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COUNTABLE RETRACING FUNCTIONS
AND HI PREDICATES

C. G. JOCKUSCH, J R . , AND T. G. MCLAUGHLIN

In this paper our attention centers on partial recursive
retracing functions, especially countable ones (as defined below),
and on their relationship with classes of number theoretic
functions constituting solution sets for ΓE function predicates
in the Kleene hierarchy. Arithmetical function predicates which
have singleton solution sets (i.e., so called implicit arith-
metical definitions) have received ample attention in the
recursion-theoretic literature. We shall be concerned with
such predicates, at the levels Hi and ΓE; but we shall primarily
be concerned with the wider classes of IT? and H2 predicates
having countable solution sets. In §5, we show (by obtaining
examples which range over the whole of 3ίf Π {D \ D > 0'},
£ίf as defined in § 4) that a solution of a countable Hi predicate
need not be definable by means of a "strong" Π2 predicate; in
fact, we establish the corresponding (slightly stronger) pro-
position for countable, finite-to-one, general recursive retracing
functions. The question whether all solutions of a countable
Π2 predicate are Π2 definable is left open but subjected to
conjecture.

In § 4, we present a new and somewhat more compact proof for
one of the main theorems obtained by C. E. M. Yates in [20] (indeed,
we obtain a slightly stronger theorem); and we shall derive one of the
other principal results of [20] as a corollary to some of our theorems.
In § 4 and § 5 systematic use is made of the main content of MyhilΓs
paper [14].

We proceed now to lay down the conventions which are to be in
force throughout the rest of the paper; at the end of this section we
shall indicate briefly the contents of each of the remaining sections.
The symbol N always denotes the set {0,1, 2, •} of natural numbers.
We shall in general use lower case Greek letters for subsets of N and
lower case Latin letters for functions (partial or total) with domain
and range included in Ny although this particular convention will not
be adhered to with absolute rigor. Given a function f: a—+N where
a S N, we denote by δf the domain, a, of /, and by pf the range
of /. We fix a standard recursive enumeration ([10]) of the partial
recursive functions of one variable, and denote this enumeration by
•{<Pe}7=-.ol similarly, we fix a standard recursive enumeration {φl}?=0 of
the partial recursive functions of two variables. We further fix a
recursive enumeration g\ of the set {(0, x, y) | φe(x) = y}; and we denote
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by φl the set {(x, y) | (3*)^β( ^ ( ί ) = (e, x, y))}. Similarly, we fix a
recursive enumeration g?8 of the set {(e, x19 x2, y) \ <pl(xlf x2) = y); and
we denote by φY the set {(xlf x2, y) \ (3£)«*.( ξ?2(t) = (e, xl9 x2, y))}. We
degree φ\ — 0 . If j ^ is a class of partial recursive functions, then
by the index set, G(^~), of a?" we mean {e\φee^}. We denote
by We the set <?<£>e; and we define Do = 0 and 2>Λ+1 = {m1( « ,m r},
where n + 1 = 2m* + 2W2 + . . . + 2m* and where mί < m2 < < m r

in case r > 1. For any set β £Ξ AT, we denote by ^ the characteristic
function of β, taking value 1 on members of β and 0 on nonmembers.
By a finite initial function we mean a function w:a—>N such that
(In) (a = {x x < w}). By Z (̂w), w a finite initial function, we mean
the cardinality of δw. Such standard notations as pk, (m)w, and μ
(the "least number operator") are used as in [6]. If e is any natural
number and w any total or finite initial function, the notation {e}w

shall have the meaning given it on page 5 of [17]. We use the
notation f(x) (for any /, partial or total, such that / is defined at
least for all y < x) according to the convention of [17, p. 4]. As in
[6], we shall say that n is a sequence number *=> (lt)(lf)[n — f(t)]. We
shall employ boldface notation for Turing degrees; more particularly,
if a £ N then a denotes the Turing degree of α, if / is a function
from N into N then f denotes the Turing degree of /, and notations,
such as D and C stand simply for Turing degrees. ^ denotes the
ordering relation on Turing degrees. Our notations for the jump and
(finitely) iterated jump operations are those of [17]. Henceforth, we
shall refer simply to degree when Turing degree is meant. If a is
an infinite subset of N, we denote by pa the principal function of a,
i.e., the function from N into N which enumerates a in order of
magnitude. We shall refer to any strictly increasing function /: N-+N
as a principal function. Let / be a principal function with range
a, and suppose that h is a partial recursive function such that a^bh,
h(f(0)) = jf(O), and (yn)(h(f(n + 1)) - f(n)). Then we say that / is
retraceable, also that a is retraceable, and that h retraces f and also
a. A partial recursive function h is a retracing function <=> h retraces
at least one principal function. The basic properties of such pairs
(/, h) have been considered in [1] and [2]. A retracing function / is
special <=>ρfQdf& (vn)(n e 8f=>f(n) ^n). If / is a special retracing
function, then f(n) is finite for all n e δf, where f(n) denotes the set
{n,f(n),f(f(n))9 •••}. It is easily seen that if a is retraced by h then
a is retraceable via some special retracing subfunction of h.

A finite-to-one special retracing function is called basic. If / is a
special retracing function and n e δf, we denote by f*(n) the number
μy(fy(n) = fy+1(n)); here fy(n) is defined inductively by f°(n) = n,
fy+1(n) =f(fy(n)). Number- and function-predicate levels Πi, Έi, IK
Σi> f° r arbitrary n Ξ> 0, are defined as in [16, p. 383]. As is well
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known, every Πi predicate of one function variable can be expressed
in the form (yx)R(f(x)) where R is a primitive recursive predicate of
numbers. If a Π2 predicate P of one function variable can be expressed
in the form (yx)Q(f(x)) with Q a number predicate of degree <̂  O'',
then we say that P is a strong Π2 predicate; this is equivalent to ex-
pressibility of P in the form (yx)(ly)R(f(x), y), R recursive. For Π2 pre-
dicates in general, various "normal forms" are available. In this paper
we find it convenient to observe that every Π2 predicate of one function
variable can be expressed in the form (yx)(3y)y>x(yz)z<cxR(f(z), f(y)),
R recursive; such an expression we refer to as a Π2 normal form.
(To verify this equivalence the reader should proceed in easy steps,
as follows: (i) a Π21 predicate P(f) can be represented in the form
(yx)(ly)S(f(x), f(y)), S recursive, as may be seen by considering Σl
predicates and taking into account the uniformity, in an extra number
variable, of the corresponding fact about Πϊ predicates; (ii) a predicate
of the form (yx)(ly)S(f(x), f(y)), S recursive, is easily seen to be
equivalent to a predicate of the form (yx)(3y)y>xQ(f(x),f(y))), Q recursive;
and finally (iii) (yx)(3y)y>xQ(f(x), f(y)), Q recursive, is evidently equiv-
alent to (yx)(ly)y>x(yz)z£xR(f(z), f(y)) for a suitable recursive R.) A
function /: N—+N is said to be Π? definable (Π2 definable) ^>f is the
unique solution of some Π? predicate of functions (some Π2 normal
form). A predicate P of functions is said to be countable (unique) <=>
there are at most ^ 0 functions / such that P(f) holds (exactly one
function / such that P(f) holds); a retracing function is countable
(unique) <=> it retraces <^ ^ 0 sets (exactly one set).

We now turn to some preliminary remarks on solution classes for
function predicates. Let J^" be a set of functions /: N—> N. By the
closure, KA , of j ^ ~ , we mean the set of all functions g: N—+N such
that (yn)(lf)[fe<βr & (vm)m^n(g(m) = f(m))]. (This, of course, is
exactly the topological closure of ^ in Baire Space.) To say that
j ^ ~ is closed means, of course, that ^ — Kyr. Let P be a predicate
of one function variable; and let J^(P) denote the set of "solutions"
of P\^(P) = {f\P(f)}. We shall say that a predicate Q is a finite
restriction ofP<=> there are numbers m19nly , mk, nk, k > 0, such
that [Q(/)«(P(/) &f(mι) = n1 & . . . & f(mk) = nk)\. We note the
following very simple proposition:

THEOREM 1.1. Suppose J^~{P) is closed, nonempty and countable.
Then jβ~{P) contains a function f such that, for some finite restriction
Q of P, jr(Q) = {/}.

