EXTENDING BOUNDED HOLOMORPHIC FUNCTIONS FROM CERTAIN SUBVARIETIES OF A POLYDISC

Herbert Alexander

Let E be a subvariety of the unit polydisc

$$
U^{N}=\left\{\left(z_{1}, \cdots, z_{N}\right) \in \boldsymbol{C}^{N}:\left|z_{i}\right|<1,1 \leqq i \leqq N\right\}
$$

such that E is the zero set of a holomorphic function f on U^{v}, i.e., $E=Z(f)$ where $Z(f)=\left\{z \in U^{N}: f(z)=0\right\}$. This amounts to saying that E is a subvariety of pure dimension $N-1$. In [2] Walter Rudin proved that if E is bounded away from the torus $T^{N}=\left\{\left(z_{1}, \cdots, z_{N}\right) \in \boldsymbol{C}^{N}:\left|z_{i}\right|=1,1 \leqq i \leqq N\right\}$, then there is a bounded holomorphic function F on U^{N} such that $E=Z(F)$. Call such a subvariety E, that is, a pure $N-1$ dimensional subvariety of U^{N} bounded from T^{N}, a Rudin variety. We are interested in the following question: When is it possible to extend every bounded holomorphic function on a Rudin variety E to one on U^{N} ? Examples show this is not always possible. We will say that a pure $N-1$ dimensional subvariety E of U^{N} is a special Rudin variety if there exists an annular domain $Q^{N}=\left\{\left(z_{1}, \cdots, z_{N}\right) \in \boldsymbol{C}^{N}: r<\left|z_{i}\right|<1,1 \leqq i \leqq N\right\}$ for some $r(0<r<1)$ and a $\delta>0$ such that
(i) $E \cap Q^{N}=\varnothing$ and
(ii) if $1 \leqq k \leqq N$ and $\left(z^{\prime}, \alpha, z^{\prime \prime}\right) \in\left(Q^{k-1} \times U \times Q^{N-k}\right) \cap E$ and $\left(z^{\prime}, \beta, z^{\prime \prime}\right) \in\left(Q^{k-1} \times U \times Q^{N-k}\right) \cap E$ and $\alpha \neq \beta$, then $|\alpha-\beta| \geqq \delta$. Obviously (i) implies that a special Rudin variety is a Rudin variety. We have the

Theorem. If E is a special Rudin variety in U^{N}, then there exists a bounded linear transformation $T: H^{\infty}(E) \rightarrow H^{\infty}\left(U^{N}\right)$ (where H^{∞} is the corresponding Banach space of bounded holomorphic functions under sup norm) which extends each bounded holomorphic function on E to one on U^{N}.

Remark. The proof of the theorem is a modification of the proof in [2] of Rudin's theorem: the changes reflecting the fact that we are dealing with an additive problem while Rudin's was of a multiplicative nature. I am further indebted to Professor Rudin for some comments (on a preliminary version of this paper) which led to improvement in the hypothesis of the theorem.

The following lemma is well-known and easy to prove.
Lemma 1. If $0<r<1$ and $Q=\{\lambda \in C: r<|\lambda|<1\}$ and

$$
h(\lambda)=\sum_{-\infty}^{\infty} a_{n} \lambda^{n}, h_{1}(\lambda)=\sum_{-\infty}^{-1} a_{n} \lambda^{n}
$$

for $\lambda \in Q$, then

$$
\left\|h_{1}\right\|_{Q} \leqq K\|h\|_{Q}
$$

where $K(>1)$ is a constant depending only on r.

