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IDEAL STRUCTURE IN GENERALIZED
GROUP ALGEBRAS

KJELD B. LAURSEN

We study the algebra L'(G, A) of Bochner-integrable func-
tions from a locally compact topological group G to a Banach
algebra A. First we characterize closed ideals in L!(G, A) as
subspaces that are translation invariant in a certain sense
(Theorem 2.2). After that we establish some generalizations
of Wiener’s tauberian theorem. The class of algebras under
consideration consists of strongly semi-simple and completely
regular Banach algebras. After this, in §3, we deal with
spectral synthesis. Our main result (Corollary 3.6) states that
if A does not admit spectral synthesis then neither does
LYG, A). In §4 we apply the theory of completely regular,
strongly semi-simple Banach algebras to obtain some conditions
sufficient to ensure that a given ideal is the intersection of
the maximal regular ideals containing it.

An introduction to the theory of tensor products of vector spaces
can be found in several places, for instance in [16] or [5]. The
question of norming a tensor product is treated in the references
mentioned ; the greatest cross norm v is defined there. We include a
definition for completeness.

DEerINITION 1.1. Let E,, E, be normed vector spaces and suppose
te B, @ FE, We define the greatest cross norm v by

v(t) = inf 3 [ 2| [y |
with inf taken over all representatives >z, ® y;, = t. The completion

of E, Q E, with respect to v is denoted by £ &), E,.

The following structure theorems will be used extensively in this
paper, sometimes without explicit mention. Proposition 1.4 provides
one of the major justifications for the study of vector valued group
algebras.

ProrosiTioN 1.2 [5]. Let G be a locally compact group and A
a Banach algebra. Then

LNG, A) = L'(G) Q.4
where = denotes an isometric isomorphism.

REMARK 1.3. In [5, p.59] proposition 1.2 is proved when A is
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a vector space. However, it is not difficult to extend the validity of
the result to algebras.

PROPOSITION 1.4. Let G and H be locally compact groups. Then
LG x H) = LNG) ® ,L'(H) .

Proposition 1.4 is a special case of Proposition 1.2 via the identi-
fication LY(G x H) = LX(G, L(H)) (Cf. [20]).

2. Ideal structure. Tauberian theorems. If G is a locally
compact group the following theorem about closed one-sided ideals in
LY@G) holds (Cf. e.g., [14, p. 374]):

A closed subspace I of LYG) is a left (right) ideal if and only if
it is invariant under left (right) translations, i.e., if and only if
x(-)e = x(9,-) € [ (x(-g,) € I) for every g,€G.

Grove [6] has shown that this assertion is not valid in a gener-
alized group algebra. Here we show that if we consider a different
concept of translation the theorem is true. We make the following
definition.

DEFINITION 2.1. We say that a subspace I of LG, 4) (G is a
locally compact group, A a Banach algebra) is left A-translation in-
variant if

(i) a(-)el=a(g,")el for every ¢,€ G

(i) z(-)el=ax(-)el for every ac A .

Analogously, we define right A-translation invariance by replacing

(i) by

(i) w(-)el=u2(-g)el for every ¢g,€G
and (ii) by

(i) a(-)el=a(-)acl for every ac A .

We can then prove the following

THEOREM 2.2. Let G be a locally compact group and A a Banach
algebra with approximate identity. A closed subspace I of LG, A)
is a left (right, 2-sided) ideal if and only if I is left (right, left
and right) A-tramslation invariant.

Proof. We prove this for a left ideal. So let I be a closed left
ideal. Using the notation x, for the function z(g-) and letting {u"}
be an approximate identity for LG, A) we have (as in the numerical
case) that
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(uiza)(9) = | w(or'g)e(d )y

= SG u(9')2(9" " 9.9)dg’
= (u")4,(9),
so that for v el
%, = lim (u"xw), = lim (gj-xx) el .

This shows that xe I = x,e [ for every geG. The proof of (ii),
Definition 2.1 is as follows

xel,ac A= auxxecl
lim ausxx e I
alimu*sxx = aqrel.

Thus we have shown that a closed left ideal in LYG, A) is left
A-translation invarient.

The proof of the converse implication is based on approximation
by means of a sort of Riemann sums.

Let I be a closed subspace of L' G, A) such that I is left A-
translation invariant. We must show that xe I, y e LYG, A) = yxx € 1.
Since I is closed and continuous functions with compact support are
dense in L'G, A) it suffices to show that x € I = yxx eI for any con-
tinuous y e LG, A) with compact support. So let ¥ be such a func-
tion with support K. From what is given about I it follows that

ay(go)x,, €1 for any ¢,€G and acC .
But

YT = SG Y9z, —dg" = XK y(g')x,—dg’

and the last term can be approximated arbitrarily well by sums of
the form

D Y9z, .

