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MULTI-VALUED CONTRACTION MAPPINGS

SAM B. NADLER, JR.

Some fixed point theorems for multi-valued contraction
mappings are proved, as well as a theorem on the behaviour
of fixed points as the mappings vary.

In § 1 of this paper the notion of a multi-valued Lipschitz mapping
is defined and, in § 2, some elementary results and examples are given.
In § 3 the two fixed point theorems for multi-valued contraction map-
pings are proved. The first, a generalization of the contraction
mapping principle of Banach, states that a multi-valued contraction
mapping of a complete metric space X into the nonempty closed and
bounded subsets of X has a fixed point. The second, a generalization
of a result of Edelstein, is a fixed point theorem for compact set-
valued local contractions. A counterexample to a theorem about
(ε, λ)-uniformly locally expansive (single-valued) mappings is given
and several fixed point theorems concerning such mappings are proved.

In § 4 the convergence of a sequence of fixed points of a convergent
sequence of multi-valued contraction mappings is investigated. The
results obtained extend theorems on the stability of fixed points of
single-valued mappings [19].

The classical contraction mapping principle of Banach states that
if {X, d) is a complete metric space and /: X —> X is a contraction
mapping (i.e., d(f(x), f(y)) ^ ad(x, y) for all x,y e X, where 0 ̂  a < 1),
then / has a unique fixed point. Edelstein generalized this result to
mappings satisfying a less restrictive Lipschitz inequality such as local
contractions [4] and contractive mappings [5]. Knill [13] and others
have considered contraction mappings in the more general setting of
uniform spaces.

Much work has been done on fixed points of multi-valued functions.
In 1941, Kakutani [10] extended Brouwer's fixed point theorem for
the n-cell to upper semi-continuous compact, nonempty, convex set-
valued mappings of the n-ce\\. In 1946 Eilenberg and Montgomery
[7] generalized Kakutani's result to acyclic absolute neighborhood
retracts and upper semicontinuous mappings F such that F(x) is
nonempty, compact, and acyclic for each x. In 1953, Strother [22]
showed that every continuous multi-valued mapping of the unit interval
of I into the nonempty compact subsets of / has a fixed point but
that the analogous result for the 2-cell is false. In [22] Strother also
proved some fixed point theorems for multi-valued mappings with
restrictions on the manner in which the images of points are embedded
under a homeomorphism of the space onto a retract of a Tychonoff
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cube. Plunkett [20], Ward [23], and others have shown that the
spaces which have the fixed point property for continuous compact
set-valued mappings constitute a fairly small subclass of those which
have the fixed point property for continuous single-valued mappings.

In this paper, we combine the ideas of set-valued mapping and
Lipschitz mapping and prove some fixed point theorems about multi-
valued contraction mappings. These theorems place no severe re-
strictions on the images of points and, in general, all that is required
of the space is that it be complete metric. Some results in this paper
were presented to the American Mathematical Society on November
18, 1967; an abstract of that talk may be found in [18]. A slightly
different version of Theorem 5 below was announced later in [15].

1Φ Basic definitions and conventions* If (X, d) is a metric
space, then

( a) CB(X) = {C I C is a nonempty closed and bounded subset of X},

(b) 2X — {C I C is a nonempty compact subset of X},

(c) N(ε, C) = {x e X \ d(x, c) < e for some ceC} if ε > 0 and

CeCB(X), and
( d) H(A, B) = inf {e | AaN(e, B) and BaN(e, A)} if A, Be CB(X).

The function H is a metric for CB(X) called the Hausdorff metric.
We note that the metric H actually depends on the metric for X and
that two equivalent metrics for X may not generate equivalent Haus-
dorίf metrics for CB(X) (see [11, p. 131]). We shall not notate this
dependency except where confusion may arise. It will be understood,
unless otherwise stated, that the symbol H stands for the Hausdorff
metric obtained from a fixed preassίgned metric.

Let (X, dx) and (Γ, d2) be metric spaces. A function F: X -> CB( Y)
is said to be a multi-valued Lipschitz mapping (abbreviated m.v.l.m.)
of X into Y if and only if H(F(x), F(z)) ^ adL(x,z) for all x, zeX,
where a :> 0 is a fixed real number. The constant a is called a
Lipschitz constant for F. If F has a Lipschitz constant a < 1, then
F is called a multi-valued contraction mapping (abbreviated m.v.c.m.).
A m.v.l.m. is continuous.