If h is holomorphic on $Q^{N}=\left\{\left(z_{1}, \cdots, z_{N}\right): r<\left|z_{i}\right|<1,1 \leqq i \leqq N\right\}$ then h has a Laurent expansion

$$
\begin{equation*}
h\left(z_{1}, z_{2}, \cdots, z_{N}\right)=\sum a\left(n_{1}, n_{2}, \cdots, n_{N}\right) z_{1}^{n_{1}} z_{2}^{n_{2}} \cdots z_{N}^{n_{N}} \tag{1}
\end{equation*}
$$

Following [2], we define $\pi_{j} h, 1 \leqq j \leqq N$, to be the holomorphic function on Q^{N} whose Laurent series is obtained by deleting in (1) all terms in which $n_{j} \geqq 0$. Lemma 1 implies

Lemma 2. $\left\|\pi_{j} h\right\|_{Q^{N}} \leqq K\|h\|_{Q^{N}}$.
Proof of the theorem. Since E is a subvariety of U^{N} of pure dimension $N-1$, there exists by [1, p. 251] a function f holomorphic on U^{N} such that at each point of U^{N} the germ of f generates the ideal of germs of holomorphic functions which vanish on the germ of E at the given point. In particular, $E=Z(f)$. We will show that $\partial f / \partial z_{k} \neq 0$ on $\left(Q^{k-1} \times U \times Q^{N-k}\right) \cap E$ for $1 \leqq k \leqq N$. We give the proof for $k=1$, the other cases are identical. Let $\left(\alpha, \alpha^{\prime}\right) \in\left(U \times Q^{N-1}\right) \cap E$. Now f is regular in the first coordinate [1, p.13] at (α, α^{\prime}) since otherwise $f\left(\zeta, \alpha^{\prime}\right)$ vanishes in a neighborhood of α and hence for $|\zeta|<1$ and so $E=Z(f) \supseteqq\left\{\left(\zeta, \alpha^{\prime}\right):|\zeta|<1\right\}$, contradicting (i) in the definition of a special Rudin variety. Thus we can apply the Weierstrass preparation theorem and write in some neighborhood of (α, α^{\prime}), $f=\Omega p$ where Ω is invertible and p is a Weierstrass polynomial. Factor p into primes: $p=p_{1}^{e_{1}} \cdots p_{t}^{o_{t}}$ where p and the p_{i} 's are of the form

$$
(\zeta-\alpha)^{n}+a_{n-1}\left(\zeta^{\prime}\right)(\zeta-\alpha)^{n-1}+\cdots+a_{0}\left(\zeta^{\prime}\right)
$$

for $\left(\zeta, \zeta^{\prime}\right)$ near $\left(\alpha, \alpha^{\prime}\right)$ with $a_{j}\left(\alpha^{\prime}\right)=0$. Now the degree of each p_{i} must be equal to 1 since otherwise there would exist $\zeta_{n}^{\prime} \rightarrow \alpha^{\prime}$ with ζ_{n}^{\prime} off the discriminant locus of some p_{i} and so there would exist $\alpha_{n} \neq \beta_{n}$ near α with $p_{i}\left(\alpha_{n}, \zeta_{n}^{\prime}\right)=0=p_{i}\left(\beta_{n}, \zeta_{n}^{\prime}\right)$ and thus $\left(\alpha_{n}, \zeta_{n}^{\prime}\right)$ and $\left(\beta_{n}, \zeta_{n}^{\prime}\right)$ are in $\left(U \times Q^{N-1}\right) \cap E$, but $\zeta_{n}^{\prime} \rightarrow \alpha^{\prime}$ implies $\alpha_{n} \rightarrow \alpha$ and $\beta_{n} \rightarrow \alpha$ and so $\left|\alpha_{n}-\beta_{n}\right| \rightarrow 0$, contradicting (ii). A similar argument also using (ii) shows that there cannot be more than one p_{i} and so $f=\Omega p_{1}^{e_{1}}$ near (α, α^{\prime}). Finally, since the germ of f generates the ideal of E at $\left(\alpha, \alpha^{\prime}\right), e_{1}$ must be equal to 1 . Thus $f\left(\zeta, \zeta^{\prime}\right)=\Omega\left(\zeta, \zeta^{\prime}\right)\left(\zeta-\alpha+a_{0}\left(\zeta^{\prime}\right)\right)$ and $\partial f / \partial \zeta\left(\alpha, \alpha^{\prime}\right)=\Omega\left(\alpha, \alpha^{\prime}\right) \neq 0$ as required.

