MATRICES WITH PRESCRIBED CHARACTERISTIC POLYNOMIAL AND A PRESCRIBED SUBMATRIX-II

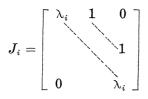
GRACIANO N. DE OLIVEIRA

Let $A = [a_{ij}]$ be an $n \times n$ complex matrix and $f(\lambda)$ be a polynomial with complex coefficients of degree n + k and leading coefficient $(-1)^{n+k}$. In the present paper we solve the following problem: under what conditions does there exist an $(n + k) \times (n + k)$ complex matrix B of which A is the submatrix standing in the top left-hand corner and such that $f(\lambda)$ is its characteristic polynomial?

In [3] we solved this problem for k = 1. It can be seen that from our Theorem 2 in [3] the solution of the general case (k > 1)comes out very easily when A is real symmetric (hermitian) and B is required to be of the same kind. This last problem had actually already been solved by Ky Fan and G. Pall (see [1]). Now we will prove the following

THEOREM. Let A be an $n \times n$ complex matrix whose distinct characteristic roots are w_i $(i = 1, \dots, t)$. Let us suppose that in the Jordan normal form of A, w_i appears in r_i distinct diagonal blocks of orders $v_1^{(i)}, \dots, v_{r_i}^{(i)}$ respectively. Let us assume that $v_1^{(i)} \leq \dots \leq v_{r_i}^{(i)}$. Let $\theta_i = \sum_{j=1}^{r_i-k} v_j^{(i)}$, with $\theta_i = 0$ if $r_i - k < 1$. There exists an $(n + k) \times (n + k)$ complex matrix B having A in the top left-hand corner and with $f(\lambda)$ as characteristic polynomial if and only if $f(\lambda)$ is divisible by $\prod_{i=1}^{t} (w_i - \lambda)^{\theta_i}$.

First we prove that the condition is necessary. Let T be a nonsingular matrix that transforms A into its Jordan normal form J: $TAT^{-1} = J$, with $J = \text{diag } (J_1, \dots, J_m)$. The block J_i will be of the form



and we will suppose that J_i is of type $s_i \times s_i$. Let

$$B = \left[egin{array}{cc} A & X_1 \ Y_1 & S_1 \end{array}
ight]$$

where X_1 , Y_1 , S_1 are blocks of type $n \times k$, $k \times n$, $k \times k$ respectively. Let us assume that $f(\lambda) = \det (B - \lambda E_{n+k})$ where E_{n+k} denotes the identity matrix of order n + k. If

$$T_{\iota}=\left[egin{array}{cc} T&0\0&E_k\end{array}
ight]$$
 ,

we will have

$$B_{\scriptscriptstyle 1} = \ T_{\scriptscriptstyle 1} B \, T_{\scriptscriptstyle 1}^{\scriptscriptstyle -1} = \left[egin{array}{cc} J & & X \ Y & & S \end{array}
ight]$$

with $X = TX_1$, $Y = Y_1T^{-1}$ and $S = S_1$. As $i \neq j$ implies $w_i \neq w_j$ all we need to prove is that det $(B_1 - \lambda E_{n+k})$ is divisible by $(w_i - \lambda)^{\theta_i}$ $(i = 1, \dots, t)$. We will do it for $(w_1 - \lambda)^{\theta_1}$ as the proof is the same for the other cases. We can assume that w_1 appears in the first udiagonal blocks of J and that $s_1 \leq s_2 \leq \dots \leq s_u$. Let us expand det $(B_1 - \lambda E_{n+k})$ by Laplace rule in terms of its first $\sum_{i=1}^{u} s_i$ rows. The necessity of the condition of the theorem will be proved if we show that all the nonzero minors contained in the first $\sum_{i=1}^{u} s_i$ rows have determinants which are divisible by $(w_1 - \lambda)^{\theta_1}$. These minors are diag $(J_1 - \lambda E^{(i)}, \dots, J_u - \lambda E^{(u)}) (E^{(i)}$ denotes the identity matrix of the same order as J_i) and all the minors obtained from this one by replacing no more than k of its columns by the same number of columns taken from the matrix which remains after suppressing the last $\sum_{i=u+1}^{m} s_i$ rows of X. As J_i $(i = 1, \dots, u)$ are diagonal matrices with w_1 in the principal diagonal our assertion follows.