A point x is said to be a fixed point of a single-valued mapping
/ (multi-valued mapping F) provided f(x) = x(xe F(x)). Since the
mapping i: X-+CB(X), given by i(x) = [x] for each xeX, is an
isometry, the fixed point theorems in this paper for multi-valued
mappings are generalizations of their single-valued analogues.

2* Preliminary results* In this section we present some ele-
mentary results which will be used in later sections and introduce
some notation and terminology. The proofs of many of the theorems
are straightforward. From a remark in [23, p. 161] if F: X —>2F is
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a m.v.l.m. and Ke2x, then (J {F(x) \ x e K} e 2Y.

LEMMA 1. Let F:X-+2Y be a m.v.l.m. with Lipschitz constant
a. If A, Be 2X, then H(\J {F(a) \ a e A}, \J {F(b) \beB})^ aH(A, B).

THEOREM 1. Let F: X-+2Y be a m.v.l.m. with Lipschitz constant
a and let G:Y—+2Z be a m.v.l.m. with Lipschitz constant β. If
GoF: X->2Z is defined by (G<>F)(x) = (J {G(y) \ y e F(x)} for all xeX,
then GoF is a m.v.l.m. with Lipschitz constant a-β.

THEOREM 2. Let F: X—>2Y be a m.v.l.m. with Lipschitz constant
a and let F: 2X «-> 2Y be given by F{A) = \J {F(a) \azA] for all A e 2X.
Then F is a Lipschitz mapping with Lipschitz constant a.

Let (X, d) be a complete metric space and let F: X —> 2X be a
multi-valued contraction mapping. By Theorem 2 F is a contraction
mapping and therefore, since (2X, H) is complete [2, p. 59], has a
unique fixed point Ae2x. In the next section (see Theorem 5) we
prove that such an F has fixed points. The existence of the fixed
point A of F does not seem to imply the existence of a fixed point
of F and in fact, as the next example illustrates, there seems to be
little relation between the set S of fixed points of F and the fixed
point A of F (except the containment of S in A; see the last part of
the proof of Theorem 9).

EXAMPLE 1. Let I = [0,1] denote the unit interval of real numbers
(with the usual metric) and let /:/—>/ be given by

Define F:I-*2T by

F(x) = {0} U {/(#)} for each xel. It is easy to verify that (a) F is
a multi-valued contraction mapping, (b) the set of fixed points of F
is {0, 2/3}, and (c) the fixed point of F is

{•§-, 0, /(0), /(/(0)), /(/(/(0))), •} .

THEOREM 3. Let F: X—>CB(Y) be a m.v.l.m. with Lipschitz
constant a and let G: X—> CB(Y) be a m.v.l.m. with Lipschitz constant
β. If F U G: X->CB(Y) is given by (F U G)(x) = F(x) U G(x) for all
x e X, then F U G is a m.v.l.m. with Lipschitz constant max {a, β}.

The following example shows it is not in general true that the
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intersection of two multi-valued contraction mappings is continuous
(we define the intersection of two multi-valued mappings only when
the image sets have a nonempty intersection at each point).

EXAMPLE 2. Let P = {(x, y) | 0 <£ x ^ 1 and 0 ^ y <, 1}, let F:

P —> CB(P) be defined by F(x, y) is the line segment in P from the
point {(1/2) a?, 0} to the point {(1/2) a?, 1} for each (x, y) e P, and let
G: P —> CB(P) be defined by G(x, y) is the line segment in P from the
point {(1/2)'X, 0} to the point {(1/3) x, 1} for each (a?, y) e P. It is easy
to see that F and G are each multi-valued contraction mappings and
that F π G, which is given by

IV 2 / J for

l{(a, 2/)G/2 I x = 0}, £ = 0

all (x,y)el2, is not continuous.
Let X be a closed convex subset of a Banach space. If A e CB(X),

then let cό (A) denote the intersection of all closed convex sets con-
taining A. We may think of cό as a function from CB(X) into CB(X).

LEMMA 2. Let X be a closed convex subset of a Banach space
(with norm || | |). Then cό: CB(X) —>CB(X) is nonexpansive, i.e., if
A,BeCB(X), then H(cδ(A), cδ(S)) ^ H(A, B).

