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A REPRESENTATION THEOREM FOR MEASURES
ON INFINITE DIMENSIONAL SPACES

FRANZ HARPAIN AND MAURICE SION

If X is a locally compact, regular topological space, then
the well known Riesz representation theorem sets up an
isomorphism between the family of all bounded Radon outer
measures on X and the set of continuous positive linear
functionals on the family of continuous functions with compact
support in X. In this isomorphism corresponding elements, I
a linear functional and μ a measure, satisfy the relationship

l(f) = \fdμ for all continuous functions / with compact support

in X
Since an infinite product of locally compact, regular spaces

is in general no longer locally compact with respect to the
product topology, the Riesz representation theorem fails to
hold for such spaces. In this paper, an analogue of the Riesz
representation theorem is obtained for this case.

The main idea is to replace the various families mentioned above
by the following:

( i ) A family ^ of cylinders whose elements act like compact
sets for a "pseudo-topology" ^ , where & is closed under finite inter-
sections and countable unions and is a subset of the product topology.

(ii) A family M of bounded outer measures, related to ^ and
5^ in much the same way as bounded Radon outer measures are
related to compact and open sets.

(iii) A family F of functions depending only on a finite number
of coordinates, with respect to which they are continuous and have
compact support.

(iv) A family L of positive linear functionals on the linear span of F.
Under the added hypothesis of σ-compactness of the coordinate

spaces, we show that L and M are isomorphic in such a way that
corresponding elements, I in L and μ in ikf, satisfy the relationship
l(f) = f fdμ for all / in F.

Moreover we show that the elements of M can be viewed as the
projective limit measures of projective systems of bounded regular
Borel measures.

From the integrability of the members of F, it follows that all bounded
Borel functions which depend only on a finite number of coordinates are
also integrable. Thus the simple functions used by Silov [7] and the tame
functions used by Segal [6] and Gross [2] in the development of an
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integration theory on Hubert space are included among the integrable
functions of the measures considered here. (For a good guide to the
literature in this area see the bibliography in Gross [3].) Our results
therefore not only characterize an important class of linear functionals
in terms of projective limits of regular Borel measures, but also enable
one to extend these functionals to a much wider class of functions
through a standard integral with respect to a measure, thereby obviating
the need to develop a special theory of integration in infinite dimensional
spaces for this purpose.

1* General notation*
(1) 0 is the empty set.
(2) ω is the set of natural numbers.
(3) R is the set of real numbers.
(4) & is a compact family if and only if for every subfamily

Jzf of ^ , if the intersection of any finite number of members of
is nonvoid, then the intersection of all members of Szf is nonvoid.

( 5 ) For / a function on X to R and A c X,
f\ A is the restriction of / to A,
1A is the characteristic function of A,

f+(x) = max {0, f(x)} for xeX,
support / = closure {x: f(x) > 0} if X is a topological space.

( 6 ) If for n e ω, an is a set, an e R, fn is a function on X to iϋ, then
an\a \ϊ and only if anaan+1 and \Jn^ωan = OL,
an I a if and only if an ^ an+1 and limweω an = a,
fn]f if and only if for all xeX, fn(x) ^ fn+i(%) and

limneωfn(x) =f(x).
(7) For I an index set and Xt a set for each iel,

JlieiXi = {x:x is a function of / with ^ G J^ for each iel}.
(8) μ is a Caratheodory measure on X if and only if μ is a

function on the family of all subsets of X such that μ(0) — 0 and
0 ^ μ(A) ^ Σ . 6 ω μ(Bn) ^ °o whenever A c LLeω Bn c X

(9) For μ 2L Caratheodory measure on X, A is /^-measurable if
and only if Ac X and for every B e l , μ{B) = μ(B ί i4) + μ(B - A).
^ μ = {A: A is //-measurable}.