Now by Theorem 1 of [2] applied to $E=Z(f)$ there is a bounded holomorphic function F on U^{N} such that $E=Z(F)$. Examination of the
construction in [2] shows that $1 / F$ is bounded on Q^{N} since $F=f_{1} e^{g-g_{1}}$ on Q^{N} and $1 / f_{1}$ and $\left|\operatorname{Re}\left(g-g_{1}\right)\right|$ are bounded on Q^{N}. We will show that there is an $\varepsilon>0$ such that $\left|\partial F / \partial z_{k}\right|>\varepsilon$ on $\left(Q^{k-1} \times U \times Q^{N-k}\right) \cap E$ for $1 \leqq k \leqq N$. We do this for $k=1$, the finitely many other cases are identical. From [2], $F=f e^{g}$ for some g and so $\partial f / \partial z_{1} \neq 0$ on $\left(U \times Q^{N-1}\right) \cap E$ implies $\partial F / \partial z_{1} \neq 0$ there. Now for $z^{\prime} \in Q^{N-1}$

$$
z^{\prime} \rightarrow \frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{\partial F / \partial z_{1}\left(\zeta, z^{\prime}\right)}{F\left(\zeta, z^{\prime}\right)} d \zeta
$$

is a continuous integer-valued function and so is a constant m_{1} giving the number of zeros for $F\left(\cdot, z^{\prime}\right)$ in U. Since these zeros are the points of $\left(U \times Q^{N-1}\right) \cap E$ and $\partial F / \partial z_{1} \neq 0$ there, it follows that the m_{1} zeros $\alpha_{1}\left(z^{\prime}\right), \cdots, \alpha_{m_{1}}\left(z^{\prime}\right)$ are distinct simple zeros. By (ii) then, $\left|\alpha_{i}\left(z^{\prime}\right)-\alpha_{j}\left(z^{\prime}\right)\right| \geqq \delta$ for $i \neq j$. Write $F\left(\cdot, z^{\prime}\right)=B H$, where B is the Blaschke product with zeros at $\alpha_{1}\left(z^{\prime}\right), \cdots, \alpha_{m_{1}}\left(z^{\prime}\right)$. Now since $1 / F$ is bounded on $Q^{N} 1 / H$ is bounded on U. But on $E, \partial F / \partial z_{1}=\partial B / \partial z_{1} \cdot H$ and since

$$
\left|\alpha_{i}\left(z^{\prime}\right)-\alpha_{j}\left(z^{\prime}\right)\right| \geqq \delta, \partial B / \partial z_{1}
$$

is bounded from zero on E by some constant depending on δ, and as H is also bounded from zero independently of z^{\prime}, it follows that $\partial F / \partial z_{1}$ is bounded from zero on $\left(U \times Q^{N-1}\right) \cap E$.

Let $d=\operatorname{dist}\left(E, Q^{N}\right)$ which we may assume is positive by increasing r if need be. Let g be a bounded holomorphic function on E. We shall extend g to a bounded function on U^{N}. By the general OkaCartan theory [1], there is a holomorphic extension G of g to $U^{N} ; G$ need not be bounded. Since $F \neq 0$ on Q^{N}, we may define a function h_{1} on $U \times Q^{N-1}$ as follows: Let $\left(z_{1}, z^{\prime}\right) \in U \times Q^{N-1}$. Choose a circle Γ about 0 lying in Q and enclosing z_{1} with positive orientation and set

$$
h_{1}\left(z_{1}, z^{\prime}\right)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{G\left(\zeta, z^{\prime}\right) / F\left(\zeta, z^{\prime}\right)}{\zeta-z_{1}} d \zeta
$$