Proof. Let A, Be CB(X) and let ε > 0. Choose pe cδ(A). Then
there exist αx, α2, " , α n e A and ίx, ί2, , ίΛ e [0,1] such that Σ?=i U ~
1 and || p — Σ?=i ^α* II < ε / 2 For each i = 1, 2, , w there is a point
6, e B such that || αf - δ< || < ίf(A, B) + ε/2. Let g = Σ?=i ^ ' ^ τ h e n
gecό(j5)and \\p - q\\ ̂  \\p - Σ^=i^ α;li + IIΣ?=i^ α i — Σ ί U ^ ' M <
ε/2 + Σ**=i *i II α* - &» II < H(A, B) + ε. This proves that

co (A) c N(H(A, B) + ε, cό(B)) .

Similarly it can be shown that cό (B) c N(H(A, B) + e, cό (A)) Since
ε was arbitrary, the result follows.

The proof of the next theorem is immediate from Lemma 2.

THEOREM 4. Let X be a closed convex subset of a Banach space
and let F: X—>CB(X) be a m.v.l.m. with Lipschitz constant a. If
cό F: X —> CB(X) is given by (cό F)(x) — Έό(F(x)) for all x e l , then
cό F is a m.v.l.m. with Lipschitz constant a.

REMARK. Theorem 3 gives a technique for constructing a multi-
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valued Lipschitz mapping from a finite number of single-valued
Lipschitz mappings by "unioning their graphs at each point". Theorem
3 can be generalized to an arbitrary family {Fλ}λeΛ of multi-valued
Lipschitz mappings if it is assumed that (1) \J {Fλ(x) \ X e A} is a closed
and bounded subset of X for each x e X and (2) there is a real number
μ such that aλ ^ μ for all λ e Λ where aλ is a Lipschitz constant for Fλ.

REMARK. Note that if, in Theorem 4, F is compact set-valued,
then so is cδF. This is an immediate consequence of a result of
Mazur's [3, pp. 416-417].

REMARK. Requiring a multi-valued mapping to be Lipschitz is
placing a very strong continuity condition on the mapping. The
literature on continuous selections suggests that, for a multi-valued
mapping F to have a continuous selection, conditions on the individual
sets F(x) are just as important (if not more important) as restrictions
on the continuity of F [17]. We substantiate this by pointing out
that a multi-valued contraction mapping need not have a continuous
selection, as may be seen by defining F on the unit circle in the
complex plane by F(z) is the two square roots of z.

3* Fixed point theorems* The first theorem of this section is
proved by an iteration procedure similar to that used in proving the
contraction mapping principle of Banach [14, pp. 40-42].

THEOREM 5. Let (X,d) be a complete metric space. If F:X—>
CB(X) is a m.v.c.m., then F has a fixed point.

Proof. Let a < 1 be a Lipschitz constant for F, (we may assume
a > 0) and let pQ e X. Choose p, e F(p0). Since F(p0), F{px) e CB(X)
and pxeF{pQ), there is a point p2zF{pι) such that

d(plf p2) ^ H(F(p0), F(pd) + a

(see the remark which follows this proof). Now, since

and p2

there is a point p3eF(p2) such that d(p2, p3) <̂  ̂ [(Fip^.Fip^) + a2.
Continuing in this fashion we produce a sequence {Pi}T=i of points of X
such that pi+leF(Pi) and d(pif pi+ί) ^ H(F(Pi-d> ̂ (P*)) + «* f°r all
i ^ 1. We note that

d(pi9 pi+1)

^ oc2d(p^21 p^) + 2aι ^ ^ αtato, Pi) +
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for all i ^ 1. Hence

d(pi9 Pi+s) £ d(pif pi+ι) + d(pi+ι, pi+2) +

^ afd(pQ, p,) + i α* + aί+1d(pQ, px) + (i + l) α ί + 1 + . . .

+ α*+i-1d(po, Pi) + (i + 3 ~ I)-****''-1

Σ aήd(po,p1)+ Σ. nan

n-ί / n—i

for all i,j ^ 1.
It follows that the sequence {pJΓ=i is a Cauchy sequence. Since

(X, d) is complete, the sequence {pjjli converges to some point x0 e X.
Therefore, the sequence {F(Pi)}T=ι converges to F(x0) and, since
PiβFiPi^) for all i, it follows that a^ei* 7 ^) . This completes the
proof of the theorem.