This can be seen in the following way: as in the numerial case we
can show that z, is a continuous function of g with respect to the
norm in L'(G, A). Since y is continuous it follows easily that y(g9)z,
is continuous (here we use pointwise multiplication). Moreover, y(g)x, = 0
outside K. From the compactness of K and the uniform continuity
of y(¢9)x, on K it follows that corresponding to a given ¢ > 0 there
are finitely many measurable disjoint sets K;(+ = 1,2, ---, %) such that
J,9" €K, = |yg)x, — ylg")x, | <e. If we choose g; € K;, and define
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2 1k (99, (9) ge K
q)(g) —= <i=1
0 geK
where 14 is the characteristic function of K (v =1, ---,n) then ¢ is

clearly integrable; moreover, an application of Fubini’s theorem yields
that

LIV v, -dy — S vtgzz (0K | do
= SG l 2 XK ‘I Y(9)w,~(9) — y(g)e,z1(9) | dy' | dg
=2 SG Sxk | y(9"),~(9) — y(9)r,2(9) | dg'dyg
=S| |, 1960)-0) ~ w0 | dgdo

< zkg cdg = ez,,g dg’ = ep(K) .
Ky Ky

Since I is closed this shows that yxxe I, i.e., I is a left ideal. This
proves the theorem.

From the proof of Theorem 2.2 we get

COROLLARY 2.3. If =z, x,e LG, A) and € > 0 is given then there
1s a finite sum h of A-translations of x, such that |xxx, — h| < e.

Later, when we get to the spectral synthesis we shall make use
of Theorem 2.2. However, as a kind of introduction to the spectral
synthesis we shall concern ourselves with a special case, namely vari-
ous formulations of Wiener’s tauberian theorems and the extensions
of these to generalized group algebras. It is well known that an im-
portant step in one standard proof of the so-called generalized Wiener’s
tauberian theorem is a proof of the fact that if G is a locally compact
abelian group then every closed proper ideal in L'(G) is contained in
a maximal regular ideal. A necessary condition that L'(G, A) have
this property is that the range algebra A have it (see Corollary 3.5).

Therefore, we are led to the theory of the so-called tauberian alge-
bras which we define as follows (ef.[21]).

DEFINITION 2.4. A Banach algebra A is tauberian if every closed
proper 2-sided ideal has a nonempty hull, i.e., if every proper closed

2-sided ideal is contained in a maximal regular 2-sided ideal.

Apparently the theory of these algebras is not yet very extensive;
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the results that are of interest in this context make one or two other
assumptions about the algebras in question. Consequently, we start
out by considering these concepts, i.e., that of strong semi-simplicity
and that of complete regularity.

DEFINITION 2.5. Let A be an algebra. The strong structure
space RS(A) is the collection of all maximal regular 2-sided ideals in
A with the hull-kernel topology. The strong radical, R,(A) is defined
by

RA= N M.

Me RS(A)
If R,(A) = {0}, A is strongly semi-simple.
Let B, and B, be Banach-algebras, B, = B, ® ,B,. Following [4]
we define
T:J, X J,— J,

where J; is the collection of closed 2-sided modular ideals in B;(7 =1, 2, 3)
and

T: RS(B,) x RS(B,)— RS(B,® B,) .
Let (I, I)e J, x J, and define
R:B, & ,B,— B\/I,Q .B,/1,
by
t=>2Qu,€B Q B, — R(t) = >, x/I, Qv:/I,e B/, Q ,B,/I, .
Then
T(1, I,) = kernel(R) .
It is not difficult to see that T(I, I,)eJ,. If
(M,, M,) e RS(B,) x RS(B,) C J, X J,

then let M,e RS(B,® ,B,) be a maximal modular ideal containing
T(M,, M,) and define

T('Mu Mz) = M,.

T and T are defined in [4] without use of the blanket assumption
of that paper that B, and B, have identities. Clearly, therefore,
Lemma 2[4] holds; moreover Theorem 1[4] shows that 7 is closed
when the hull-kernel topology is used. If B, and B, have identities
T is injective [4]; if B, or B, is commutative 7T is injective and sur-
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jective even when no identities are present [12]. It is not known to
the author whether T has these two properties in general. Generally,
we shall assume 7T to have these properties, i.e., to be bijective.