(10) μ is a S^-outer measure on X if and only if μ is a Caratheodory
measure on X, g? c ^ , and for every A c X, μ(A) = inf {//(!?): B e g 7

and A c 5 } .
(11) μ is the Caratheodory measure on X generated by τ and

5^ if and only if & is a family of subsets of X, τ(A) ^ 0 for every
A e gf, and for J5 aXμ(B) = inf {Σ^e^ τ(A): ^ c ^ , J T is countable
and
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(12) For X a topological space, μ is a Radon outer measure on
X if and only if μ is a Caratheodory measure on X such that

(1) open sets are /^-measurable,
(2) If C is compact then μ(C) < °*,
( 3 ) if A is open then μ(A) = sup {μ(C): C is compact, C a A},
( 4 ) if B c X then μ(B) = inf {μ(A): A is open, B c A}.

(13) For X a topological space, μ is the topological measure
cranked by τ if and only if τ is a function on the family of closed
compact subsets of X, τ*(A) = sup {τ(Q: C is closed compact and C a A}
for A an open subset of X, and μ is the Caratheodory measure on X
generated by τ* and the family of open subsets of X.

(14) REMARKS. We mention here two well known facts about
Caratheodory measures:

(1) The Caratheodory measure on X generated by τ and $?
is in fact a Caratheodory measure on X.

(2) If X is locally compact and regular and τ is a function
on the family of closed compact subsets of X such that for A, B
closed and compact we have 0 ^ τ{A) <^ τ(A U ΰ ) ^ τ(A) + τ(B) < oo
and τ(A U B) = τ(A) 4- τ(B) if An B = 0, then the topological
measure cranked by τ is a Radon outer measure on X. (See for
example Sion [8].)

2* The family & of cylinders. Throughout this paper we
suppose that T is any index set and that for each t e T, Yt is a locally
compact, σ-compact and regular topological space.

2.1. DEFINITIONS.

( l ) - a r = π « β Γ r f .
(2) 7 is the set of nonvoid finite subsets of T, ordered by in-

clusion.
For i,j el with ίaj

(3) Xi = Πίei Γί is equipped with the product topology (which
is locally compact, σ-compact and regular),

(4) 3ίfl is the family of closed compact subsets of Xi9

(5) τzi (respectively πiό) is the canonical projection of X (re-
spectively Xό) onto X^

( 6 ) For A c X,, cyl A = πτι[A\.
If no confusion is possible we will for te T identify t and {ί}, F t

and X{ί}. Thus Yt = X{t} = Xt and

2.2 . D E F I N I T I O N S .

( 1 ) 9 f = {a: t h e r e e x i s t s i G I a n d β e ^ w i t h α: = cy l /9}. T h u s
^ is t h e f a m i l y of c y l i n d e r s e t s w h i c h f o r s o m e iel h a v e a c o m p a c t
b a s e in Xi%
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(2) ^o is the closure under finite intersections of the family of
complements of sets in ^.

(3) <& is the closure of Ŝ o under countable unions.

The essential properties of ^ are the following:

THEOREM 2.3. <& is a compact family.

COROLLARY 2.4. The closure of ^ under finite unions is a
compact family.

COROLLARY 2.5. If ae^ and, for each neω, Bne&0 with
neωBn then there exists Neω such that aa\Jξ=ΌBn.

Proof of 2.3. Let j y be any subfamily of ^ such that for any
nonvoid finite BCLS/ we have ΓϊaeB^Φ 0 For each α e j / let
ia G / be such that a = cyl β for some β e 3tla. Let S = \Jae^ ia

 a n ( i
for each t e S choose at e sf with t e iat and let Ct = πt[at]. Then Ct

is compact in Xt and Ct Φ 0. Let z be a fixed point in X with zt e Ct

for each t e S.
Then C = {x e X: xt e C4 for ί e S and a;t = «t for t e T-S} is a

compact subset of X with respect to the product topology. Now let
& be the family of nonvoid finite subsets of S/. Then & is directed
by inclusion. If for each B e & we let TB — \JaeB ia, then TB is finite.
For each 5 G ^ choose yBe Γ\βeBβ Π Γ\teτB

 at- Then yf e Ct for each
te TB and if xB is defined by $f = yf for ί e T ΰ and xB = zt for
teT— TB, then / e Π ^ s ^ and f G C . Hence {xB;Be&} is a net
in C, and since C is compact, this net has a cluster point #. If a e j y
then ίcβ G α: for any Be^ with {α:} c I?. Therefore the net {xB; B e ^ }
is eventually in α for each a e jy: Hence α; e a for each a e J ^ and
so n « e ^ ^ Φ 0 .