REMARK. Let A, Be CB(X) and let aeA. If η > 0, then it is a
simple consequence of the definition of H(A, B) that there exists beB
such that d(a, b) ^ H(A, B) + η (in the proof of the previous theorem
the Lipschitz constant a and subsequently a1 play the role of such an
Ύj). However, there may not be a point beB such that d(a,b)^
H(A, B) (if B is compact, then such a point b does exist). For example,
let l2 denote the Hubert space of all square summable sequences of
real numbers; let a = ( — 1, —1/2, •••, —1/n, •••) and; for each n =
1,2, •••, let en be the vector in l2 with zeros in all its coordinates
except the nth coordinate which is equal to one. Let A = {a, e19 e2. ,
en, •••} and let B = {e19 e2, ---,en, •••}. Since \\a - en\\ = ( | |α | | 2 + 1 +
2/n)h for each n = 1, 2, . . , H(A, B) = (|| α ||2 + 1)* and there is no en

in B such that || a - en\\ ^ iϊ(A, J5).

In [4] Edelstein proved that if X is a complete ε-chainable metric
space and /: X —»X is an (ε, λ)-uniformly locally contractive mapping,
then there is an x e X such that f(x) = x. We generalize this result
to multi-valued functions in Theorem 6, but first we give some defi-
nitions.

A metric space (X, d) is said to be ε-chainable (where ε > 0 is
fixed) if and only if given α, b e X there is an ε-chain from a to b
(that is, a finite set of points xQ,x19 ,xneX such that xQ —
α, xn — 6, and d(x^ly xt) < ε for a lH = 1, 2, , n). A function F: X—>
CB(X) is said to be an (ε, \)-uniformly locally contractive multi-valued
mapping (where ε > 0 and 0 ^ λ < 1) provided that, if x,yeX and
d(x, y) < ε, then H(F(x), F(y)) ^ Xd(x, y). This definition is modeled
after Edelstein's definition for single-valued mappings in [4]. Formally
this definition, in the case of single-valued mappins, is less restrictive
than Definition 2.2 in [4], but Edelstein uses only the properties of
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this type of uniform condition in the proof of his Theorem 5.2 [4].
The proof of Theorem 6 is substantially different from the proof

of Theorem 5.2 of [4]. The basic idea was inspired by Remark 2.34
of [6, p. 691].

THEOREM 6. Let (X, d) be a complete ε-chainable metric space.
If F:X—>2λ is an (e,X)-uniformly locally contractive multi-valued
mapping, then F has a fixed point.

Proof. If (x, y) e X x X, then let de(x, y) = inf {ΣΓ=i d(x^ί9 xt) \ x0 =
x, xlf , xn — y is an ε-chain from x to y}. It is easy to verify that
dε is a metric for X satisfying (1) d(x, y) ^ de(x, y) for all x, y e X and
(2) d(x, y) = ds(x, y) for all x,yeX such that d(x, y) < ε. From (1)
and (2) and the completeness of (X, d) it follows that (X, dε) is com-
plete. Let Hε be the Hausdorff metric for 2X obtained from dε. Note
that if A, B e 2X and H(A, B) < ε, then He(A, B) = H(A, B). We now
show that i^:X-^2 x is a m.v.c.m. with respect to dε and Hε. Let
x, y e X and let x0 = x, xly , xn = y be an ε-chain from x to y. Since
d(Xi-19 xd < e for al i i = 1, 2, , n, HiFix^), Ffa)) ^ \d(x^19 »<) < ε
for all i = 1, 2, , n. Therefore,

Hε(F(x), F(y)) g
i=ι

^), Fix,)) ^X± d{x^, xt) ,
i

i.e., Ht(F(x), F(y)) ^ λ Σ?= 1 d(x^19 xj. Since ^0 = x, xl9 , xn = 2/ was
an arbitrary ε-chain from a? to y, it follows that Hε(F(x), F(y)) <£
λde(a?, 2/). This proves that ί1 is a m.v.c.m. with respect to dε and H£.
By Theorem 5, F has a fixed point. This completes the proof of
Theorem 6.