About strongly semi-simple generalized group algebras we have
the following immediate generalization of [12, Corollary 1]:

THEOREM 2.6. Let G be a locally compact group, A a Banach
algebra. Assume T: RS(LY(G)) x RS(A) — RS(LYG, A)) to be bijective.
Then LG, A) s strongly semi-simple vf and only +f LYG) and A
are strongly semi-simple.

Next, we turn to the completely regular algebras. Following [21]
we have

DEFINITION 2.7. A Banach algebra A is completely regular if
RS(A) satisfies these conditions :

(i) RS(A) is Hausdorft ;

(ii) For every Me RS(A) there is an open set 0 such that
Me0c RS(A) and such that k£(0) is a regular ideal (here % denotes
kernel).

In [21, p. 178] it is shown that the above conditions are equiva-
lent to the single condition that RS(A) be Hausdorff, where A is the
smallest Banach algebra with identity containing A.

We first prove

THEOREM 2.8. If B, and B, are completely regular Banach alge-
bras and if T is injective then

T: RS(B,) x RS(B,) — RS(B, ® ,B,)

is a homeomorphism so that if T is bijective then B, ® ,B, is com-
pletely regular.

Proof. Let O; be an open set in RS(B;) for which k(0;) = I, is
a regular ideal, 7 = 1,2. Such sets exist in abundance by Definition
2.7 ii). The closure of O; = h(k(0;)) = h(I;) is a compact set [15, Th.
2.6.4]. Let 0 = T(0, x 0,). We first show that 0 has compact closure.
Again using [15, Th. 2.6.4] this will be accomplished by showing that
k(0) is a regular ideal. We use the mapping 7 and Lemma 2 of [4]:
T(I,, I,) is a regular ideal and if we can show that T(I,, I,) C k(0) then
k(0) is regular. But
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T, L) & N T(M, M)
Mie0;
i=1,2

S N 7L, M)
is12 "

= N M= kQO).

Meo

Therefore h(k(0)) is a compact set. Now, since B, B, are com-
pletely regular %(k(0,) x h(k(0,)) is Hausdorff. T(h(k(0,) x (h(k(0,))))
is closed in the relative topology of T(RS(B,) x RS(B,)) so

h(k(0)) N T(h(k(0,)) < h(k(0,)))
is compact in this topology. Moreover,
T=*(h(k(0) N T(h(k(0.)) x h(k(0:)))
is a Hausdorff space with interior :

(M,, M) € 0, x 0, = T(M,, M) € h(k(0)) N T(r(k(0,) < h(k(0.)
— (M., My) € T~(h(k(0)) N T(h(k(0,)) x h(k(0,)))) -

It follows that T\,,ml»h(,m))ny(h(,ﬂomxh(,ﬂ(%m) is continuous so that
T oo, is continuous. 0, x 0, is open; we have shown that T is a
homeomorphism.

If T is surjective, then clearly RS(B, ® ,B.) is Hausdorff. If
M = T(M,, M,) e RS(B, ® .B,) then there are open sets O; with regular
kernels such that M, O,(¢ = 1,2). T(0, x 0,) = 0 is an open set con-
taining M and k(0) is regular by the first part of the above argument.

Consequently, B, ® ,B, is completly regular.

Theorem 2.8 will be used in Theorem 2.10. Just as in the nu-
merical case it is of importance in our proof of the Wienertauberian
theorem to be able to conclude that the elements vanishing outside
compact sets in the strong structure space are dense. This notion
will be made precise by means of the following definiton [21].

DEFINITION 2.9. Let B be a Banach algebra ; for S © RS(B) define
J(S,B) = {xeB; (M) =0e BIM

for all M in some open set containing S}
and
J(oo, B) = {xe B;x(M) = 0e BIM
for every M outside some compact set in RS(B)}.

If no confusion seems likely, we use the notation J(S) and J(<).
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THEOREM 2.10. Let B, and B, be completely regular Banach
algebras and suppose T is bijective. Using — to denote norm closure
we have the following implication :

J(eo, B)~ = B; (t=1,2)

: J(=,B;Q ;B,)” = B;Q ;B .