The proof of Theorem 1.1 consists either in appealing to the fact
that a nonempty, closed, countable set in a complete metric space has
an isolated point, or else in a few simple direct observations about
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branching in ^~(P) (as in [12, proof of Theorem 7]); we omit details*

COROLLARY 1.2. Every countable strong Π2 predicate which has
at least one solution has a solution which is the unique solution
either of the given predicate or of some finite restriction of it; and
every countable retracing function extends a unique retracing function*

Proof. Observe that the set of solutions of a strong Π2 predicate
P is closed. This allows us to apply Theorem 1.1 to P (if P does not
itself have a unique solution), and the first statement of the corollary
follows. As for retracing functions, first note that the collection of
principal functions retraced by a given retracing function / is the
solution set of a strong Π2 predicate Pf of functions; and it is clear,
moreover, that from a finite restriction Q of Pf we can obtain a partial
recursive restriction fQ of / such that fQ retraces precisely those
principal functions which are solutions of Q. Thus the second state-
ment of the corollary follows from the first.

In § 2, we shall find the exact position in the Kleene hierarchy
of the index set corresponding to the class of countable retracing
functions. In § 3, we construct a degree D,0 < D < O", such that no
function which is of degree > O but <ί D satisfies a countable Π2 normal
form. In § 4, we obtain various results relating retracing functions
(countable and otherwise) to a class Sίf of degrees whose represen-
tatives form a "thick skeleton" for the hyperarithmetical hierarchy.
Finally, in § 5 we prove a theorem which has the following corollary:
for every degree De Sίf such that O < D, there is a function feD
with the properties that (i) / satisfies a countable Πϊ predicate but
is not Π? definable and (ii) /) > O' ==> pf is retraced by a general
recursive, countable, basic retracing function but is not retraced by
any unique retracing function and indeed is not definable by any
strong Π2 predicate.

2. In [20], Yates has shown that the index set G(Ret) associated
with the class of all retracing functions is a complete Σ l s e ^ °f natural
numbers; i.e., every Σί s e ^ of natural numbers is 1-1 reducible to
(r(Ret), and G(Ret) is itself expressible in Σ ί form. In this section
we shall prove, partly on the basis of a simple modification of Yates"
argument, that the following two index sets are complete Πί sets:

(a) G(C-Ret) = {e \ φe is a countable retracing function};
(b) G(£7-Ret) = {e\φe is a unique retracing function}.

THEOREM 2.1. G(C-Ret) and (?(Ϊ7-Ret) are complete Πί
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Proof. We first show that G(C-Ret), G(ET-Ret) are Πί Let us
consider first the case of G(C-Ret). It is a well known fact that if
a Σ ί predicate of functions has only countably many solutions, then
it has only hyperarithmetical solutions. But the statement that / is
retraced by φe is easily seen to be a Πί predicate of / and e, and
hence a Σί predicate of/and e. Thus, if ee G(C-Ret) then φe retraces
only hyperarithmetical sets. It follows that the predicate e e G(C-Ret)
can be expressed in the form:

(3/) [/ is hyperarithmetical & / is strictly increasing & / is retraced
by φe] & (v/) [/ is a strictly increasing function such that φe retraces
/==>/ is hyperarithmetical.]

But " / is hyperarithmetical" is a Πί predicate of / ([7], [16]);
" / is strictly increasing and φe retraces / " is a Π2 predicate of /
and e; and, by a well known theorem of Kleene ([7, Lemma 1]), any
predicate of one number variable of the form (3/) [/is hyperarithmetical
& A(f, x)], where A is arithmetical, is equivalent to some Πί predicate
of x. Thus, we see that the above expression for e e G(C-Ret) can be
put into Πί form as a predicate of e. To verify that eeG(£7-Ret)
can be expressed in Πί form, we merely note that

e e G(U-Έίet) <=>ee G(C-Ret) & (V/)(V#) [(/ and g are strictly

increasing and φe retraces both / and g) ==> (yx)(f(x) = g(x))];

since the second conjunct on the right-hand side of this last equiva-
lence is Πί> we have that G(CT-Ret) is Πί

We next show that for any Πί numerical predicate P there exists
a recursive function hP such that

(vx)[P(x) => hP(x) e G(U-Ret)) & ( - P(x) => φhp{x)

retraces 2Ho functions)].
Let P be given by (3f)(Vx)R(f(x), z), R recursive. Let a be a set

of numbers, and / a partial recursive function, such that:
( i ) / is a unique retracing function which retraces a, and
( i i ) df= {2n + l\neN}.

Let a function h be defined on N-{0} by the relation

h-\n) = {2n + 1, 2n + 2} .

We define a two-place recursive function g by cases, as -follows: (a)
g(z, n) = f(n) if n is odd; (b) g(z, 2k+1) = 2k+1 if R(2k+ί, z);

\ C y{Z, Δ pε{m) Vz{m-\-l) ) — 6 * * β Vε{m) 9

p r o v i d e d t h a t ( c i ) e(j) e h~ι(e(j — 1 ) ) f o r l^j-^m + 1 a n d

( c i i )



72 C. G. JOCKUSCH JR., AND T. G. MCLAUGHLIN

and (d) g(z, n) = 0 in all other cases. (The idea of part (c) in our
definition of g is, of course, to produce a retracing function whose
graph has plenty of binary branching in case -*• P(z); at this point
in our argument we are merely adding binary branching to Yates'
proof of [20, Th. 1].) For each fixed z, let gz denote the function
g(z,n). Now, if -* P(z) then (lf)(Vx)R(f(x),z); let /0 be a particular
function such that (Vαj)i2(Πi£* pj°{j)+1, z). Let {rn}«=0 be any sequence
such that r0 = 2/o(O)+1 & rn+1 = rnp{*in+1)+1 where t e hrι(w) with pw being
the largest prime dividing rn. It is clear from the definition of gz

that gz retraces {rΛ}~=0; moreover, since h is two-to-one with dh^ph,
there are 2*° such sequences {r%}~=0. If, on the other hand, P(z) holds,
then —r(lf)(Vx)R(f(x),z). But if gz retraces a set β then, clearly,
either /S = a or else the exponents in the prime-power factorizations
of the elements of β provide the values for a function f0 such that
(Vx)R(fo(x), z); hence gz retraces only a if P(z) holds. Thus, letting
hP be any one-to-one recursive function such that (Vz)(gz = φhp(z)), we
have that {z\P(z)} is simultaneously 1-1 reduced to G(Z7-Ret) and to
G(C-Ret) via hP.

REMARK 2.2. {e \ φe retraces uncountably many functions} is a
complete Σί s e t - It is Σί since both {e \ φe is a retracing function}
and {<? I φ, is not a countable retracing function} are Σί; a n d it is
complete by the proof of Theorem 2.1.

REMARK 2.3. It is easily seen that Theorem 2.1 continues to hold
if G(C-Ret) and G( ?7-Ret) are replaced by the index sets corresponding
to the classes of countable special retracing functions and unique
special retracing functions. Furthermore, the class of retraceable
functions can be replaced by the more extensive class of regressive
functions as defined in [1]. This last observation is general for the
present paper: those of our theorems which make universal assertions
about retraceable sets and functions can easily be generalized to cover
regressive sets and functions, via recursive equivalence mappings (see
[1]).

3. Our principal concern in this section is to prove the existence
of a nonzero degree Z>, with D < O", such that 0<C ^ D=>C contains
no function which satisfies a countable Π2 normal form. We shall
begin by proving a small but helpful theorem which is quite possibly
known, although we are unable to supply a reference for it; apart
from whatever interest it may have in its own right, this theorem
has the virtue of reducing the technicalities which enter into the
proof of Theorem 3.3.
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THEOREM 3.1. If P is a Π2 normal form, then there is a Π?
predicate Q, of one function variable, such that there exists a degree-
preserving one-to-one correspondence between the solutions of P and
the solutions of Q.