In [4] Edelstein defines a single-valued mapping / to be (ε, λ)-
uniformly locally expansive (where ε > 0 and λ > 1) provided that, if
x is in the domain of /, then, for any distinct points p and q in the
domain of / such that d(p, x) < ε and d(q, x) < ε, d(f(p),f(q)) > Xd(p, q).
Corollary 6.1 of [4] states "If / is a one-to-one (ε, λ)-uniformly locally
expansive mapping of a metric space Y onto an ε-chainable complete
metric space Xz> Y then there exists a unique ζ such that/(f) = £".
The proof offered for this corollary is that f~ι is (ε, /9)-uniformly
locally contractive for some β < 1. In the following example we show
that this is not necessarily the case and, in fact, that Corollary 6,1
as stated is false.

EXAMPLE 3. Let S = {1, 2, 3, 4, 5, 6} with absolute value distance.
Define f:S-+S by
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/2, x = 1

4, x = 2

6, a = 3
i

1, x = 4

3, a; = 5

5, x = 6

It is easy to verify that / satisfies all the hypotheses of Corollary 6.1

of [4] where ε = 1— and λ = 1— (note also that S is 1—-chainable).
4 4 4

However, / has no fixed point.

Next we prove two fixed point theorems for single-valued (not
necessarily one-to-one) uniformly locally expansive mappings. Conditions
are placed on the inverse of a uniformly locally expansive mapping
which reflect the degree of chainability of the space or the degree of
local expansiveness of the mapping. Example 3 is the motivating
factor for such conditions (note that the mapping of Example 3 has
a uniformly continuous inverse).

We shall use a slightly weaker definition of uniform local expansive-
ness than Edelstein's definition given above. Specifically, a single-
valued mapping / is said to be (ε, X)-uniformly locally expansive (where
ε > 0 and λ > 1) provided that, if x and y are in the domain of/and
d(x, y) < ε, then d(f(x),f(y) ^ \d(x, y).

We need several more definitions before stating the next theorem.
A metric space is well-chained if and only if it is ε-chainable for each
ε > 0 (for compact spaces well-chained is equivalent to connected but
{(x, tan (x)) I 0 <Ξ x < π/2} (j {(π/2, y) \ y ^ 0} is a well-chained complete
space which is not connected). A function g from a space X to a
space Y is said to be s-continuous (for fixed ε > 0) if and only if each
point x of X admits a neighborhood Ux such that the diameter of
g(Ux) is less than ε (in [12], where ε-continuity was apparently first
defined, the requirement was that the diameter of g(Ux) be less than
or equal to ε). A function F: X —> CB(X) is said to be an ε-nonexpansive
multi-valued mapping (where ε > 0 is fixed) if and only if H(F(x),
F{y)) ^ d(x, y) for all x,yeX such that d(x, y) < ε (this definition is
modeled after Definition 1.1 of [6] for single-valued functions).

THEOREM 7. Let (X, d) be a complete e-chainable (well-chained)
metric space, let A be a nonempty subset of X, and let f: A—+ X be
an (ε, X)-uniformly locally expansive mapping of A onto X. If
f"ι(x) e 24 for each x e X and f-1: X~+ 2A is ε-nonexpansive (uniformly
ε-continuous), then f has a fixed point.
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Proof. We first prove the theorem for the case when X is ε-
chainable and f~x is ε-nonexpansive. We shall show that f-1: X —>2A

is (ε, l/λ)-uniformly locally contractive. Let x, y e X such that 0 <
d(x, y) < ε and choose η > 0. Let pef~\x). Since f~ι is ε-nonex-
pansive, H(f-1(x),f-1(y))^d(x,y)<ε. Hence, there exists a point
qef~\y) such that d(p,q)<ε. Therefore, d(f(p),f(q))^\d(p,q),
i.e., d(p, q) < [1/λ + η]d(x, y). This proves that

f-\x) c iNr([i- + ψ(s, y), f-\x)) .