Proo/ o/ 2.4. See Meyer [5] p. 33.

Proof of 2.5. Immediate from the definition of g"Ό and 2.4.

The following well known elementary lemma will be needed later:

LEMMA 2.6. If iel, A, B are open in Xi9 y e 3^1 and 7 c A U B,
then there exist a, β e 5^1 with ac:A,β(zB and a U β = 7.

3* The family ΛΓ of measures*

3.1. DEFINITION. M = {μ: μ is a bounded outer measure on X
such that
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( 1 )

( 2 ) μ(A) = sup {μ(a): a e ^ and a a A] for A e S?,

( 3 ) μ(B) = inf {μ(A): i e ^ 7 and S c i } for B e X}.

3.2. DEFINITIONS. FOX* any set function r on ^
( 1 ) τ satisfies condition (a) if and only if τ is bounded, τ ( 0 ) = 0 and

for every i e I and a, β e 3^1 0 ̂  τ (cyl α) ̂  τ (cyl α Π cyl β) ^ τ (cyl a) +
r(cyl /S) and r(cyl a U cyl /9) = τ(cyl a) + τ(cyl β) if aΠβ = 0.

( 2 ) r satisfies condition (b) if and only if for every iel,ae JXl,
te T — i and sequence C in 3ίΓt with Cn c interior C%+1 for %eα) and
Cw ί JSΓt, if j = iU{t} and βΛ = {α; e Xμ x \ i e a and xteCn} then
τ(cyl βn) j τ(cyl α). (Note that we certainly have cyl βn \ cyl a.)

( 3 ) τ*(A) = sup {τ(α): α e ̂  and aczA} for A e gf.

The key results of this section are summed up in the following

THEOREM 3.3. Let τ satisfy conditions (a) and (b) and μ be the
Caratheodory measure on X generated by τ* and gf. Then

(1) μe M and μ agrees with τ* on 5f,
( 2 ) if iel, μi(A) - jt£ (cyl A) for A c l , τ,(α) - τ (cyl α) /or

a e Sέ^ and v{ is the topological outer measure on X; cranked by τi9

then Vi is a bounded Radon outer measure and μ{ agrees with v{ on

For the proof of this theorem two preliminary lemmas are needed.

LEMMA A. Let τ satisfy condition (b). Then for ί, j e I with iaj
and a e 3fcl we have τ(cyl a) = sup {τ(cyl β): β e Jst] and cyl β c cyl a}.

Proof. Follows easily from condition (b) and induction.

LEMMA B. If τ satisfies conditions (a) and (b) then τ* is countably
subadditive on <&.

Proof. Let An e gf for n e ω, e > 0 and a e <& with a c \Jneω An.
For each neoi,An= \Jmeo>Bnm where Bnm e &Q. Soaa\Jneω\JmeωBnma,nd
hence by Corollary 2.5 there exist N, Meω such that a c Uί=o Uϊ=o Bnm.
Let, for 0^n^N,En = U^=o B»» and in be such that En = cyl A,
for some Aft c Xi%. Let ία e / be such that a = cyl 7 for some 7 e ^ 7 α .
Let i = ίa, U^=o, i«, then ί is finite and ί α c i. By Lemma A of this
section choose β e ^ with cylβcza and τ(^) ^ r(cyl/S) + ε. Now
for 0 ̂  n ^ iSΓ, πi[En] is open in ^ and β c TΓ̂ O:] C (JLO ^ [ ^ J .
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By Lemma 2.6 and induction we can, for 0 ^ n ^ N, find βn e
with βn c ^[En] and β = USU 0*. Then cyl /9 = UίU cyl 0n c UίU #«.
By condition (a) we have r(cyl β) <£ Σϊ=o τ(cyljSΛ). Hence r(a) g
r(cyl /S) + ε ̂  Σ5Ur(cyl/Sn) + ε ^ Σ ί U r * ( # ) + ε ^ Σ β ^ A J + ε. It
follows that τ#(U»6 ω^*) = sup {τ(α):αe^andα:c U*eω^ft}^Σ*eα,^*(^»)
We now proceed to prove Theorem 3.3.