Proof. The idea is simply to use the fact that a Π2 normal form
has certain "Skolem functions" associated with its solutions. Let P be
a IE normal form; thus P(f) <=> {vx)(ly)y>x{\fz)z^R{f{z), f{y)), for some
recursive predicate R. For every function / which satisfies P we
define /* as follows:

M2x) = f(x);M2x + 1) = μy[y > x & (Vz),s*R(Ά*),Άv))]

If / satisfies P, then /* is obviously a total function having the same
degree as /. The mapping /—>/* is the desired degree-preserving
one-to-one correspondence; it remains to construct the corresponding
predicate Q. First, for every function g: N—+N we define a function
9E by gE(x) = g(2x). Thus P(/) =>(/*)* - /. Q is defined as follows:

Q(g) « (vx)[g(2x + 1) = μy(y > x & (Vz)^J?(^(2), gE(y)))] .

Clearly, Q can be expressed as a Π? predicate of g (i.e., the /^-operator
can be eliminated), so it remains only to see that the solutions are
precisely the functions /* such that P(f) holds. But if P(f) holds,
then /* satisfies Q because of the definition of /* and the fact that
(f*)E = /• And if Q(g) holds, then P(gE) and so (gE)* = g.

COROLLARY 3.2. (1) If a degree contains a Π2 definable function,
then it contains a Π? definable function.

( 2 ) If a degree contains a function which satisfies some countable
Π2 normal form, then it contains a function which satisfies some
countable Πϊ predicate of functions.

( 3 ) If a degree contains a JJl definable function, then it contains
only Π2 definable functions.

(4) A countable Π2 normal form has a Π2 definable solution.

Proof. Both (1) and (2) are obvious consequences of Theorem 3.1.
As for (3), let P be a Π2 predicate of functions having/as its unique
solution; and let numbers e0, eλ and a function h0 be given such that
{eoy = h0 and {e^0 = f. Let Q(h) be the predicate: {eJA is total &
Piie.Y) & h = {eQ}{e^h. Then it is easy to see that Q(h) is a Π°2 predicate
having hQ as its unique solution. (4) follows from (3) together with
Theorem 3.1, via Corollary 1.2 (noting that Π? predicates are strongly

THEOREM 3.3. There exists a degree D such that
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( i ) 0<D< O", and
(ii) [O < C ^ D & (P is a countable Π2 normal form) & feC]

Proof. By Corollary 3.2(2), it will suffice to find a D such that
(i) and (ii) hold with "countable Π2 normal form" replaced by "countable
Π? predicate of functions" in (ii). But a function / which represents
such a D can be defined in stages by an ordinary diagonal procedure,
as we shall now show. At the end of each stage s in the definition
of /, the portion / ( s ) of / which has thus far been obtained will be
a finite initial function. We let {/?<}£=<, be a recursive enumeration of
all primitive recursive predicates of one number variable (we could,
equally well for present our purposes, employ a 0"-enumeration of all
general recursive predicates of one number variable); and we fix a
recursive wellordering of N x N.

Stage 0. Set f™ = 0 .
Stage 2s + 1, s :> 0.
Case I. There exist a number n and a finite initial function w

extending / ( 2 s ) such that if u is any finite initial function extending
w then {(s)0}

u(n) is undefined.
Letting (nQ, wQ) be the first such pair (n, w), set / ( 2 s + 1 ) = wQ and

proceed to Stage 2s + 2.
(Thus if Case I holds at Stage 2s + 1, we define / ( 2 s + 1 ) in such a

way that (s)0 will not be an index of a function recursive in /.)
Case II. Case I fails to hold; in addition, there exist a number

n and a finite initial function w extending f(2s) such that [m ^ n &
(wlyw2 are finite initial functions extending w) & ({(s)0}

Wl(m) and
{(s)o}W2(m) are both defined)] => {(s)0}

w^(m) = {(s)0}^(m).
Letting (n0, w0) be the first such pair (n, w), set / ( 2 s + 1 ) = wQ and

proceed to Stage 2s + 2.
(Thus if Case II holds at stage 2s + 1, we define / { 2 s + 1 ) in such

a way that {(s)0}
/ will, if total, be a general recursive function.)

Case III. Cases I and II both fail to hold; in addition, there
exist a number n and a finite initial function w extending / ( 2 s ) such
that (i) {(s)0}

w(k) is defined for all k ^ n, and (ii) ^ ( W W ) .
Letting (n09 w0) be the first such pair (n, w), set / ( 2 s + 1 ) = w0 and

proceed to Stage 2s + 2.
(Thus if Case III holds at stage 2s + 1, we define /<2s+1> in such

a way that if {(s)0}
/ is total then it is not a solution of (vx)R{$h(g(x)).)

Case IV. Cases I-IΠ all fail to hold. Then, as is easily seen, the
following holds for every n: [(w is a finite initial function extending
/ ( 2 s ) ) & ({(s)0}

w(k) is defined for all k ^ n)\ => (Vk)kύnR{8)ι({(s)0}
w(k)).

In this case, set / ( 2 s + 1 ) = / ( 2 s ) and proceed to Stage 2s + 2.
(If Case IV holds at stage 2s + 1, then (v^)i2(s)l({(s)0}

ff(α?)) holds
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for every function g such that (a) g extends / ( 2 s ) and (b) {(s)0}
9 is

total. But since Cases I and II both fail to hold, there must in fact
be a family j ^ ~ of 2Ko functions g, each extending / ( 2 s ), such that
(Qi, $2 e ^ and gγ Φ g2) => {(s)0}

31 and {(s)0}°2 are total and distinct. Thus,
in Case IV, (vx)R{s)l(g(x)) has 2*a solutions.)

Stage 2s, s > 0.
Case A. φs is a total function.
Letting fc be the least number not in δ/(2s~υ, set

and proceed to stage 2s + 1.
(Case A is dealt with so as to insure fφ φs.)
Case B. φs is not total.
In this case, set / ( 2 s ) = /(2s~1} and proceed to stage 2s + 1.
This completes the description of the general stage in the definition

of /; we of course set / = U*/ ( s ) I* *s easy to see that each of
Cases I-IV and A, B presents us with a decision problem of degree
^ O"; hence f ^ O". Moreover O Φ f because of Case A.

Let (vaj)Sβ2(̂ (a?)) be any Πϊ predicate of one function variable and
eL any natural number; and let 2s + 1 be a stage such that (s)0 = el9

(s)1 = e2. Then, from the parenthetical remarks following the descrip-
tions of actions taken under Cases I-IV, we see that if {e1}

/ is total
and satisfies (vx)Re2(g(x)) then either (vx)Re2(g(x)) has 2*° solutions or
{ey is recursive. So it remains only to verify that f < O". But as
is well known, O" contains functions that are Π? definable; hence
f Φ O".

REMARK 3.4. Analogues of Theorem 3.3 for larger numbers of
quantifiers can be proved; in the present paper, however, we are
interested only in the Π2 case.

COROLLARY 3.5. There exists a degree D such that
( i ) 0<D< O".

and
(ii) O < C ^ D => no function belonging to C can be retraced

by a countable retracing function.

Proof. For any a £ N and any number e, the statement that pa

is retraced by e is a Π2 statement—indeed, a strong Π21 statement—
about pa.

REMARK 3.6. Suppose a is a set of numbers such that a is generic
(in the sense of Feferman) for ^-quantifier prenex arithmetical
statements; and suppose D < O" where D = α. Then D meets the
requirements of Theorem 3.3: given such a generic a to start with,
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the proof follows the pattern of Cases I-IV in our definition of / in
the above proof of Theorem 3.3. But there are also degrees satisfying
Theorem 3.3 that are far from having generic representatives; in par-
ticular, there are examples D with D minimal (constructed, of course,
by mixing our argument with Spector's construction of a minimal
degree.)