Similarly, it can be shown that /^(y) a N([l/X + n]d(x, y),/
Since η was arbitrary, it now follows that f~ι is (ε, l/λ)-uniformly
locally contractive. Since X is ε-chainable we may now apply
Theorem 6 to conclude that there is a point xQe X such that x0 e / " 1 ^ ) .
Clearly, f(x0) = a?0. We now prove the theorem for the case where x is
well-chained and / - 1 is uniformly ε-continuous. Since f~ι is uniformly
ε-continuous, there exists a δ > 0 such that d ^ , x2) < ^ implies
H(f~ι(x^,f~ι{x2)) < ε. Using a procedure similar to that employed
above, it follows that f~ι is (<?, 1/λ)-uniformly locally contractive. Since
X is well-chained, X is S-chainable and we may now use Theorem 6
to obtain, as above, a fixed point for /. This proves Theorem 7.

A metric space (X, d) is said to be convex (in the sense of Menger)
provided that, if x, y e X, x Φ y, then there exists a point z e X, z Φ x
and z Φ y, such that d(x, y) = d(x, z) + d(z, y). If (X, d) is a complete
convex metric space and F: X—>CB(X) is (ε, λ)-uniformly locally con-
tractive, then F is actually a multi-valued contraction mapping. The
proof is the same as the proof of the corresponding statement for
single-valued mappings in [4]. Using this fact we may now prove
the following:

THEOREM 8. Let (X, d) be a complete convex metric space, let A
be a nonempty subset of X, and let f: A—+X be an (ε, X)-uniformly
locally expansive mapping of A onto X. If f~ι{x) e CB(X) for each
xeX and f~ι: X—>CB(X) is uniformly ε-continuous, then f has a
fixed point.

Proof. Proceeding as in the second part of the proof of Theorem
7 we can show that f~ι is (δ, l/λ)-uniformly locally contractive for
some δ > 0. From the comments immediately preceding this theorem
it follows that f~ι is actually a multi-valued contraction mapping.
Hence, by Theorem 5, there is a n ^ e l s u c h that xQef~ι(x0). Clearly
f(x0) = x0 and the proof of Theorem 8 is completed.

REMARK. The author does not know if Theorem 6 remains true
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when stated for mappings into CB(X). The proof of Theorem 5.2 of
[4] does not seem to generalize for mappings into CB(X) and the
proof of Theorem 6 is not valid for mappings into CB(X) because dε

may not be bounded even though d is. If Theorem 6 were valid when
stated for mappings into CB(X), then Theorem 7 would be valid in
the more general setting and Theorem 8 would be superfluous. (Cf. § 5).

4* Sequences of multi-valued contraction mappings and fixed
points* Suppose (X, d) is a complete metric space, Ft: X—> CB(X) is a
multi-valued contraction mapping with a fixed point xt for each i ==
1,2, •••, and Fo: X—>CB(X) is a multi-valued contraction mapping.
In this section we investigate the following question: If the sequence
{Fi}ζLi converges (in some sense) to FQ, does some subsequence {a^JU
of {Xi}T=i converge to a fixed point of F0Ί

Without further assumptions on the images of points it is easy
to see that the answer to the above question is no; simply let Ft(x)
be the set of real numbers (with a bounded metric) for all i =
0,1, 2, and for all real numbers x and let α?< = i for each i =
1,2, •••. For this reason we shall assume from now on (except in
Lemma 3) that F^x) is compact for all i and for all x.

In this section we shall prove the following:

THEOREM 9. Let (X, d) be a complete metric space, let i ^ : X —> 2X

be a m.v.c.m. with fixed point xt for each ΐ = 1,2, •••, and let
Fo: X—>2 X be a m.v.c.m. If any one of the following holds:

( 1 ) each of the mappings F19 F2, has the same Lipschitz
constant a < 1 and the sequence {Fi}?=1 converges pointwise to Fo;

( 2 ) the sequence {Fi)T=ι converges uniformly to Fo;
or

( 3 ) the space (X, d) is locally compact and the sequence {Fi}?=ι

converges pointwise to Fo;
then there is a subsequence {#* .}~=i of {Xi}T=i such that {α ĴJLi converges
to a fixed point of Fo.

Before giving a proof of this theorem we need several preliminary
results. A proof of Proposition 1 below may be found in [1, pp. 6-7],
Proposition 2 is a special case of Theorem 1 of [19], and Proposition
3 is Theorem 2 of [19]. In each of these propositions f{ is a single-
valued contraction mapping of a metric space (X, d) into itself with
fixed point a{ for each i = 0,1, 2, .

