

where the $b_{i h}$ are calculated by a process we give in [3]. Moreover, we recall that for each i we can give to the $x_{j}^{i}\left(j=1, \cdots, s_{i}\right)$ arbitrary nonzero values. Let us suppose that we have fixed all the matrices X_{1}, \cdots, X_{m} with $x_{j}^{i} \neq 0\left(i=1, \cdots, m ; j=1, \cdots, s_{i}\right)$. We can assume that w_{i} appears in the diagonal blocks $J_{u_{i-1}+1}, \cdots, J_{u_{i}-1}$, $J_{u_{i}}\left(i=1, \cdots, t ; u_{0}=0, u_{t}=m\right)$ of orders $s_{u_{i-1}+1} \leqq \cdots \leqq s_{u_{i}-1} \leqq s_{u_{i}}$ respectively. Let us now choose $Y_{u_{i-1}+1}=0, \cdots, Y_{u_{i}-1}=0(i=1, \cdots, t)$. Let

$$
A_{2}=\left[\begin{array}{lcccr}
J_{u_{1}} & 0 & \cdots & 0 & X_{u_{1}} \\
0 & J_{u_{2}} & \cdots & 0 & X_{u_{2}} \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

We have

$$
\operatorname{det}\left(A_{1}-\lambda E_{1}\right)=\prod_{i=1}^{t}\left(w_{i}-\lambda\right)^{\sigma_{i}} \operatorname{det}\left(A_{2}-\lambda E_{2}\right)
$$

where $\sigma_{i}=\sum_{j=u_{i-i}+1}^{u_{i} s_{j}} s_{j}$ and E_{j} is the identity matrix of the same order as $A_{j}(j=1,2)$. The matrix $\operatorname{diag}\left(J_{u_{1}}, J_{u_{2}}, \cdots, J_{u_{t}}\right)$ is obviously a nonderogatory matrix and so according to the corollary to Theorem 1 in [3] we can choose $Y_{u_{1}}, \cdots, Y_{u_{t}}$ and q such that

$$
\operatorname{det}\left(A_{2}-\lambda E_{2}\right)=\varphi(\lambda)
$$

With this choice A_{1} has the required characteristic polynomial. Let us find the diagonal blocks of the Jordan normal form of A_{1} corresponding to $w_{i}(i=1, \cdots, t)$. This amounts to finding all the elementary divisors of A of the form $\left(\lambda-w_{i}\right)^{r}(i=1, \cdots, t)$. Let us consider, for example, the case $i=1$ as the other cases can be treated in the same fashion. A_{1} can be written in the form

$$
A_{1}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]
$$

where $A_{11}=\operatorname{diag}\left(J_{1}, \cdots, J_{u-1}\right)$ and the matrix A_{22} has not the characteristic root w_{1}. Therefore (see [2], p. 85) the elementary divisors of A_{1} of the form $\left(\lambda-w_{1}\right)^{\text {r }}$ are exactly

$$
\left(\lambda-w_{1}\right)^{s_{1},},\left(\lambda-w_{1}\right)^{s_{2}}, \cdots,\left(\lambda-w_{1}\right)^{s_{u-1}}
$$

and the proof of the lemma is concluded.
Let us now complete the proof of the theorem.
Let

$$
\theta_{i h}=\sum_{j=1}^{r_{i}-h} v_{i}^{\left.()^{2}\right)} \quad\left(h=1, \cdots, k-1 ; \theta_{i h}=0 \text { if } r_{i}-h<1\right) .
$$

Let

$$
f_{j}(\lambda)=\prod_{i=1}^{t}\left(w_{i}-\lambda\right)^{s_{i j} \mathcal{P}_{j}(\lambda) \quad(j=1, \cdots, k-1), ~, ~}
$$

where the $\varphi_{j}(\lambda)$ are polynomials in λ chosen arbitrarily but with the following properties:
(α) The leading coefficient and the degree of $\varphi_{j}(\lambda)(j=1, \cdots, k-1)$ are such that $f_{j}(\lambda)$ has degree $n+j$ and leading coefficient $(-1)^{n+j}$
(β) For $j=1, \cdots, k-1$ the roots of $\varphi_{j}(\lambda)$ are distinct, $\varphi_{j}\left(w_{i}\right) \neq 0(i=1, \cdots, t)$ and if $\varphi_{j}(\hat{\xi})=0$ then $\varphi_{i+1}(\hat{\xi}) \neq 0$.

Obviously there are infinitely many possibilities of choice for the $\varphi_{j}(\lambda)(j=1, \cdots, k-1)$.

Because of the lemma we can border A with a row (below) and a column (on the right hand side) to obtain a matrix A_{1} with characteristic polynomial $f_{1}(\lambda)$ and such that in its Jordan normal form $w_{i}(i=1, \cdots, t)$ appears in exactly $r_{i}-1$ diagonal blocks whose orders are $v_{1}^{(i)}, \cdots, v_{r_{i}-1}^{(i)}$. Now we can border A_{1} with another row (below) and a column (on the right hand side) in such a way that we obtain a matrix A_{2} with $f_{2}(\lambda)$ as characteristic polynomial and such that in the Jordan normal form of A_{2} the characteristic root $w_{i}(i=1, \cdots, t)$ appears in exactly $r_{i}-2$ diagonal blocks of orders $v_{1}^{(i)}, \cdots, v_{r_{i}-2}^{(i)}$. We can continue in this fashion up to the matrix A_{k-1}. Using now Theorem 1 of [3] with A_{k-1}, the proof is complete.

In an $(n+k) \times(n+k)$ matrix any principal minor of type $n \times n$ can be brought to the top left-hand corner by a permutation of rows and the same permutation of columns. This remark combined with the Theorem above solves the following problem: under what conditions does there exist an $(n+k) \times(n+k)$ complex matrix B of which A is the principal minor contained in the rows of orders i_{1}, \cdots, i_{n}
$\left(1 \leqq i_{1}<\cdots<i_{n} \leqq n+k\right)$ and such that $f(\lambda)$ is its characteristic polynomial?

References

1. Ky Fan and Gordon Pall, Imbedding conditions for hermitian and normal matrices, Canad. J. Math. 9 (1957), 298-304.
2. Gantmacher, The theory of matrices, Vol. II, New York, 1964.
3. Oliveira, Matrices with prescribed characteristic polynomial and "a" prescribed submatrix (submitted to Pacific J. Math.)

Received May 10, 1968.
Universidade de Coimbra
Coimbra, Portugal