h_{1} is clearly independent of the choice of Γ and holomorphic on $U \times Q^{N-1}$. We claim that $G / F-h_{1}$ is bounded on Q^{N}. Let $\left(z_{1}, z^{\prime}\right) \in Q^{N}$ where $z_{1} \in Q$, $z^{\prime} \in Q^{N-1}$. Let $\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{m_{1}}$ be small circles about $\alpha_{1}\left(z^{\prime}\right), \cdots, \alpha_{m_{1}}\left(z^{\prime}\right)$, the zeros of $F\left(\cdot, z^{\prime}\right)$. Then the Cauchy integral formula reads

$$
(G / F)\left(z_{1}, z^{\prime}\right)=\frac{1}{2 \pi i} \int_{r-r_{1}-\cdots r_{m_{1}}} \frac{G\left(\zeta, z^{\prime}\right) / F\left(\zeta, z^{\prime}\right)}{\zeta-z_{1}} d \zeta .
$$

Therefore

$$
\left(G / F-h_{1}\right)\left(z_{1}, z^{\prime}\right)=-\sum_{1}^{m_{1}} \frac{1}{2 \pi i} \int_{\Gamma_{k}} \frac{G\left(\zeta, z^{\prime}\right) / F\left(\zeta, z^{\prime}\right)}{\zeta-z_{1}} d \zeta
$$

Clearly for $r_{k}=$ radius of Γ_{k},

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\Gamma_{k}} \frac{G\left(\zeta, z^{\prime}\right) / F\left(\zeta, z^{\prime}\right)}{\zeta-z_{1}} d \zeta \\
= & \frac{1}{2 \pi i} \int_{\left(\zeta-\alpha_{k}\left(z^{\prime}\right) \mid=r_{k}\right.} \frac{G\left(\zeta, z^{\prime}\right)}{\zeta-z_{1}} \frac{\zeta-\alpha_{k}\left(z^{\prime}\right)}{F\left(\zeta, z^{\prime}\right)-F\left(\alpha_{k}\left(z^{\prime}\right), z^{\prime}\right)} \frac{d \zeta}{\zeta-\alpha_{k}\left(z^{\prime}\right)} \\
& \rightarrow \frac{\text { as } r_{k} \rightarrow 0 .}{\left(\alpha_{k}\left(z^{\prime}\right)-z_{1}\right) \frac{\partial F}{\partial \zeta_{1}}\left(\alpha_{k}\left(z^{\prime}\right), z^{\prime}\right)} \quad
\end{aligned}
$$

So letting the radii of the Γ_{k} go to zero we get

$$
\left(G / F-h_{1}\right)\left(z_{1}, z^{\prime}\right)=-\sum_{k=1}^{m_{1}} \frac{g\left(\alpha_{k}\left(z^{\prime}\right), z^{\prime}\right)}{\left(\alpha_{k}\left(z^{\prime}\right)-z_{1}\right) \frac{\partial F}{\partial \zeta_{1}}\left(\alpha_{k}\left(z^{\prime}\right), z^{\prime}\right)} .
$$

Since $\left(\alpha_{k}\left(z^{\prime}\right), z^{\prime}\right) \in\left(U \times Q^{N-1}\right) \cap E$, recalling the significance of d and ε we get

$$
\left\|G / F-h_{1}\right\|_{Q^{N}} \leqq \frac{m_{1}\|g\|_{E}}{d \varepsilon}
$$

In the same way for each $i, 1<i \leqq N$ we have an integer m_{i} and a function h_{i} holomorphic on $Q^{i-1} \times U \times Q^{N-i}$ such that

$$
\left\|G / F-h_{i}\right\|_{Q^{N}} \leqq \frac{m_{i}\|g\|_{E}}{d \varepsilon}
$$