Let us now prove that the condition is sufficient. For this we need an auxiliary proposition.

LEMMA. Let A be an $n \times n$ complex matrix whose distinct characteristic roots are w_1, \dots, w_i . Let us assume that in the Jordan normal form of A, w_i $(i = 1, \dots, t)$ appears in r_i diagonal blocks of orders $v_1^{(i)} \leq v_2^{(i)} \leq \dots \leq v_{r_i}^{(i)}$. Then it is possible to construct a matrix A_1 of type $(n + 1) \times (n + 1)$ containing A in its top left-hand corner and such that: (a) The characteristic polynomial of A_1 is $\prod_{i=1}^{t}(w_i - \lambda)^{\sigma_i}\varphi(\lambda)$, where $\sigma_i = \sum_{j=1}^{r_i-1}v_j^{(i)}$ and $\varphi(\lambda)$ is any polynomial in λ of degree $\rho = n + 1 - \sum_{i=1}^{t}\sigma_i$, leading coefficient $(-1)^{\rho}$ and such that $\varphi(w_i) \neq 0$ $(i = 1, \dots, t)$. (b) In the Jordan normal form of A_1 the characteristic root w_i appears in exactly $r_i - 1$ diagonal blocks of orders

$$v_{{}^{(i)}}^{(i)},\,\cdots,\,v_{r_i-1}^{(i)}$$
 $(i=1,\,\cdots,\,t)$.

Proof. We can suppose, without loss of generality, that A is in its Jordan normal form.

The matrix A_{i} , if it exists, will have the form

$$A_{1} = \left[egin{array}{cccccc} J_{1} & 0 & \cdots & 0 & X_{1} \ 0 & J_{2} & \cdots & 0 & X_{2} \ & \cdots & \cdots & \cdots & 0 \ 0 & 0 & \cdots & J_{m} & X_{m} \ & Y_{1} & Y_{2} & \cdots & Y_{m} & q \end{array}
ight]$$

with $X_i = [x_1^i \cdots x_{s_i}^i]^T$ and $Y_i = [y_1^i \cdots y_{s_i}^i]$. The x_j^i and y_j^i must satisfy

$$\sum_{j=1}^{h+1} (-1)^{s_i-h} y_j^i x_{j+s_i-1-h}^i = b_{ih} \qquad (h=0,\,\cdots,\,s_i-1)$$

where the b_{ik} are calculated by a process we give in [3]. Moreover, we recall that for each *i* we can give to the x_j^i $(j = 1, \dots, s_i)$ arbitrary nonzero values. Let us suppose that we have fixed all the matrices X_1, \dots, X_m with $x_j^i \neq 0$ $(i = 1, \dots, m; j = 1, \dots, s_i)$. We can assume that w_i appears in the diagonal blocks $J_{u_{i-1}+1}, \dots, J_{u_i-1}$, J_{u_i} $(i = 1, \dots, t; u_0 = 0, u_t = m)$ of orders $s_{u_{i-1}+1} \leq \dots \leq s_{u_i-1} \leq s_{u_i}$ respectively. Let us now choose $Y_{u_{i-1}+1} = 0, \dots, Y_{u_i-1} = 0$ $(i = 1, \dots, t)$. Let

$$A_2 = \left[egin{array}{ccccc} J_{u_1} & 0 & \cdots & 0 & X_{u_1} \ 0 & J_{v_2} \cdots & 0 & X_{u_2} \ \cdots & \cdots & \cdots & \cdots \ 0 & 0 & \cdots & J_{v_t} & X_{u_t} \ Y_{u_1} & Y_{u_2} \cdots & Y_{u_t} & q \end{array}
ight].$$

We have

$$\det (A_1 - \lambda E_1) = \prod_{i=1}^t (w_i - \lambda)^{\sigma_i} \det (A_2 - \lambda E_2)$$

where $\sigma_i = \sum_{j=u_{i-i}+1}^{u_{i-1}-1} s_j$ and E_j is the identity matrix of the same order as A_j (j = 1, 2). The matrix diag $(J_{u_1}, J_{u_2}, \dots, J_{u_t})$ is obviously a nonderogatory matrix and so according to the corollary to Theorem 1 in [3] we can choose Y_{u_1}, \dots, Y_{u_t} and q such that

$$\det\left(A_{\scriptscriptstyle 2}-\lambda E_{\scriptscriptstyle 2}
ight)=arphi(\lambda)$$
 .