Proof. The proof of this statement is not hard. Since B, Q B,
is dense in B, R ,B, it suffices to consider elements of the form x Q y.
Solete >0and x ®Qye B, ® B, be given. From the assumptions we
get that 3 2, € B and a compact set F, C RS(B,) such that x,(M,) =0
for M, ¢ F, and such that |# — x,| < e. Similarly, 3 y, € B, and a com-
pact set F, C RS(B.) such that y,(M,) = 0 for M,¢ F, and |y — 4, | < &.
v being a crossnorm we get immediately that

M@y — 2. Q) =e(la]| + |yl + ¢).
Now, since B, and B, are completely regular
T: RS(B) x RS(B,) — RS(B, ® .B,)

is continuous (Theorem 2.8) so T(F, x F,) is compact.

If Me T(F, x F,) and M = T(M, M,) then it follows first that
M e¢F, or M,¢ F, and next that x, & y(M) = 2(M) R y.(M,) = 0.
From this the theorem follows.

Now we are ready to combine the three concepts mentioned so
far (tauberianism, strong semi-simplicity and complete regularity) in
a proof of a ideal theoretic formulation of Wiener’s tanberian theorem.

THEOREM 2.11. Let G be a locally compact group such that
LYG) s strongly semi-simple, tauberian and completely regular and
let A be a strongly semi-simple, completely regular, tauberian Banach
algebra. Suppose T is bijective. Then LNG, A) is strongly semi-
simple, completely regular and tauberian.

Proof. Theorems 2.8 and 2.6. show that LYG, 4) is strongly
semi-simple and completely regular. In [21] it is shown that under
these circumstances J(eo, LY(G, A))~ is the uniquely determined minimal
closed 2-sided ideal with empty hull [21, Th. 1.2]. By the same token,
J(oo, A)~ is a closed 2-sided ideal with empty hull. Since A is tauberian
J(eo, A)~ cannot be proper, i.e., J(o, A~ = A. Similarly,

J(eo, LN(@)™ = LXG) .

But then (Theorem 2.10) J(e, LY(G, A))~ = LG, A), i.e., no closed
proper 2-seided ideal in L'(G, A) has an empty hull. Thus LG, A)
is tauberian.
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T is bijective if G is locally compact and abelian [12]. Con-
sequently, we also have

COROLLARY 2.12, [20]. If G is a locally compact abelian group
and C is a compact group, then the conclusion of Theorem 2,11

holds for LG x C).

Proof. L'(C) is strongly semi-simple, completely regular and
tauberian [21].

3. Spectral synthesis. A well known interpretation of 2.11 views
it as an answer to a special case of the question of spectral synthesis :
is a closed 2-sided ideal in a Banach algebra the intersection of the
maximal regular 2-sided ideals containing it? Using the hull-kernel
terminclogy and notation, Theorem 2.11 says that with certain con-
ditions on LYG) and A our ideal I < LG, A) satisfies I = k(h(1I)) if
h(I) = & (because then I = L(G, A)).

If T = k(h(I)) for every closed 2-sided ideal in a Banach algebra
B we say that B admits spectral synthesis. Schwartz (in [17]) has
shown that L'(E®) does not admit spectral synthesis. In this section
we shall prove some results along these lines for L'(G, A). The main
result is that if A does not admit spectral synthesis then LY(G, A4)

does not, either.

LemMmMA 3.1. Let G be a locally compact group and A a Banach
algebra. Let I be a closed 2-sided tdeal in A and define

J, ={feL(G, A); f(g el a.e. geG}

J, 18 a closed 2-sided ideal.

REMARK 3.2. The definition of J, should be interpreted as fol-
lows: Pick a function representative f’ of the equivalence class of
functions f e LY(G, A); if f'(g)el for a.e. g G then feJ,.

Proor or LEmMMA 3.1. Clearly J, is a subspace. If f,— f in
LG, A)-norm then there is a subsequence f, converging to f a.e.
Since I is closed this implies that J, is closed.

Consequently, to show that J, is an ideal we need only check
the A-translation invariance of J, (Theorem 2.2). (Note that no ap-
proximate identity is needed when we use Theorem 2.2 here.) But the
A-translation invariance of J, is an immediate consequence of the de-
finition of J, and the fact that I is an ideal.



164 KJELD B. LAURSEN

REMARK 3.3. Clearly, in Lemma 3.1, ¢‘ 2-sided ”’ could be replaced
by ‘“left’”’ or ‘right”’.

LEmMmA 3.4. With the assumptions of Lemma 3.1, let I be a

proper closed 2-sided ideal im A and J, the corresponding ideal in
LG, A).