Now let $m=\max \left\{m_{i}: 1 \leqq i \leqq N\right\}$ and let $A=m / d \varepsilon$. Subtracting in the above, we get $\left\|h_{1}-h_{i}\right\|_{Q^{N}} \leqq 2 A\|g\|_{E}$. Now following [2] closely, set $h=\left(1-\pi_{1}\right)\left(1-\pi_{2}\right) \cdots\left(1-\pi_{N}\right) h_{1}$. Since $\pi_{i} h=0, h$ extends (uniquely) to a holomorphic function on U^{N}. Since h_{j} is holomorphic on

$$
Q^{3-1} \times U \times Q^{N-j}, \pi_{j} h_{j}=0
$$

and so $\pi_{j} h_{1}=\pi_{j}\left(h_{1}-h_{j}\right)$ and therefore by Lemma 2 ,

$$
\left\|\pi_{j} h_{1}\right\|_{Q^{N}}=\| \pi_{j}\left(h_{1}-h_{j}\left\|_{Q^{N}} \leqq K\right\| h_{1}-h_{j}\left\|_{Q^{N}} \leqq 2 K A\right\| g \|_{E} .\right.
$$

Now, since $h-h_{1}=-\sum \pi_{i} h_{1}+\sum \pi_{i} \pi_{j} h_{1}-+\cdots$ and since we get by induction and by use of Lemma 2 that $\left\|\pi_{i_{1}} \pi_{i_{2}} \cdots \pi_{i_{S}} h_{1}\right\|_{Q^{N}} \leqq 2 K^{S} A\|g\|_{E}$, it follows that $\left\|h-h_{1}\right\|_{Q^{N}} \leqq B A\|g\|_{E}$ where B depends only on K. Now consider $\bar{G}=G-F h . \quad \bar{G}$ is holomorphic on U^{N} and extends g since G does. On $Q^{x}, \bar{G}=F\left(G / F-h_{1}\right)+F\left(h_{1}-h\right)$. Therefore $\|\bar{G}\|_{Q^{N}} \leqq\|F\|_{U^{N}} A\|g\|_{E}+\|F\|_{U^{N}} B A\|g\|_{E}$. Thus \bar{G} is bounded on U^{N} and $\|\bar{G}\|_{U^{N}} \leqq \gamma\|g\|_{E}$ where $\gamma=A(1+B)\|F\|_{U^{N}}$ is independent of g.

Next we show that \bar{G} does not depend on the choice of G made at the beginning of the construction. Suppose \widetilde{G} were another not necessarily bounded) extension of g to U^{N}. As above we get

$$
\widetilde{h}_{1}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\widetilde{G} / F}{\zeta-z_{1}} d \zeta
$$

But then on $U \times Q^{N-1}$

$$
\begin{equation*}
h_{1}-\widetilde{h}_{1}=\frac{1}{2 \pi i} \int \frac{(G-\widetilde{G}) / F}{\zeta-z_{1}} d \zeta \tag{2}
\end{equation*}
$$

Since for $z^{\prime} \in Q^{N-1},(G-\widetilde{G})\left(\cdot, z^{\prime}\right)$ vanishes at $\alpha_{1}\left(z^{\prime}\right), \cdots, \alpha_{m_{1}}\left(z^{\prime}\right)$ and since $F\left(\cdot, z^{\prime}\right)$ has simple zeros and only at these points, $(G-\widetilde{G}) / F\left(\cdot, z^{\prime}\right)$ is holomorphic on U and the right hand side of (2) equals $(G-\widetilde{G}) / F$ and so on $U \times Q^{N-1}$

$$
\begin{equation*}
h_{1}-\widetilde{h}_{1}=(G-\widetilde{G}) / F \tag{3}
\end{equation*}
$$

Since the left hand side of (3) is holomorphic on $U \times Q^{N-1}$, so is the right and consequently $(G-\widetilde{G}) / F=\left(1-\pi_{1}\right)((G-\widetilde{G}) / F)$ on Q^{N}. In the same way we see that for each $j,(G-\widetilde{G}) / F=\left(1-\pi_{j}\right)((G-\widetilde{G}) / F)$ on Q^{N}. Therefore on Q^{N} we have

$$
(G-\widetilde{G}) / F=\prod_{j=1}^{N}\left(1-\pi_{j}\right)(G-\widetilde{G}) / F=\prod_{j=1}^{N}\left(1-\pi_{j}\right)\left(h_{1}-\widetilde{h}_{1}\right)=h-\widetilde{h}
$$

Thus $G-F h=\widetilde{G}-F \widetilde{h}$ on Q^{N} and so on U^{N}. Since the extensions thus coincide, we have a well-defined map $T: H^{\infty}(E) \rightarrow H^{\infty}\left(U^{N}\right)$ such that $\|T(g)\|_{U^{N}} \leqq \gamma\|g\|_{E}$.