Proof of 3.3(1) Since, by Lemma B, r* is countably subadditive
on cjy and since gr is closed under countable unions we have for
i e g 7 , μ(A) = τ^A) and therefore for J3 c X, μ(£) = inf {μ(A): A e Sf
and 5 c A}. Furthermore, since clearly μ(a) ;> r(α). for each α e ^
it follows that for Aeg 7 , μ(A) = sup {μ(a)ι ae^ and α:c A}. Now,
since μ certainly is a bounded Caratheodory measure on X, all that
remains is to show g?c ^ . So let A e gf, B c X and ε > 0. Choose
B' G gf with BaB' and μ(J3') ^ /i(B) + ε. Let a e 9f with α: c J5' ΓΊ A
and ^(J?' Π A) ^ //(α) + ε. Let β e i f with βaB' - a and μ(5' - α) g
μ(β) + ε. By Lemma A we can suppose that a{j β e^ also. Then
μ(B Π A) + /i(5 - A) ^ j"(B' Π A) + μ(B' - a) ^ //(α) + (̂/3) + 2ε -
^(« U β) + 2ε ^ //(S;) + 2ε ^ μ(jβ) + 3ε.

Hence μ(B Π A) + μ(B - A) = μ{B) for all B c X. It follows that

Proof of 3.3(2) Let vi be the topological outer measure on X{

cranked by riβ By condition (a) and Remark 1.14.2 we have that vi

is a bounded Radon outer measure on X{. Let A be open in Xί#

Since X{ — A is closed and X, is σ-compact, we can for ne ω choose
Cn e S^ such that Cn } (X, - A). Then A = f\neω (X, - Cw). Since
cyl (X{ - CΛ) e \o" we have

^(X, - Cn) - /i (cyl (X, - Cn)) - τ . (cyl (X, - Cw))

= sup {τ(β): β e <& and β c cyl (X, - Cw)}

= sup {τ (cyl cήiae J%< and α c (X̂  — Cw)}

= sup {Ti(a): a e J^7 and α c (X̂  - CΛ)}

- ^(X, - Cn) .

Furthermore since the X{ — Cw are /vmeasurable as well as y
surable we have μ^A) = limweω ^(X^ - Cw) = limweω (̂X,- - CΛ) =
Hence ^ and ^ agree on open sets. If D c X̂  then v^Z)) = inf {^(A): A
is open in X, and ΰ c i } = inf {^(A): A is open in X; and ΰ c i } ^ ftφ).
Hence μ{ ^ ^ always.

Now let B e ^/ίVr. Given ε > 0 choose A open in X{ with S c A
and i>i(A) < v^B) + ε. Since v{{A) = v{(B) + v{(A - B) we have
ι*i(A - B)< e and consequently μ^A - B) < ε. But / (̂A) ^ ^ ( A - 5 ) +
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< μt(B) + ε. Hence

μ{(B) = inί {μi(A): A is open in X{ and B a A}

= inf {Vi(A): A is open in Xi and B a A}

3.4. If as related to projective limit measures. Suppose that for
each iel, &i is the σ-ring generated by 3^1 and vi is a measure on
£%i. We call {v, : i e 1} a projective system of measures if whenever
i,j el with i c j" we have for A G . ^

We say that the projective system {v^iel} admits a projective limit
measure v if v is a measure on the σ-ring t$ of subsets of X generated
by {cyl B: B e ^ for some ie 1} such that for each ie I and A e . ^ ,
y(cyl A) = ^i(A). Such a measure v, if it exists, is unique and can thus
be called the projective limit measure of the system {̂  i e ί } .