Then
T(RS(LXG)) x MI)) < W) -
If T is bijective, then
mJy) = T(RS(LH(G)) x h(I))
so that
k(W(J)) = J,=—=k{I))=1.
Proof. We shall show that if I, & LYG) is a modular 2-sided
ideal and if I, 2 I is a modular 2-sided ideal in A, then T(I,I,) 2 J,:
We make the following observations: If I” is any closed 2-sided

ideal in A, then we can consider LG, A/I""). Any fe LG, A) induces
a mapping f— f;. by

frg) = fl@/1” a.e. geG.
Clearly,
Jo ={f e LG, 4)| fr. = 0}.

If I' is a closed 2-sided ideal in L'(G) and B is any Banach algebra,
we have a mapping

ar: L(G) & .B— LN(G)/I' QB ,
i.e., a mapping
LNG, B)— L{G)/I' ® ,B
defined by
ar (X2 Qu) = X u/l' Qs

for any >z, & y; € LG, B).
If (I’,I"”) is a pair of modular ideals, then

I(I', 1) = kernel(az/"" o (f — f1)) -

Now the above claim follows easily: If I, C L'(G) is a modular
2-sided ideal and I, I is a modular ideal, then
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fed, = fekernel(f — f))
—— fekernel(f — f))
— fekernel(a;/" o (f — f1,))
— fe T, 1I,) .

With this proved, the lemma follows from the general properties
of T and T:

If M,en(I), M,e RS(L(G)) then
T(M,, M) 2 T(M,, M) 2 J,
SO
(%) TIRS(L(G)) x k()] S h(J)) .

If T is bijective, then it is a simple matter to show that if
M, € h(J;), then

T-(M;) = (M,, M)
has the property that M, 2 I, so that
() T () = RS(L(G) x M) .
Combining (x) and (#x) the second claim of the lemma follows:
(s5) mJ,) = T(RS(LAG)) x h(I)) .

To get the last statement of the lemma, we replace I by k(h(I))
in (kxx):

M) = T(RS(LAG)) < h(k(I)))
T(RS(LAG)) x h(I))
= h(J)) .

Il

Therefore

k(h(']k[h(l)))) = /C(h(Jz))

2 Sy 241,
from which we conclude immediately that if
k(h(J.)) = J,
then

E(h(I)) =1.

The following corollaries are straightforward.
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COROLLARY 3.5. If T is bijective and if I is a closed 2-sided
ideal im A which s contained in no maximal regular ideal then the
same 1s true about J,.

COROLLARY 3.6. If T is bijective, then LG, A) does not admit
spectral synthesis if A does mnot.

COROLLARY 3.7. Let G be a locally compact group and E" n-
dimensional Euclidean space (considered an additive group). L'(G x E™)
does not admit spectral synthesis if n = 3.

Proof. [17], Proposition 1.4, and Corollary 3.6.
If we add the assumption that G be abelian, Lemma 3.5 can be
strengthened.

LeEMmA 3.8. Suppose G 1s a locally compact abelian group and
A is a Banach algebra. If I is a closed proper 2-sided ideal, then

kE(h(J)) = J; if and only if k(h(l)) =1.

Proof. It is not difficult to show that if M, is a maximal regular
ideal in L'(G) and y the corresponding character on G then M, defines
a mapping

Pu LG, A) — A
given by
Pur, (20 Q ¥:) = 20 )y
for every 3. 2, Quy,e L(G)R,A = LYG, A) and that this mapping

has the integral expression

Pu(f) = SG fog)dg  for all fe LYG, A) .

Next, we note that if Me RS(L\G, A)) and T(M) = (M,, M,), then
feM — o, feM,. [12].
To complete the proof we must show that
Fek({TM, M); Mye k(D)) = feJ,

under the assumption that k(k(l)) = I. Using the definition of J, and
k(h(I)) = I we see that we must prove the following implication :

pu(f)el for any M, e RS(L\(G))
= f(g)el for a.a. geG.
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So, suppose

pul$) = | flormadge

for every character ¥ on G. By means of the approximation theorem
for abelian groups (cf.e.g., [14, Corollary 4, p. 406]) we get that

(%) § Fow(a)dge I

for every continuous function +: G — C with compact support. If f
is continuous a well known argument will show that f(g) € I for every
ge@.

To cover the general case we let {u,} be an approximate identity
in LYG) consisting of continuous functions with compact support.
Using standard results from the numerical case and Proposition 1.2.
we conclude first that u,xf— f in L'(G, A)-norm and next that u,xf
is continuous for every «. From {u,xf) we can pick a sequence and
from this a subsequence converging a.e. to f. Consequently, it suf-
fices to show that (u.* f)(g) eI for every ge G. But

o F(g) = S a9 £ (07 0)dg,
=§ wogh) f(hydh e I
G
because of (x). This completes the proof.