With this choice A_i has the required characteristic polynomial. Let us find the diagonal blocks of the Jordan normal form of A_i corresponding to w_i $(i = 1, \dots, t)$. This amounts to finding all the elementary divisors of A of the form $(\lambda - w_i)^{\gamma}$ $(i = 1, \dots, t)$. Let us consider, for example, the case i = 1 as the other cases can be treated in the same fashion. A_i can be written in the form

665

$$A_{\scriptscriptstyle 1} = \left[egin{array}{cc} A_{\scriptscriptstyle 11} & A_{\scriptscriptstyle 12} \ 0 & A_{\scriptscriptstyle 22} \end{array}
ight]$$

where $A_{11} = \text{diag}(J_1, \dots, J_{u-1})$ and the matrix A_{22} has not the characteristic root w_1 . Therefore (see [2], p. 85) the elementary divisors of A_1 of the form $(\lambda - w_1)^{\gamma}$ are exactly

$$(\lambda - w_1)^{s_1}, (\lambda - w_1)^{s_2}, \cdots, (\lambda - w_1)^{s_{u-1}}$$

and the proof of the lemma is concluded.

Let us now complete the proof of the theorem. Let

$$heta_{_{ih}} = \sum\limits_{_{j=1}}^{r_i - h} v_{_j}^{_{(i)}} \qquad (h = 1, \cdots, k-1; \, heta_{_{ih}} = 0 \, \, ext{if} \, \, r_i - h < 1) \, .$$

Let

$$f_j(\lambda) = \prod_{i=1}^t (w_i - \lambda)^{i_{ij}} \varphi_j(\lambda) \qquad (j = 1, \dots, k-1) ,$$

where the $\varphi_j(\lambda)$ are polynomials in λ chosen arbitrarily but with the following properties :

(a) The leading coefficient and the degree of $\varphi_j(\lambda)$ $(j = 1, \dots, k-1)$ are such that $f_j(\lambda)$ has degree n + j and leading coefficient $(-1)^{n+j}$

(β) For $j = 1, \dots, k-1$ the roots of $\varphi_j(\lambda)$ are distinct, $\varphi_j(w_i) \neq 0$ $(i = 1, \dots, t)$ and if $\varphi_j(\xi) = 0$ then $\varphi_{j+1}(\xi) \neq 0$.

Obviously there are infinitely many possibilities of choice for the $\varphi_j(\lambda)$ $(j = 1, \dots, k - 1)$.

Because of the lemma we can border A with a row (below) and a column (on the right hand side) to obtain a matrix A_1 with characteristic polynomial $f_1(\lambda)$ and such that in its Jordan normal form w_i $(i = 1, \dots, t)$ appears in exactly $r_i - 1$ diagonal blocks whose orders are $v_1^{(i)}, \dots, v_{r_i-1}^{(i)}$. Now we can border A_1 with another row (below) and a column (on the right hand side) in such a way that we obtain a matrix A_2 with $f_2(\lambda)$ as characteristic polynomial and such that in the Jordan normal form of A_2 the characteristic root w_i $(i = 1, \dots, t)$ appears in exactly $r_i - 2$ diagonal blocks of orders $v_1^{(i)}, \dots, v_{r_i-2}^{(i)}$. We can continue in this fashion up to the matrix A_{k-1} . Using now Theorem 1 of [3] with A_{k-1} , the proof is complete.

In an $(n + k) \times (n + k)$ matrix any principal minor of type $n \times n$ can be brought to the top left-hand corner by a permutation of rows and the same permutation of columns. This remark combined with the Theorem above solves the following problem: under what conditions does there exist an $(n + k) \times (n + k)$ complex matrix B of which A is the principal minor contained in the rows of orders i_1, \dots, i_n

 $(1 \leq i_1 < \cdots < i_n \leq n+k)$ and such that $f(\lambda)$ is its characteristic polynomial?

References

1. Ky Fan and Gordon Pall, Imbedding conditions for hermitian and normal matrices, Canad. J. Math. 9 (1957), 298-304.

2. Gantmacher, The theory of matrices, Vol. II, New York, 1964.

3. Oliveira, Matrices with prescribed characteristic polynomial and a prescribed submatrix (submitted to Pacific J. Math.)

Received May 10, 1968.

UNIVERSIDADE DE COIMBRA COIMBRA, PORTUGAL