For more general definitions of projective or inverse systems of
measures see Choksi [1], Mallory [4] or Meyer [5].

Now, if for ie I we call v* a bounded regular Borel measure
whenever v, is a bounded measure on . ^ such that for every A e ^

Vi(A) - ml{Vi(B):B is open and A a B)

= sup {^(C): C e J%< and C c A}

we then have

THEOREM 3.4.1. μeM if and only if μ is a Z?-outer measure
on X and μ | .^ is the projective limit measure of a projective system
{/V ie 1} of hounded regular Borel measures μi on . ^ .

Proof. Suppose μ e M. Then μ is a &-outer measure on X. If
μi(A) — μ (cyl A) for 4 G . ^ then clearly {μ{: i e 1} forms a projective
system of measures and μ \ & is clearly the projective limit measure
of this system. Using 3.3(2) one can easily check that each /^ is in
fact a bounded regular Borel measure on . ^ .

Conversely let μ be a 2^-outer measure on X and μ \ έ%? be the
projective limit measure of a projective system {μ^ ie 1} of bounded
regular Borel measures μt on . ^ . Let for each ie I and a e 3ίfl,
τ(cylα) = μi{a). Then τ is a set function on c^ satisfying conditions
(a) and (b). Let v be the Caratheodory measure on X generated by
r* and gf. Then by 3.3(1), v e M. Clearly v \ & is the projective limit
measure of the system {v^iel} where v^A) = y(cylA) for i e . ^ .
From 3.3(2), we see that μ{ = v£ for each i e /. Hence /i | .^ = v \ έ%.
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Since & c ^ μ \ & = v | & and therefore, since both μ and « are
S^-outer measures on X, we have μ — v. Hence μeM.

4* The representation theorem*

4.1. DEFINITIONS. (1) For iel, C0(Xi) is the set of continuous real
valued functions on Xi with compact support.

(2) For iel and h e C0(Xi), cylh is the function on X given by
(cylh)(x) = &(# I i) for every a e l .

(3) F= {f: there exists i e / and h e C0(Xi) with / = cyl h}.

4.2. DEFINITIONS. (1) L = (ί: ί is a positive linear functional on
the linear span of F such that

(1) there exists K > 0 with j l(f) | ^ JΓ| |/ |L for all fe F,
(2) if i j e l with iaj,feC0(Xi) and, for neω,fneC0(Xj)

with cyl/. ί cyl/ then ϊ(cylΛ) ί ί(cyl/).}
(Note that in the definition of L above, condition (1) does not necessarily
imply condition (2).)

(2) For leL,τι is the set function on & given by τ\a) =
inf {l(f): lα ^ / e F} for α e ̂ .

Our basic theorem now is

THEOREM 4.3. For each leL there exists a unique μιeM such

that the relationship l(f) = \fdμι holds for all feF. Moreover the

mapping l—*μι is an isomorphism between L and M.

For the proof of this theorem we will need three preliminary
lemmas.

LEMMA C. For l e L , i e I and a e

τι(cyl a) - inf {ί(cyl/): l β ̂  fe

Proof. Suppose heF and lcy lα ^ h. We want to find feC*(X )
with la ^ f and cyl / ^ h. By definition there exists j el and g e C0(Xj)
such that h — cyl g. Let k = i (J i . For zeXk let hk(z) = Λ(?/) for
some # 6 X with y \ k — z. (Note that hk(z) is independent of y provided
y\k = z, and that cyl hk = h.) Since g e C0(Xj) and hk(z) = g(z \ j) we
have that hk is uniformly continuous on Xk. Hence if for x e X{

f * ( x ) = i n f {hk(z): zeXk a n d z\i = x}
= i n f {fe(?/): y e X a n d 2/1 i = %}
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then / * is continuous on X{. Moreover it is clear that cyl/* <̂  h
and la ^ / * . Since X* is locally compact and regular there exists
fe Co(Xi) with l α ̂  / ^ / * . Hence la ^ / and cyl/ ̂  ft. It follows
that

τ'(eyl a) = inf {l(h): leyla ^heF}

LEMMA D. Let le L, ίel,ae J%^. Then for every ε > 0 there
exists A open in Xi with a a A such that for any j el with iczj
and feCo(Xj) with H/IU ̂  1 and {x:f(x) > 0}cπϊf[A - a] we have

Proof. By Lemma C choose h e CQ(Xi) with 1« ̂  ft and I (cyl h) S
τι (cyl a) + ε/2. Let

A = {x: (1 + 6/1 + 2 ϊ(cyl h))h(x) > 1} .