Just as in [8] we can extract the following corollaries.

COROLLARY 3.9. If G is abelian and A is a Banach algebra, the
only maximal regular 2-sided ideals containing J,, with M,c RS(A)
are of the form T(M, M,) where M, is an arbitrary regular maxzimal
2-sided ideal wn LYG).

COROLLARY 3.10. Same assumptions as in Corollary 3.9. Sup-
pose M}, MY € RS(A) and M, = M} ; then

(T(M,, MY) + Juy)~ = L'(G, A)
(where — denotes norm closure) for any M, e RS(LYG)).

4. On sets of spectral synthesis. Turning to more positive as-
sertions about spectral synthesis we shall study LYG, A) in the case
where LY(G) and A are strongly semi-simple and completely regular.
The situation in which a certain weak form of spectral synthesis
holds will dominate this section.
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DerFINITION 4.1. Let A be an algebra. A closed set S RS(A)
is said to be a set of spectral synthesis if S uniquely determines a
closed ideal I such that A(I) = S. Clearly then I = k(S), i.e.,
I = k(h(I)).

DEFINITION 4.2. A Banach algebra A in which singleton sets in
RS(A) are sets of spectral synthesis is called an N*-algebra [21]. An
ideal I for which A(I) consists of just one point is a primary ideal.
Consequently, an N *-algebra is a Banach algebra in which closed
primary ideals are maximal regular.

The following proposition generalizes Theorem 4 in [8] and will
be used to investigate conditions under which LY(G, A) is an N *-algebra.

PropPoSITION 4.3. Let G be a locally compact group and A a
commutative Banach algebra. Suppose I < L'(G, A) is a closed 2-sided
1deal such that 1D 1, for some M,e RS(A). Let h(I) = (T(M', M")}.
If W={M; T(M', M") e h(I) for some M" e RS(A)} is a set of spectral
synthesis then h(I) is a set of spectral synthesis, i.e. I = k(h(I)).

Proof. From Lemma 3.4 (i) we get that
M) C (L) C{T(M,, My); M, € (M), M, € RS(L'(G))}
= {T(M,, M.); M, e RS(L'(G))} .
ie., h(I) = T(W, M,)
with a slight abuse of notation.

Now, using the notation of the proof of Lemma 3.8 M,c RS(A4)
defines a homomorphism

Pyt LNG, A) — LYG)
by
f=22Quic LG, A) = @y f = X M(y)z. € L'G) .
We consider the image of I under ¢, i.e., let
K =gy (I) .

We wish to show that K is a closed 2-sided ideal in L'(G). Since
@y, i a homomorphism onto it is clear that K is an ideal; to show
that K is closed we prove that if u, is an identity modulo M, then

K={zxel'(G);zQucl}.

If this equation holds it is elementary to show that K is closed:
{x, ) K, x,— 2, =%, Q U, — 2, Qu, €I (since I is closed) = x,¢ K.
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So suppose Q@ u,€l; then o, (xXQu)=axcK. Conversely,
v € K= 3f € Isuch that ¢, f =w. Consider f—xQ@u; f(g) —x(g)u, € M,
for a.a.ge€ G since if f= >z, @ y; then

My(f(9) — @(g)wo)
= > x(9)My(y;) — M(y:)w(g) = 0

From the definition of I, it follows that f— o @ u,cly, ie.,
S — 2@ u el (note, incidentally, that f — @y f Q uw,el,, for every
fe LG, A)). But since fel it follows that ¢ ® w,e I. This proves
that K = {xe L'(G); * Q u,€ I}, and thus that K is a closed 2-sided
ideal (not necessarily = {0}).

The above characterization of K together with the definition of
the mapping T readily yield the fact that A(K) = W. But since
fel if and only if @, f e K = k(W) it follows that fe if and only
it MQQM(f)= M(y,f) =0 for every Mec W, ie., fel if and only
if fek(h(I)). This proves the proposition.

Using proposition 4.3. we can obtain a sufficient condition for
LYG, A) to be an N *-algebra.

THEOREM 4.4. Let G be a locally compact group such that L'(G)
is completely regular, strongly semi-simple and tauberian and let A
be a commutative, completely regular, (strongly) semi-simple Banach
algebra. If L(G) and A are N *-algebras, them so is LYG, A).