4. In this section we shall prove several theorems which serve
variously to extend, refine, or supplement some of the contents of
Yates' papers [19] and [20]. We begin by characterizing those pairs
(/, a) such that / is a special retracing function and a is retraced by
a basic subfunction of /. For our characterization, as well as for later
theorems, we need the notion of D-boundedness:

DEFINITION 4.1. Let D be a degree, / a total function from N
into N, and a an infinite subset of N. Then

(1) / i s D-bounded <=> there exists a function h: N—+ N such that
h is recursive in D and (vn)(h(n) > f(n));

( 2 ) a is D-bounded *=> pa is /Abounded. (In the literature, infinite
sets which are not O-bounded have been called hyper immune.)

THEOREM 4.2. Let f be a special retracing function, and let a
be a set retraced by f. The following three statements are equivalent:

( i ) (3/)(/ is a basic retracing function & f retraces a);
(ii) (3/)(/ is a basic retracing function & / C / & f retraces a);
(iii) a is O'-bounded.

Proof, (i) *=> (ii) is immediate since the intersection of any two
special retracing functions which retrace at least one set in common
is again a special retracing function. To see that (iii)=>(ii), assume
a to be O'-bounded; then there exists a function h of degree g O' such
that h(n) > pa(n) for all n. A well known convergence theorem states
that if C ^ Df then [g a one-place function belonging to C] => [there
exists a two-place function g such that g ^ D & (V^)(lims_oo g(s, n)
exists and is equal to g(n))]. Consequently there is a two-place recursive
function h such that (v̂ )(lime_»oo h(s, n) exists and is equal to h(n)).
We define a function / as follows:

f{χ) = y<=>f(χ) = y & Qs)(x ^ h(8,f*(x))) .

It is obvious that / is a partial recursive subf unction of /. Moreover,
it follows easily from the definition of / that f~ι{y) is finite for every
yepf; f o r if yepf t h e n [f(x) = y & xΦy & f * ( y ) = n]=>f*(x) =
n + 1, so that f~ι(y) must be finite since l i m ^ h(s, n + 1) exists.
That / retraces a is also easily verified: we have, for every n, that
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= n and also that #α(w) < Λ(̂ ) = h{s{ri), n) for a suitably
chosen number s(n); thus pa(n) < h(s(n), f*(pa(n))), so that the condition
for including the pair (pα(t&),/(2>α(w))) in / is met. It follows that if
pf £ δf then / meets the requirements of (ii); otherwise, they are
met by the function /0 = {(x, y) | (x, y) ef&f(x) £ δf}. Finally, suppose
that / is a basic retracing function which retraces a. Then

{{x I x e δf & f*(x) =n}\neN}

is a sequence of finite sets; and it is easily seen that the function h
defined by the identity

h(n) = max {x | x e δf & f*(x) ^ n}

is recursive in O' and dominates pa. Thus (ii) => (iii) and the proof is
complete.

COROLLARY 4.3. Let G be the index set corresponding to {f\f is

a retracing function which retraces at least one O'-bounded set}. Then

G is a complete J ^ set of numbers.

Proof. Theorem 4.2 and the remark following Theorem 8 in [12].

Yates observed in [20] that the Kreisel-Shoenfield basis theorem
([18, Theorems 1 and 2]) relativizes routinely to any degree D and
its jump Df (further on in this section we shall explicitly state the
relativized Kreisel-Shoenfield basis theorem as a part of Lemma 4.9);
and he further observed that the resulting relativized basis assertion
easily implies the following lemma (= Theorem 2 of [20]):

LEMMA 4.4 (Yates). Every basic retracing function retraces at
least one set of degree strictly less than O".

COROLLARY 4.5. (1) If a retracing function f retraces no set
of degree < O", then f retraces only sets which fail to be Of-bounded.

( 2 ) If a countable retracing function f retraces no set of degree
<; O', then f retraces only sets which fail to be O'-bounded.

Proof. (1) follows immediately from the combination of Theorem
4.2 with Lemma 4.4. Suppose now that / is countable, and that /
retraces at least one O'-bounded set. By Theorem 4.2, / extends a
basic retracing function /. Since / is countable, / is countable. But
by [12, Theorem 7] (or by Corollary 1.2 and [20, Theorem 5.2]), a
countable basic retracing function retraces at least one set of degree
^ Of. Since / £ / , (2) is proved.
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REMARK 4.6. The converse of Corollary 4.5 (2) is obviously true;
in fact a considerably stronger assertion than the converse of Corollary
4.5 (2) is true, namely [20, Theorem 8] (which we obtain below as
Corollary 4.19). By way of contrast, the converse of Corollary 4.5
(1) is false for the class of unique retracing functions, as we shall
demonstrate further along in this section.

THEOREM 4.7. (1) To every J\\ predicate P of one function
variable there corresponds a general recursive retracing function gP

such that if ŜV is the collection of principal functions retraced by
gP then there is a one-to-one degree-preserving correspondence FP:

(2) If g is a general recursive retracing function and & is
the collection of principal functions retraced by g then & = J?~{P)
for some Πi predicate P; likewise if we omit "general recursive"
and replace "Π?" by "strong Π°2".

Proof. (1) Let P be a Π2 predicate of functions. By Theorem
3.1 there is a predicate Q of the form (yx)R(h(x)), R recursive, whose
solutions are in one-to-one degree-preserving correspondence with those
of P. Let Ω: ̂ (P) —> ^~(Q) be such a correspondence. Suppose /
is a solution of Q. Let a(f) = {f(x) | x e N}. Obviously a(f) and /
have the same degree; and pa[f) is retraced by the general recursive
function g defined as follows:

ί
w(z + 1), if (3w) [w is a finite initial function &

lh(w) - z + 2 & x = w(z + 2) & (\fy)y^z+1R{w(y)y9

x, otherwise.

Moreover, if pβ is retraced by g then β must be of the form {h(x)\xe N}
where h solves Q; so the required correspondence FP: ^~(P) —> 2^P is
given by FP(f) — pamf))> a n d (1) is proved. The proof of (2) is rather
obvious and will be omitted.

DEFINITION 4.8. Let a degree D and a function /: N—>N be given,
and let H = {h\he NlY & (vx)(h(x) > f(x))}. f is uniformly D-major-
reducible <=> there exists an operator Φ from partial functions to partial
functions such that (i) Φ is partial recursive in D (under the definition
of relatively partial recursive operators given in [16]) and (ii) heH=>
Φ(h) is defined and = /.

LEMMA 4.9. Let D be a degree and D a predicate of one number
variable such that D has degree S D.

(1) (Relativized Kreisel-Shoenfield basis theorem.) If(vx)D(f(x))
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has a D-bounded solution, then it has a solution of degree < />'.
(2) (Relativized Kuznecov-Trahtenbrot-Myhill reducibility lem-

ma.) If (vx)D(f(x)) has a unique solution fD, then fD is uniformly
D-maj or reducible.

Proof. As Yates has noted in [20], the proof of [18, Theorems
1 and 2] relativizes without essential change to become a proof of (1).
We obtain (2) as an application of Konig's Lemma. Suppose, then, that
fD is the unique solution of (yχ)D(f(x)) and that (Vn)(g(n)>fD(n)). If w
is a finite initial function, we say that w is g-bounded <=>g(ri) > w(n) holds
for all n e δw. For the remainder of this proof, we use u and w as vari-
ables over the set of (/-bounded finite initial functions. Let S =
{w I (lri)[n^lh(w) &nouoίlength n extending w satisfies (yx)x<nD(ΰ(x))]}.
5 is recursively enumerable in D and g (under a recursive coding of
all finite initial functions) because for each n there are only finitely
many u's of length n. We claim that (vw)[w g S *=> w £ fD]. The
implication from right to left is obvious. Assume w & S; then for
every n ^ lh(w) there is some u of length n extending w such that
(Vx)x<nD(ΰ(x)). By Konig's Lemma, w can therefore be extended to
a total function (necessarily fD) which satisfies (yx)D(f(x)). Thus
w £ S*=> w g fD. So for each n there is exactly one w such that lh(w) —
n + 1 & w £ S. We define wn = the unique w satisfying lh(w) — n + 1
6 w g S. Since wn can be recursively computed from D and g simply
by listing S, and since (Vn)[fD(n) = wn(n)], we see that fD is recursive
in D and g. Moreover, the procedure which we have indicated for
reducing fD to l.u.b. {/>, g) is obviously uniform in g; thus the required
relatively partial recursive operator exists, and (2) is proved.