Then A is open and a a A. Now let j e l with iaj. Suppose first
that ge CQ(X3 ) with 0 ̂  g <̂  1 and support gcTΓ^tA — α]. Let /S =
πiά [support g\. Then 6u, β are disjoint compact subsets of A and so let
V, Wbe disjoint neighborhoods of a and β respectively with V U We: A.
Let v,we C0(-3Γ<) with l α ̂  v ̂  lσ and 1 ^ w ̂  l ΐ Γ. Then v + w S
(1 + 6/1 + 21 (cyl h))h and therefore

ϊ(cyl v) + ί(cyl w) ̂  i(cyl ft) + ε/2

^ τz(cyl α) + ε ̂  i(cyl v) + e .

Hence I (cyl w) ̂  ε and since cyl g <£ cyl w we have by condition (2) of
4.2(1), that l(cylg) ^ Z(cylw). Thus l(cylg) ^ ε.

Now let feC0(Xd) with | | / | U ^ 1 and {x:f(x) > 0}c^r/[A - a].
For % e ω let /SΛ = {x: f(x) ^ 1/w}. Then βn e ̂  and /Sn c interior
0Λ + 1. Let βr% G C0(X,) with 1^ ̂  g% ̂  lβn+ι and let fn = f-gn. Then
support fn c /5%+1 c π^ίA — a], 0 ̂  /Λ ̂  1, and hence by the above
argument, Ϊ(cyl/Λ) ^ ε. Since fn]f+ we have by condition (2) of
4.2(1), that l(cylfu) ] i(cyl/ + ). It follows that i(cyl/+) ^ ε and there-
fore ί(cyl/) ^ ε.

LEMMA E. For le L,τι satisfies conditions (a) and (b).

Proof. Condition (a) follows easily from Lemma C using well
known standard arguments. To prove condition (b), let iel,aej?tϊ,
te T — i and C be a sequence in j%^ with Cn c interior Cn+1 for neω,
and Cn ί Xt. Let i = i U {̂ } and βn = {x e X3: x \ i e a and xt e Cn}. Then
cyl βn \ cyl α:. Given ε > 0, by Lemma D, there exists A open in
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Xi with α c A such that for any geC0(Xj) with | | f / | | » ^ l and
{x: g(x) > 0} c πj>\A - a] we have Z(cyl g) ^ ε. Choose / e C»(Xi) with
l α ^ / rg 1 4 and let kn e C0(X() with lc% SK^ lΰn+1.

For a; 6 X, let /„(») = f(x | *)•&„(»«). Then / , e Cί-X,), 1,. ^ / . and
cyl/» ί cyl/. By Lemma C choose hn e C0(Xj) with 1^ ^ hn <* fn and
i (cyl A.) £ r' (cyl βn) + ε. We note that /„ - hn+1 e C0(Z,), 11 / . - A.+111. ^ 1
and {%: (/„ — feβ+1)(a;) > 0} aπγ/[A — a]. Hence by Lemma D,

Since/„ =/ .-A» + 1 + A,+1 we have ί(cyl/,) = ί(cyl (/»-A.+ι)) + i(cyl K+1)

^ i(cyl K+1) + ε S ^ !(cyl β%+ι) + 2ε .

Hence

τι (cyl α) ^ Z (cyl /) = lim I (cyl /,)
n e ω

^ lim 2 (cyl A.+1) + ε ^ lim r ! (cyl /9K+1) + 2ε .