Proof. We must show that if I is a primary closed 2-sided ideal,
e.g., h(I) = {M, = T(M,, M})} then I = M,. Since L'(G, A) is strongly
semi-simple and completely regular (Theorems 2.6 and 2.10) we can
assume without loss of generality that I = (J(M,) N J(==))~ [21, p. 180].
We wish to apply Proposition 4.3; consequently, we must show that
I>1,y.

So let fel,; ; we first show that we can approximate f by means
of continuous functions in I,;. fely,y = f(g)e M{ for a.a.geG. If
{u,} is an approximate identity in L'(G) consisting of continuous func-
tions then

wif() = |, wdo)f @)y
is continuous and
usf—f as @ — oo .

Moreover, since f(g)e M) for a.a.9.€@G, ug)f(g''9)e M for
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a.a.9,9’€G. An approximation argument similar to the one employ-
ed in the proof of Theorem 2.2. then yields that w}f(g)e M/ for
a.a.9e€@, ie., ulfel,.

Since we want to show that fel,; — fel and since I is closed
we can assume therefore, without any loss of generality, feI,; to

be continuous.
So let fel,; be a given continuous function and let also ¢ > 0
be given. 3 compact set F — G such that

&
SG\EJf(g)Idg<§-

Let g,e¢ E and consider f(g,) € M (f(g9) € M} for every g€ G since
f is continuous). A is assumed to be a semi-simple completely regular
N*-algebra so 3 y,, such that

e

If(go) - ygg] < Zﬂ(E)

and M"(y,) = 0 for all M" in a neighborhood N, of M{ and outside
a compact set C, C RS(A). Let

€
Sy, = {g, [f9) — v, | < 2y(E)}-
Since f is continuous S, is an open neighborhood of g,. Clearly,
{S,, 9o€ E} is an open cover of E and so has a finite subfamily
covering K.
Let the open sets covering E be {S;}7,, let the appropriate points
¥y, be {y}i_. and let the corresponding neighborhoods and compact

1=1

sets in RS(A) be {N,}7., and {C,}r,, respectively. Define
T.=S, NE
Tiz(S,;\<U_Sj>>ﬂE’ P=2

J<z

then 'NT; @ if t#jand U, T; = E. Let 1, be the characteristic
function of Ty(1 =1, .--,n). If we define

=310
then, clearly, f’e LYG, A). Moreover, M(f') = 0 for every
Me {T(M', M"); M’ e RS(LXG)), M" & (n Ni) U (RSA\U C,.}

i.e., M(f’) vanishes in a neighborhood of M,.
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=51 = 10 — @ ide = | 1760 - 310wl dg
* SG/E [ florldg < ; Sr- | f(9) — 22 1,(9)y: | dg + ¢/2

=2§ fg) — wildg + /2, since T,NT,=@ if i%j
7 T

¢ ; g2 =c¢.
2 3 E) t(T;) + ¢/

It remains to note that each 1,, can be approximated by an element
x; from J(oo, L(G)), (because L'(G) is tauberian) i.e., 1,, @ y; can be
approximated by z; ® y,(¢t = 1, ---, n). Since the sum is finite it follows
that > 2, ® v, € J(eo, LG, A)) N J(M,, L'(G, A)).

We have shown that I, cI. From Proposition 4.3. we get that
since {M}} is a set of spectral synthesis (LYG) is an N *-algebra)
I = Ek(h(I)) = M,.

This proves that L' (G, A) is an N *-algebra.

REMARK 4.5. In [10] it is shown that if G is a locally compact
abelian group and C is a compact group then L'(G x C) is an N*-
algebra. This result is contained in Theorem 4.4.

Incidentally, if the tensor product B ) ,C of two Banach algebras
isan N *-a,ngebra then it is possible to give a direct description of the
mapping T: RS(B) x RS(C)— RS(B ,C).

ProprosiTION 4.6. Suppose B Q) ,C is an N *-algebra, and suppose
T s bijective. Let M, € RS(B), M,c RS(C) and consider

I, ={a@y;ve M, yecC}
Iﬂlgz{x®y;xeBerM2}'

Let M = T(M,, M,). If we use the symbol [ | to denote the ideal
generated by the set imside the brackets then

M: [IMI + IM2]— .

SKETCH OF PROOF. Because of the assumption on B ,C it suf-
fices to show that [I, + I,] is primary (clearly [I,, + I,]- C M).
To show that [I,,, + I,,]” is a primary ideal a slight variation of the
argument used in the proof of Lemma 4.7. can be used. Therefore,
we omit all further details.