LEMMA 4.9 (2), in nonrelativized form (i.e., with D = O) and
phrased in term of effective closure in Baire Space, seems to have
been first noticed by Kuznecov and Trahtenbrot [9]; later Myhill [14]
independently proved an equivalent theorem (see [14, p. 207]). We
have included our own proof because (a) [9] apparently exists only
in Russian-language synopsis form and (b) the proof which can be
assembled from theorems and comments in [14] is comparatively
circuitous. Lemma 4.9 (2) provides us with half of the next theorem.

THEOREM 4.10 ([9]; [14]). The Π? definable functions are pre-
cisely the uniformly 0-maj or reducible functions.

Proof. Taking D = O in Lemma 4.9 (2) gives uniform O-major-
reducibility of Π5 definable functions. The reverse inclusion is easily
seen to follow from [14, Theorems 4 and 8].
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REMARK 4.11 The following simple consequence of Theorem 4.10
illustrates the extent to which Lemma 4.9 depends upon domination of
a solution rather than domination merely of the range of a solution:

THEOREM. Every degree which contains a Π? definable function
contains a Π? definable permutation of N.

For the proof, let a function / of degree / be the unique solution
of a Πϊ predicate P; we may assume that N-pf is infinite and also
(see the proof of Theorem 4.7) that / is strictly increasing. Let g
be the strictly increasing function such that pg = N-pf. If for any
two functions h and k we define [h@k](2n) — h(n) and [hφk](2n + 1) =
k(n), then in particular we have / 0 # = a permutation of N; moreover
it is obvious that f@g e f. We claim that f@g is uniformly O-major-
reducible. First,it is clear that there exists a recursive operator Φ:
NN—*NN such that if h dominates f@g then Φ(h) dominates/. Next,
by application of Theorem 4.10 to P we see that / is uniformly O-
majorreducible. But f®g^f. Hence / ® # is uniformly 0-major-
reducible, and so by Theorem 4.10 / © # is Π? definable.

We now wish to define a special class £%f of degrees. In stating
our definition of έ%f we shall make use of the particular hyperarith-
metical sets Hγi Ύ e O» defined by Kleene in [8]; and we shall abbreviate
Hr by y.

DEFINITION 4.12. 3ίf = [D | (3T)(Ύ G O & ^ ^ ^ ?')}•

THEOREM 4.13. If De^f, then there exists a uniformly O-
maj or reducible function of degree D.

Proof. Suppose • y ^ D ^ γ ' j e O . We first observe that y contains
a uniformly O-majorreducible function /; for by [3, p. 200] «y contains
a Π2 definable function and hence (by Corollary 3.2 (1)) contains a Π?
definable function, so that Lemma 4.9 (2) applies. Let g be a function
of degree D. Since y^*D^y', it follows from the convergence theorem
cited in the proof of Theorem 4.2 that there exists a two-place function
g such that g is recursive in / and (Vx)[g(x) = lim^^ g(s, x)]. As in
the proof of [11, Theorem 1.2], we define a function h by the identity

h(n) = μs(yx)x^n[g(s, x) = g(x)] .

Since g = D & g ^f y & y ̂ , D, we have h ̂  g.Ψe now claim that
there is a partial recursive operator Φ such that if k is a function
which majorizes both / and h then Φ(k) is defined and = g. For
suppose k majorizes both / and h; i.e., suppose that
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(yn)[k(n) > max {f(n), h{n)}\ .

Let a — ph. By the relativized form of [15, Theorem 21] there is a
function p such that (i) p ^ k and (ii) {Dpin)}^=0 is a disjoint sequence
of finite sets each term of which has nonempty intersection with a.
Moreover we may assume with no loss of generality that

(Vn)(vx)[x e Dp{n) =>x> h(n)] .

We shall verify the following equivalence:

( * ) g{x) = V~ (m)[n ^ x & (vs)(s e Dp{n) => g(s, x) = y)\ .

Since p^k&g^f&f^k (recall that / is uniformly O-major-
reducible), (*) provides a procedure for calculating g recursively in k;
furthermore, this procedure is uniform in k since (i) / is computable
uniformly from k and (ii) the construction of p from k is uniform in
k (as is clear from the proof of [15, Th. 21]). Thus verification of
(*) is sufficient for proving the existence of the indicated operator Φ.
The => half of (*) is obvious since g(x) = l i n v ^ g(s, x). For the «= half,
suppose that x, y and n are such that n >̂ x & (Vs)[s e Dp{n) => g(s, x) —
y\. Choose a number sQ such that soeDp{n) Π #. Then sQ > h(n); so,
since h is nondecreasing, we have s0 = h(u) for some u ^ x. Therefore,
by the definition of h, g(s0, x) — g(x) — y and the verification of (*) is
complete. Now define kQ(x) = max {/(»), h(x)} + 1. We claim that k0

is a uniformly O-majorreducible function of degree D. In the first
place, kQ does indeed have degree D. For since k0 majorizes both /
and h, we have D — g = Φ(k0) s koy while on the other hand k0 ^ g
since f ^ g & h<* g. Finally, if k majorizes k0 then Φ(k) = g; so, since
&0 g g, there is a partial recursive operator Ψ such that Ψ(k) = Λo for
any & which majorizes Ao. The proof is complete.

It is easy to strengthen Theorem 4.13 so that it applies to all
those relativizations of the hyperarithmetical hierarchy which arise
from uniformly O-majorreducible functions: suppose that / is uniformly
O-majorreducible and that 7 e Of (where Of = the set of Kleene
notations for ordinals recursive in /; see [8]), and let yf denote the
degree of the /-hyperarithmetical set H{; then yf^D^yf=>D contains
a uniformly O-majorreducible function. It is a consequence of this
extended version of Theorem 4.13 that there exist uniformly O-major-
reducible functions of degree incomparable with O', so that the converse
of Theorem 4.13 is false.

THEOREM 4.14. ( 1 ) If Deβ^ then D contains a set a with
the properties: (la) pa is retraced by a general recursive unique
retracing function; and (lb) C gέ D => pa is not C-bounded.
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( 2 ) For every n^2 there exists a Π°» predicate P of one number
variable such that if β = {n\ P{n)} then β has the properties: (2a)
βeθ{n}; (2b) pβ is retraced by a general recursive unique retracing
function; and (2c) C Jέ 0{n) =^> pβ is not C-bounded. ((2) provides the
answer to a question raised in [20].)

Proof, (la) It is clear from Theorems 4.7, 4.10 and 4.13 that if
D e ̂ f then D contains a set a such that pa is retraced by a general
recursive unique retracing function.

(lb) Suppose that a is a set belonging to D with the property
that pa is retraced by a general recursive unique retracing function.
Suppose further that pa is C-bounded. By Theorem 4.7, pa is Π°
definable; hence (by Lemma 4.9 (2)) pa is uniformly O-majorreducible.
Therefore D = pa^C.

(2a—b) Myhill has shown in [14, Th. 11] that for each n ;> 2
there exists a uniformly O-majorreducible function / such that the
set a = {2*3V \ f(x) = y} is a complete Πi s e t of numbers. Given such
a function /, define β = {f(n) \ n e N}. The HI expressibility of β
easily follows from the JJ°n expressibility of a; moreover, it is clear
that a ^ β and hence β e O(n). Since / is uniformly O-majorreducible,
Theorem 4.10 implies that / is Π? definable; but from the Π? definability
of / it follows as in the proof of Theorem 4.7 that pβ is retraced by
a general recursive unique retracing function.