Thus τ* (cyl α) ^ lim^eω τι (cyl /5%) and since certainly the reverse in-
equality holds, we have τ*(cylα) = limneωτι(cγl βn).

Proof of 4.3. Let leL. By Lemma E, τι satisfies conditions (a)
and (b) and hence by 3.3.1 the Caratheodory outer measure μι on X
generated by τ* and & is in M.

Now suppose fe F. By definition there exists ίel and h e C0(Xi)
such that f=eylh. If for every A c Xi we let μl(A) = μι(cyl A)

then icylfedjM1 = \hdμ\. If for a:6 J ί 7 we let τ\(a) = ^(cylα) and let

v| be the topological outer measure on Xi cranked by r{, then by

3.3(2), v\ is a Radon outer measure on Xt and μ\ agrees with v\ on all

v--measurable sets. Hence since h e C0(Xt) we have

\hdi>\= \hdμ\.

Furthermore if l{(g) — I (cyl g) for g e C0(Xi) then l{ is a positive con-
tinuous linear functional on C0(X<) and by Lemma C

- inf {li(g): la^ge C0(X,)} for ae

Hence by the Riesz Representation Theorem ^ and v\ satisfy the re-
lationship

Ug) - \gdv\ for all geC0(Xi) .

Hence l(f) = Z(cylΛ) = U(h) = \hdv\ = \hdμ\
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To show uniqueness, suppose μeΛfand l(f) = 1 fdμ for all / e F. For
each i e I let / (̂A) = μ(cγl A) for AaXi9 τ^a) = μ(cyl α) for a e J^*
and I;* be the topological outer measure on Xi cranked by τ i# By 3.3(2),
Vi is a Radon outer measure on Xi and μi agrees with v{ on ^^ . ,
hence also on &i% Furthermore for all feC0(Xi)

= l(cγlf) = \fdμ\ = j/ώ j

and therefore by the Riesz representation theorem vζ = i J. It follows
that /^ and μ- agree on . ^ . Hence the protective systems {μ{ \ .^%: iel}
and {μl \ . ^ : iel} are equal and so their respective projective limit
measures, which by 3.4.1 are μ \ & and μι \ .0J, are also equal. Since
2f c & we have that μ and μι agree on %? and so μ — μι. The mapping
l—+μι is now clearly an isomorphism between L and M.

5* Example to show that σ-compactness of the coordinate
spaces is needed* Let R have the discrete topology (which is not
σ-compact) and consider R2 with the product topology. For h e C0(R)
and xeR2, let (cyl^Xa;) = hfa) and (cj\2h)(x) = h(x2).

Let Fo - CQ(R2)

Fx = {/:/= cylx h for some h e C0(R)}

F2 = {/:/= cyl2 λ for some h e C0(R)} .

Using the notations of this paper, we let T = {1, 2}, Yι = F2 = i? with
the discrete topology and define X, if, ^ , M, F and L as before.

First we note that F •= FQ\J FX\J F2 and that since pairwise inter-
sections of Fo, F1 and F2 consist of the zero element only, every / in
the linear span of F has a unique representation as / = f0 + fx + f2

where fn e Fn for n = 0,1,2. For fixed zeR2 (which equals X) define
I by l(f) = fo(z) + 2fx(z) + 2f2(z) for / in the linear span of F. Then
I e L but we shall show that there is no μ e If such that l(f) = \fdμ for
all / e F. Suppose we did find such a μ e M. Then if A = {# G J?2: ̂  = 2J
we have 14 eFιaF and hence

We next note that 1{2} e FQa F and so

Furthermore since A, {z} and A — {z} are all ^-measurable we have
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μ(A - {*}) - μ{A) - μ{{z}) = 2 - 1 = 1

On the other hand A — {z} c R2 — {z} which is in <&.
Hence

μ(A - {z}) £ μ(R2 - {z})

= sup {μ(a): ae^ and a c R2 — {z}}

= sup {l(la): aerέf and aaR2 = {z}} = 0

since l(la) — 0 for any α e ^ 7 with 2 g α . Hence A — {2} would have
to have measure zero and one simultaneously, which is impossible.
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