With the notation of Proposition 4.6. we have the following

LEMMA 4.7. Suppose B and C are strongly semi-simple and
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completely regular Banach algebras, and suppose T is bijective. Let
M = T(M,, M) e RS(BR ,C) be given. Then

I, = [J(M) N J(e=, B) & J(o=, C) + J(eo, B) & J(M) N J(==, C)]
= (J(M) N J(==, B C)).

Proof. Since B and C are completely regular T is a homeo-
morphism (Theorem 2.10). Therefore, if

v Qye (M) N J(=, B) R J(, C)

it is clear that x ® y € J(=0, B® ,C). Moreover, xz € J(M,) N J(=, B) C
J(M)) = 3 open neighborhood N(M,) such that (M) =0 for all
M.e N(M,). T(N(M,) x RS(C)) is an open neighborhood of M in
RS(BR,C) and x Q@ y(M') = x(M}) K y(M}) = 0 for every

M’ = T(M;, M) e T(N(M,) x RS(C)) .

This shows that J(M,) N J(eo, B)Q J(c=, C) T J(M) N J(>=, B& ,C).
Repeating this argument we get that

IL,cJM)N J(=, B ().

Because of the remark at the bottom of p.180 of [21] to prove
equality it suffices to show that I, is a primary ideal. So suppose
r@ueM = T(M,, M) for all xeJM,) N J(e,B),yeJ(e=,C). We
can choose y,¢€ J(co, C) such that y,¢ M, [21, Corollary 1.2.2.]. Since
*Q@y.e M’ for all xze J(M,) N J(, B) it follows that M| = M, (since
J(M,) N J(eo, B) is a primary ideal [21, Th. 1.2.]).

Repeating this argument for J(co, B) Q J(M,) N J(=o, C)) we get
that M, = M} and therefore that I, is primary.

[21] has transferred Ditkin’s condition, condition (D) to the non-
commutative case. Here we shall consider the following version.

DEFINITION 4.8. A Banach algebra B satisfies condition (D) if
for every M € RS(B) (M may be all of B) 3 bounded net {#.} = J(M) N J(<=)
such that for every fe (J(M) N J(e))~ 3 subnet {4} such that /i, — f.

LEMMA 4.9. Let B and C be strongly semi-simple completely
regular Banach algebras, and suppose T is bijective. If B and C
satisfy condition (D), then so does B .C.

Proof. First, let Me RS(BR .C), M = T(M,, M,). By assumption
3 bounded nets {hy} € J(M;) N J(c=) so that for every ;e J(M;) N J(<°)
3 subnet Py} for which a;hy, —a; (¢ = 1,2). Moreover, 3 bounded
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nets {h™'} C J(eo, B), {h~*} C J(eo,C) so that xh7*—2a for every
€ J(eo, B) or J(eo, C) (where {hZ‘} is a subnet of {A="}). The net we
shall use in B C is {k'® k?} where k' is defined as follows.

Ke{hy)—kelhyg) or {h=)
Ee{h=) =k e (b .

It is not difficult to see that {&' ® k% < J(M) N J(, B ,C). Because
{k' @ k*} is uniformly bounded and because of Lemma 4.7 it suffices
to consider elements of the form x & y with, say, x e J(M,) N J(co, B)
and y e J(c, C). Corresponding to this element we pick the appropri-
ate subnets {h}} C {hy,}, (b=} < {h=*} and see immediately that

@ @ y)(hy, @ h™) = whly, QUh™ — e Ry .
A slight variation of this argument will handle the case M = B ,C.

We are now ready to state the strongest result concerning spec-
tral synthesis that we know of in this context. Being essentially an
application of Corollary 2.6.1 in [21] we shall simply state it as

COROLLARY 4.10. Let G be a locally compact group and A a
Banach algebra so that LYG) and A are strongly semi-simple, com-
pletely regular and satisfy condition (D). Assume further that
LG, A) is an N*-algebra, and that T is bijective. Let I be a closed
2-sided ideal in LNG, A). If the boundary of h(I) in RS(LYG, A))
contains no perfect set (= @), then I = k(h(I)).

Proof. By Theorem 2.6, Theorem 2.8 and Lemma 4.9 LG, A4)
fulfils the hypotheses in Corollary 2.6.1 of [21]. Therefore the con-
clusion follows.

5. Concluding remarks. A comparison between this paper and
[9] or [8] will quickly reveal some similarities. Both of these papers,
however, deal with commutative algebras exclusively. While [8] has
served as a starting point for the investigations of §3, [9] was un-
known to the author at the time §2 was being developed.
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