(2c) The proof here, for any β satisfying (2a—b), exactly parallels
the proof of (lb).

COROLLARY 4.15. The converse of Corollary 4.5 (1) is false
relative to the class of unique retracing functions.

Proof. Apply Theorem 4.14 (1) to any degree D such that

σ <D<O".

DEFINITION 4.16 Let P be a ΠS normal form; say,

P(f) J

By a Psequence we mean a sequence {wΛ}£=0 of nonempty finite initial
functions satisfying the following two conditions:

») >n & R(wn(j), wn(lh(wn))]

(ii) (yx)(limn^oown(x) exists) .

By a pseudosolution of P we mean a function / for which there exists
a P-sequence {wn}Z^ such that (vx)(f(x) = lim^eo wn(x)). Finally, by
a strongly countable Y[°2 predicate of functions we mean one which is
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equivalent to (i.e., has the same solutions as) some Π2 normal form
having only countably many pseudosolutions.

THEOREM 4.17. ( 1 ) If P is a J[l normal form and f is a
solution of P, then f is a pseudosolution of P.

(2 ) Any strong Y[°2 predicate P of one function variable can be
expressed as a Π2 normal form Q such that the solutions of Q = the
pseudosolutions of Q (and hence Q is strongly countable if P is
countable).

( 3 ) If P is a Yll normal form, then there is a strong Π2
predicate Q such that the solutions of Q — the pseudosolutions of P.

Proof. We omit the routine verifications of (1) and (2). Suppose
that P(g)<=>(yx)(ly)y>x(vz)z^xR(g(z)1 g{y)), R recursive. If u is a sequence
number, we set L(u) — max {n | (u)n > 0}; and, for any two sequence
numbers uγ and u2 we say that uλ extends u2 provided

L(uλ) ^ L(u2) & 2

Let a predicate Q be defined as follows:

Q(g) « (vx)B(g(x)) ,

where B is defined by
B(w) ^=> w is a sequence number & (3w0) \wo is a sequence number

& wQ extends w & {R{wι, w0) holds for every sequence
number wλ such that wι is extended by w)].

Clearly, B ^ 0'; so Q is a strong Π2 predicate. It is straightforward
to verify that Q's solutions are exactly P's pseudosolutions, completing
the proof of (3).

THEOREM 4.18. Let f be a special retracing function and P a J[°2

normal form. Denote by S^(P) the collection of principal functions
which are solutions of P, by ^V(P) the collection of principal functions
which are pseudosolutions of P, and by & the collection of principal
functions retraced by f. Then f has a partial recursive subfunction
f such that

where & is the collection of principal functions retraced by f.
(Since for every e uψe retraces / " is a strong Π2 predicate of /, it
follows from Theorem 4.17 (2) and Theorem 4.23 that the inclusion
& Π Sζ(P) S & cannot in general be replaced by equality.)

Proof. Suppose P(g) <=> (vx)(ly)y>x(yz)zύxR(g(z), g(y)). Let w0, w,,
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w2 be a fixed recursive enumeration of all nonempty finite initial
functions. We define a partial recursive subf unction / of /, as follows;

f(x) = u<=>f(x) = u & (ln)[wn(lh(wn)) eδf & xe f{wn{lh{wn)))

& (wn extends the finite initial function which enumerates {y | y ^ x] Π
f(wn(lh(wn))) in order of magnitude) &

(Vz),sf.ωR(wn(z), wn(lh(wn)))] .

We claim that / meets the requirements of the theorem. Suppose
first that β is a set such that P(pβ) holds and pβ is retraced by / .
We wish to show that f(pβ(n)) is defined for all n. Now, f*(Pβ(n)) = n.
Let wt be a finite initial function such that

wt(lh(wt))eβ & pβ(n)ef(wt(lh(wt))) &

[wt extends the finite initial function which enumerates

f(wt(lh(wt))) Γ\{y\y^ p β ( n ) }

in order of magnitude] & (vz)z<:nR(wt(z), wt(lh(wt))); such a wt certainly
exists since pβ is a solution of P. In view of the stipulated properties
of wt1 the condition for setting f(pβ(n)) — f(pβ(n)) is met; hence
pβ(n) e δf. So we have pβ e &. For the remaining inclusion, suppose
that pβ is a principal function retraced by / . We wish to show that
pβ e ^p(-P). This means that we must define a P-sequence {wn.}J=0

such that (vx)(pβ(x) = limj^^WnXx)). As wno we may take any wn

satisfying the defining condition for f(pβ(0)) = ^(0) . Suppose that
Wn0,

 β ,ww. have been defined; and assume, as part of the inductive
hypothesis, that, for 0 ^ i :g j 9 we have

w%i(lh(w%i)) eδf & pβ{i) e f(wn.(lh(wn.))) .

Since f{pβ{k)) is defined for all k, there must exist a finite initial
function wt with the following properties: wt(lh(wt)) eδf; {y\y e β &
y g pβ(j + 1)} = f(wt(lh(wt))) Π {y I y ^ ^ ( i + 1)}; wt extends the finite
initial function which enumerates f(wt(lh(wt))) Π {y \ y ^ pβ(j + 1)} in
order of magnitude; and (yz)z^j+ιR(wt(z), wt(lh(wt))). Let wnj+i be the
first such Wf Clearly, the sequence wnQ, wni, defined inductively
in this way has the property: (vx)(3j)(vk)[k ^ j => wnjc(x) and wn.(x) are
defined and are both equal to pβ(x)]. Moreover it is clear that \wn.}J=Q

is a P-sequence. Thus pβe^p(P), and the proof is complete.

We now exhibit [20, Th. 8] as an application of Theorems 4.2, 4.17
(2) and 4.18.

COROLLARY 4.19 (Yates). Let f be a retracing function, and pa



85

a principal function of degree ^ O' such that f retraces pa. Then
pa is retraced by a basic unique retracing function f such that f Qf.

Proof. It is easily seen that since pa has degree ^O' it is the
unique solution of some strong J[°2 predicate P. Hence, by Theorem
4.17 (2), we can conclude from Theorem 4.18 that pa is retraced by
some unique retracing function g such that g §Ξ /. But by Theorem
4.2, any such function g must have a subfunction / such that / is a
basic retracing function which retraces pa. (The portion of Corollary
4.19 which asserts that / £ / can, of course, be obtained simply by
intersecting / with any basic unique retracing function h such that
h retraces pa.)

THEOREM 4.20. (1) If a countable Π? predicate (countable strong
Π2 predicate) of functions has a O-bounded (O'-bounded) solution, then
it has a recursive solution (a solution of degree <£ O').

( 2) If a basic retracing function f retraces pa and pa solves a
countable strong Π2 predicate, then f retraces at least one principal
function of degree ^ Of.

Proof. (1) Let P be a countable strong Π2 predicate of func-
tions; and let h be a function, recursive in O', such that h bounds
some solution of P. Then the predicate

Q(f) « [P(f) & (vn)(f(n)

has at least one solution and not more than ^ 0 ; moreover, all solutions
of Q are O'-bounded. By Corollary 1.2 some solution f0 of Q is the
unique solution of a strong Π2 predicate Q*. Since /0 is Or-bounded,
it is recursive in 0' by Lemma 4.9(2) applied to Q*. The argument
for Πϊ predicates is similar.

(2) follows from (1), Theorem 4.7 (2), and the fact that the
conjunction of two strong Π2 predicates is strong Π2; for if pa is
retraced by a basic retracing function then pa is O'-bounded. (Alter-
natively one can apply Theorem 4.17 (2), Theorem 4.18 and [12, Th. 7].)

The following lemma is implied by an elaborated version of [13,
Th. 1] to be published elsewhere; we shall therefore confine ourselves
to giving a brief informal account of its proof.