To see that T is linear, let g and \widetilde{g} be bounded holomorphic functions on E and let λ be a complex number. Let G and \widetilde{G} respectively be arbitrary holomorphic extensions to U^{N}. Let $\widetilde{h}_{1}, h_{1}, \tilde{h}_{1}$ and $\widetilde{h}, h, \tilde{h}$ be the h_{1} and the h for $G+\lambda \widetilde{G}, G$ and \widetilde{G} respectively. Then

$$
\begin{aligned}
\widetilde{h}_{1} & =\frac{1}{2 \pi i} \int \frac{(G+\lambda \widetilde{G}) / F}{\zeta-z_{1}} d \zeta \\
& =\frac{1}{2 \pi i} \int \frac{G / F}{\zeta-z_{1}} d \zeta+\lambda \cdot \frac{1}{2 \pi i} \int \frac{\widetilde{G}}{\zeta-z_{1}} d \zeta=h_{1}+\lambda \widetilde{h}_{1}
\end{aligned}
$$

and $\widetilde{h}=\Pi\left(1-\pi_{j}\right) \widetilde{h}_{1}=\left[\Pi\left(1-\pi_{j}\right)\right]\left(h_{1}+\lambda \widetilde{h}_{1}\right)=h+\lambda \widetilde{h}$. Therefore

$$
\begin{aligned}
T(g+\lambda \widetilde{g}) & =(G+\lambda \widetilde{G})-F(h+\lambda \widetilde{h}) \\
& =(G-F h)+\lambda(\widetilde{G}-F \widetilde{h})=T(g)+\lambda T(\widetilde{g})
\end{aligned}
$$

Example. Let E be the Rudin variety in U^{2} given by $E=$ $Z\left(\left(z_{2}-\frac{1}{2}\right)\left(z_{1} z_{2}-\frac{1}{2}\right)\right)$. Then E is the disjoint union of $Z\left(z_{2}-\frac{1}{2}\right)$ and $Z\left(z_{1} z_{2}-\frac{1}{2}\right)$. Let $g \in H^{\infty}(E)$ be given by

$$
g \left\lvert\, Z\left(\left(z_{2}-\frac{1}{2}\right)=0 \quad \text { and } \quad g \left\lvert\, Z\left(z_{1} z_{2}-\frac{1}{2}\right)=1\right.\right.\right.
$$

Then g admits no bounded holomorphic extension to U^{2}. For if G were a bounded extension of g to U^{2} we would have for $z \in U, z$ near 1 ,

$$
\begin{aligned}
1= & G\left(z, \frac{1}{2 z}\right)-G\left(z, \frac{1}{2}\right)=\frac{1}{2 \pi i} \int_{|\zeta|=1} G(z, \zeta)\left(\frac{1}{\zeta-\frac{1}{2 z}}-\frac{1}{\zeta-\frac{1}{2}}\right) d \zeta \\
& =\left(\frac{1}{2 z}-\frac{1}{2}\right) \frac{1}{2 \pi i} \int_{|\zeta|=1} \frac{G(z, \zeta)}{\left(\zeta-\frac{1}{2 z}\right)\left(\zeta-\frac{1}{2}\right)} d \zeta
\end{aligned}
$$

But as $z \rightarrow 1$, the integral is bounded and $(1 / 2 z)-(1 / 2) \rightarrow 0$, a contradiction.

References

1. Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.
2. Walter Rudin, Zero-sets in polydiscs, Bull. Amer. Math. Soc. 73 (1967), 580-583.

Received January 8, 1968. The research for this paper war partially supported by the following contracts: NONR 222 (85) and NONR 3656 (08).

University of Michigan