LEMMA 4.21. Let f be a basic retracing function. There exists
a basic retracing function gf such that

( i ) gf retraces pa => (3/3) (/ retraces pβ & a £ β)
and

(ii) gf retraces pa => a ^ 0''.
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Proof (in outline). We construct gf from / by a straightforward
priority scheme. For each n, let Hn = {x \ x e δf & f*(x) = n). Since
/ is basic, {Hn}~=0 is a recursive sequence of disjoint finite sets. We
add pairs (x, y) to gf, adding only finitely many pairs at any given
stage of the construction, in such a way that

(3ra)(3g)[& eHm&yeHq&(m = q = 0 or m > q) & y e f(x)]

moreover, if (x,y) is added to gf at stage s, and if xeHu then
subsequently we add (z,y) to gf provided z e Ht, unless x is "injured"
at some point after stage s. If x is injured after stage s, we then
fix upon a new set Ht, from which to draw ^/-preimages of y. But
the construction is so arranged that only finitely many 37-preimages
of a given y are ever injured, and so gf turns out to be a finite-to-
one function satisfying (i). A number x is said to be injured at
stage s of the construction if by stage s we have (1) (x,y) e gf for
some y and (2) (3β)β^;(a.)(3ί)ί^;(x)(3w)[(ί, u) eφl & u^ x\. Once a number
is injured, we eventually get around to killing off (i.e., halting at a
finite level) all potential solutions of the predicate "gf retraces pa"
which pass through the injured number. Thus every surviving infinite
branch in the graph of gf must dominate (eventually) any given partial
recursive function. As is well known, this implies that all surviving
infinite branches have degree ^ O', so (ii) is also satisfied.

A major part of our next theorem was established by Yates in
[20], namely: there exists a basic retracing function /0 such that /0

retraces no function of degree ^ O''. We shall include our own proof
of Yates' theorem as part of the proof of Theorem 4.22. It seems
to us that our argument is a little more straightforward than the
argument in [20]; however, it should be noted that in [20] Yates
proved directly the (equivalent) theorem stating that there exists a
basic retracing function which retraces no JJl set of numbers.

THEOREM 4.22. There exists a general recursive, basic retracing
function f such that (vα) (/ retraces pa => a > O').

Proof. We first show the existence of a function fQ as in the
remarks preceding the statement of the theorem. We begin by defining
a three-place partial recursive function Ψ (with recursive domain) as
follows:

Ψ(e, x, s) ~

φl's(max {t i φl's(t, x) is defined}, x), if

{t I φY(t, x) is defined} Φ 0

undefined, otherwise .
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Now let fγ be the function defined by f^\x) — {2x, 2x + 1}, and define
/ from fλ by the following equivalence:

V<=>fi(x) = V & (yz\e}llx)(^m)m^t(38)8^x [either

Φ(fi*(z)j m> s ) ί s undefined or W(f?(z), m, s) Φ c}liz)(m)].

It is immediately clear that / is a partial recursive subf unction of /
such that pfaδf, whence / is special. Next, it is easy to see that /
can retrace no function of degree ^ 0'. For suppose / retraces pβ

and pβ has degree ^ O'. Then there must be a two-place recursive
function φ\ such that, for every z, lim^^ φ\(s, z) exists and = cβ(z).
Let b be that element of β such that /*(&) = e. Let a; be an element
of β such that x > b & x^u^w, where u and w are numbers such
that d^b=> φl'u(w, d) is defined and (vr)(r ^ w & d^b=> φ\{r, d) =
lim^oo φl(s, d)). Then, clearly, we cannot include x in δf; thus β is
not retraced by /. It remains to prove that / does retrace some set.
We show how to define a strictly increasing sequence {rJ|L0 so that
/ retraces the range of {r^o. Let r0 be any fixed point of /; since
/*(r0) = 0, it follows from our convention that φ\ is the empty function
(§ 1) that there are infinitely many s for which W(f?(r0), r0, s) is
undefined. Now suppose r0, , rz have been defined in such a way
that r0 < < τι (if I > 0), l^ j > 0 «/(r y ) - r^u and, for 0 ^ j ^l,
there exist mό ^ r̂  and infinitely many s such that either Ψ(j, mj7 s)
is undefined or Ψ(j, mjy s) Φ cγl(rj)(m,j). Let q0, qx be the two numbers
q such that fx(q) — rt. Because of the inductive hypotheses concerning
r0,

 % ,τu it suffices to show that either (3m ^ q0)[for infinitely many
s either Ψ(l + 1, m, s) is undefined or Ψ(l + 1, m, s) Φ c^l(go)(m)] or
(3m ^ gΊ)[for infinitely many s either Ψ(l + 1, m, s) is undefined or
?F(ί + 1, m, s) ^ cfl(ίl)(m)]. But suppose, e.g., that q0 > gt; then the
only alternative to the validity of at least one of the above existential
statements is to have both

lim Ψ(l + 1, q19 s) = 0 and lim Ψ(l + 1, q19 s) = 1 ,

an obvious impossibility. Similarly if qλ > g0. Thus, we can continue
the induction from I to I + 1, and the existence of the required
sequence {rJΓ=o follows. (Indeed, it is not difficult to show that—as
also in Yates' proof—there is a surviving branch of every degree
>̂ O".) Thus / serves as fQ. Notice that every set retraced by / is

O-bounded. (This is also a feature of Yates' construction.) To obtain
the theorem as stated, we must (in view of Lemma 4.9 (1)) sacrifice
the O-boundedness of the solutions. Let 07 be related to / as in
Lemma 4.21. By Lemma 4.21 (i) and the fact that retraceable sets
are introreducible ([2]), for every set β retraced by gj there is a set
β0 retraced by / such that β ^ βo; while by Lemma 4.21 (ii) every
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set retraced by gy has degree ^ O\ But no set retraced by / has
degree S 0'; hence every set a retraced by gy satisfies a > 0'. Now
by applying two successive recursive equivalences, the first one being
onto ΛΓand the second being as in the proof of [1, Proposition 5 (b)],
we obtain a retracing function h such that (a) the graph of h is
recursively equivalent to that of gy and (b) dh is recursive. Hence
there exists a basic retracing function h such that dh = N and the
graph of h is recursively equivalent to that of gy. Then each set
retraced by h is recursively equivalent to one retraced by gy. But
any two recursively equivalent retraceable sets have the same degree,
so we may take / = h.

THEOREM 4.23. There exists a degree C strictly between Or and
0" such that [D ^> C & D contains a Πi definable function] => [there
exists a J[°2 normal form PD with the properties:

( i ) PD has a unique solution, call it fD;
(π) fneD;
(iii) fD is retraced by a general recursive retracing function;
(iv) any Π2 normal form having fD as a solution has 2Ko

pseudosolutions.]
(In particular, by Theorems 4,10 and 4.13, (i) —(iv) hold for any D^C
such that

Proof. Let / be as in Theorem 4.22. Then [20, Th. 2] implies
that / retraces at least one set a such that O' < cc < O"'. Let a0 be
one particular such set. Let g be a general recursive basic retracing
function which retraces at least one set from each degree; e.g., we
can take g to be the function f defined by frι{%) — {2x,2x + 1}. Let
D be a Turing degree ^ αα; and let τ0 be a particular set of degree
D such that g retraces τ0. By [2, Proposition P4] there exists a
retracing function h which retraces the range of the function paQ{pϊ{){x)).
Moreover, a close look at the proof of [2, Proposition P4] shows that
we can demand of h that it be general recursive and basic and retrace
only sets which are of the form p[pa[pr(%))] where / retraces a and
g retraces 7. Since ô ̂  <*0 and a0 is introreducible, we see that the
range, β, of paQ(Pr0(

χ)) is a s e t of degree yo(= />). Suppose there exists
a strongly countable Π2 normal form P such that P(Pβ). Then, by
Theorem 4.17 (3) and Theorem 4.20 (2), h retraces at least one set, say π,
of degree <L O\ But π = p[pa(pAχ))] where / retraces a and g retraces
7; so, since a is introreducible, we have that a <Zπ ̂  0'. This,
however, contradicts the properties of /. Thus pβ (i.e., p^iPγ^x))) can
satisfy no strongly countable Π2 normal form. Suppose D contains a
function k such that k is the unique solution of a Π? predicate. Then
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by Corollary 3.2 (3) D contains only functions which are Π2 definable.
So let Po be a Π2 normal form such that pβ is the unique solution of
Po. If Q is any Π2 normal form such that pβ solves Q, then Q has
uncountably many pseudosolutions. But by Theorem 4β17 (3) the set
of all pseudosolutions of a Π2 normal form is closed in Baire Space;
hence the pseudosolutions of Q are 2**° in number and we may take
PD — PQ, fo = Pβ

REMARK 4.24. The functions βD obtained in the above proof of
Theorem 4.23 are not O-bounded. However, by using the analogue for
strong Π2 predicates of Theorem 5.1 below, we can obtain Theorem
4.23 with the functions βD O-bounded. In fact, an alternative proof
of Theorem 4.23 can be given in which instead of Theorem 4.22 we
use (a) the strong Π° analogue of Theorem 5.1 and (b) the fact (obtained
by a minor variation on the proof of Theorem 3.3) that for any degree
Z), there exists a degree C such that D < C < />' and some function
belonging to C has the property of not satisfying any countable predi-
cate of the form (yx)D(f(x)) where D has degree s, D. If question
Q3 at the end of the paper has an affirmative answer, then the range
of degrees D in Theorem 4.23 can be extended to cover precisely all
D j£ O' which contain Π? definable functions.

5. In this section a function / will be called countahly Π? if /
satisfies some countable Π? predicate. A set a will be called coimtably
HI (Π? definable) if pa is countably Π? (Π? definable.) If a is non-
recursive and Π°i definable, then it follows immediately from Theorem
4.10 and [5, Corollary 3.4] that N-a cannot be Π? definable. The
countably Π? s e t s differ radically in this respect from the Π? definable
sets, as the following theorem shows.

THEOREM 5.1. If a is countably Π? αwd β is equivalent to a
via (unbounded) truth tables, then β is countably Π!

Proof. We first prove a lemma which shows that we may replace
principal functions by characteristic functions.

LEMMA 5.2. // 7 is an infinite set, then pr is countably Π? if
and only if cr is countably Πϊ

Proof. Assume pγ is among the countably many solutions of
(Vx)R(f(x)), R recursive. In this proof we use w as a variable for
strictly increasing finite initial functions. Define a new Π? predicate
Q(f) by
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(Vx)[f(x) e {0,1}] & (vw)(vy)[pw = {x \ x ^ y & f(x) = 1}

Clearly, Q(cr) holds. Also, whenever Q(f) holds, then / is the charac-
teristic function of a set δ such that either δ is finite or pγ satisfies
(yx)R(f(x)). Hence Q is countable, so c, is countably Π? The proof
of the converse is similar.

The proof of the theorem is similar to the proof of Corollary 3.2
(3). Assume a = ttβ. Then by a theorem of Kerode [16, p. 250],
there exist numbers e0, ex such that {eo}°a = cβ, {ej'β = ca, and for every
total function h the functions {eo}

h and [e^1 are total. Assume also that
ca is among the countably many solutions of (yx)R(g(x)), R recursive.
Consider the following predicate Q(h):

(Vx)R({e1}
h(x)) & {eoγ*h = h .

Q(h) can be written as a Πϊ predicate because all the functions
mentioned in it are total. Clearly Q(cβ) holds. Now any function h
such that Q(h) holds has the same degree as {βj/ι, where [e^h is a
solution of the countable predicate (yx)R(g(x)). Thus Q is countable,
so cβ is countably Π? The theorem now follows from the lemma.

Since (by Lemma 4.9 (1)) nonrecursive ΠS definable sets are not
O-bounded, the following theorem demonstrates the existence of a
variety of sets which are countably Πϊ but not Π? definable.

THEOREM 5.3. If D contains a Π? definable set then D contains
a O-bounded set β such that β is countably Πi (Hence, in particular,
D contains such a set β provided DeJ%f; a similar remark applies
to Theorem 5.4 below.) If D is a recursively enumerable degree then
D contains a recursively enumerable set oc such that oc is countably Hi

Proof. Suppose oί£D,a Φ 0 , and α: is Π! definable. Let β =
[2xZy\xQa & yeN). Then β is truth-table equivalent to a; hence,
by Theorem 5.1, β is countably Π! Obviously, β has an infinite
recursive subset and is therefore O-bounded. If D is recursively
enumerable then by [19, Th. 2] D contains a recursively enumerable
set a such that N-a is retraced by a general recursive unique retracing
function. By Theorem 4.7 (2) N-a is Πϊ definable. Hence a is
countably Π? by Theorem 5.1.

THEOREM 5.4. Let D be a degree containing a Π? definable set
and such that D ̂  0'. Then D contains a set a such that pa is
retraced by a general recursive, basic, countable retracing function
but pa does not satisfy any unique strong Π2 predicate (and hence,



COUNTABLE RETRACING FUNCTIONS AND Π<> PREDICATES 91

in particular, pa is not retraced by any unique retracing function).

Proof. Assume D ̂ LO' and D contains a Π? definable set. By
Theorem 5.3 there is a O-bounded, countably Π? set /S of degree D.
Let a = {pβ(n) \ne N}. pa is O-bounded since β is O-bounded. By
the proof of Theorem 4.7 (1), pa is retraced by a general recursive,
countable retracing function /. Since pa is O-bounded, it follows by
a trivial adjustment of the proof of Theorem 4.2 that / has a basic
retracing subfunction / such that / retraces pa and df is recursive.
Hence there is a general recursive, basic, countable retracing function
h such that h retraces pa. Let P be a unique strong Π2 predicate.
Then by Lemma 4.9 (2) we have that P(£θ=>tf^ O'; therefore, since
O' Sέ D and D = a, we conclude that -* P(pa). (If we examine carefully
the proof of Theorem 5.1 we see that Theorem 5.4 can be proved
subject to the added condition that all functions other than pa which
are retraced by h are recursive.)

The sets which we have thus far shown to be countably Πϊ but
not Π? definable are all O-bounded; and indeed, the proof that these
sets are not Πϊ definable is precisely that they are O-bounded but
not recursive. However, our last theorem provides examples which
are not O-bounded.

THEOREM 5.5. O < D S O' => D contains a set a which is countably
Π? but is neither Π? definable nor O-bounded.

Proof. If O<D^O\ then by [4, Theorems 4.2 and 5.2] D
contains a set a such that a is semirecursive, splits every infinite
recursive set, and is not O-bounded. (A semirecursive set is a set β
for which there exists a general recursive function f(x, y)—called a
selector function f o r β — s u c h t h a t (yx)(vy)[f(x, y) e {x, y] & ( ( x e β o r
y e β)=>f(x, y) e β)].) If f(x, y) is a selector function for a semirecursive
set β and β splits every infinite recursive set, then every set Φ β for
which f(x, y) is also a selector function is either finite or cofinite.
From this it follows that every such β—and hence in particular our
set a—is countably Π?; w e omit details. It is clear from [5, Corollary
5.4] and the proof of [5, Th. 5.2] that a cannot be introreducible and
hence (Th. 4.10) cannot be Π? definable.

Among the many questions relating to this paper which we have
so far been unable to answer, the following three strike us as being
of greatest interest:

Ql. Must a function which satisfies a countable Π2 normal form
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be Π2 definable? We forcefully conjecture a negative answer, and
remark that the negative answer to the corresponding question for
the class of strong J[°2 predicates is contained in Theorem 5.4.

Q2. Does there exist a set a, recursively enumerable in O', such
that pa satisfies no countable Π2 predicate of functions? (or, even,
fails to be Π°2 definable?)

Q3. Is it the case that if D and C are degrees satisfying C j£ D
then C contains a set β such that pβ solves no countable predicate
of the form (vx)D(f(x)) where D is of degree <L /)? It seems very
plausible to us that this is true.
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