PROPOSITION 1. // all the mappings flffi9 ••• have the same
Lipschitz constant a < 1 and if the sequence {fi}7=ι converges pointwise
to /o, then the sequence { α j ^ converges to α0.
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PROPOSITION 2. If the sequence {/Jjli converges uniformly to f01

then the sequence {αjf=1 converges to α0.

PROPOSITION 3. // the space (X, d) is locally compact and the
sequence {/JΓ=i converges pointwise to /0, then the sequence {αjf=i con-
verges to a0.

The following lemma is a generalization of the lemma in [19].

LEMMA 3. Let (X,d) be a metric space, let Ft: X—>CB(X) be a
m.v.c.m. with fixed point x{ for each i = 1,2, •••, and let F0:X-+
CB(X) be a m.v.c.m. // the sequence {Fi}T=ι converges pointwise to
Fo and if {xid}J=i is a convergent subsequence of {Xi}Z=u then {xi:j}"=1

converges to a fixed point of Fo.

Proof. Let x0 — lim^*, x{. and let ε > 0. Choose an integer M
such that H(Fi.(x0), F0(x0)) < e/2 and d(xij9 x0) < e/2 for all j ^ M.
Then, if j ^ M,

φ F0(x0)) ^ H{Fiό(xi3), Ftjixo)) + H(Fis(xQ), F0(x0))

< d(xij9 Xo) + HiFifa), F0(x0)) < ε .

This proves that Mm^^ Fi.(xi3) = FQ(xQ). Therefore, since x^.eF^iXi)
for each j = 1, 2, , it follows that x0 e F0(x0). This proves the lemma.

Proof of Theorem 9. For each i = 0,1, 2, . . . , let F{: 2
X -* 2X be

defined in terms of Ft as in Theorem 2. Then, by Theorem 2, Ft is
a contraction mapping and therefore has a unique fixed point A{ e 2X

for each i — 0,1, 2, •••. If the sequence {JP<}JLI converges pointwise
to FQ as assumed in 1 and 3, then {JFJJLI converges uniformly on
compact subsets of X to Fo [21, p. 156]; and hence, the sequence
{Fi}T=i converges pointwise on 2X to FQ. A direct argument shows
that if the sequence {FJJLi converges uniformly to Fo as assumed in
2, then the sequence {Fi}?=1 converges uniformly on 2X to JP0. In any
case we may use Proposition 1 in connection with 1, Proposition 2 in
connection with 2, and Proposition 3 in connection with 3 to conclude
that the sequence {AJΠ=i converges to A*. Hence, K = U {A{ | i —
0,1,2, •••} is a compact subset of X. Note that, by the iteration
procedure of Banach [14, pp. 40-42], the sequence {jPf(^)}~=i converges
to A, (where F?(Xi) = F(F(- -(Ffo)). •)), ̂  times); and therefore,
since ^ e Fi{Xi) for all u = 1, 2, , it follows that x{ e A< for each
i = 1, 2, . Thus we have that {a?<}n=i is a sequence in the compact
set K. Hence, {Xi)T=i has a convergent subsequence {a?<.}7=i which, by
Lemma 3, converges to a fixed point of Fo. This completes the proof
of Theorem 9.
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We now make several remarks concerning Theorem 9.

REMARK. If Fo has only one fixed point x0, then (with the
hypotheses of Theorem 9) the sequence {a?<}Π=ι itself converges to x0.
To see this suppose {ccJILi does not converge to xQ. Then there is a
subsequence {xik}ΐ=i of {Xi}T=i such that no subsequence of {£cijfc}~=1

converges to x0. Applying Theorem 9 in the context of the two
sequences {-FyjU and {xik}ΐ=l9 we see that there is a subsequence of
{8<J"=i which converges to a fixed point of Fo. This establishes a
contradiction. (This remark shows that Theorem 9 is an extension of
Propositions 1, 2, and 3 stated above).

REMARK. TO see that local compactness is a necessary hypothesis
in Proposition 3 and, therefore, in part (3) of Theorem 9, the reader
is referred to Example 1 of [19].

REMARK. Let (X, d) be a compact metric space. In this setting
Theorem 9 is a direct consequence of Lemm 3. Let Mf(X) = {G: X—>
2X I G is continuous and G has fixed points} and, if G1 and G2 are in
Mf(X), let p(G19 G2) = sup {if(Gx(z), G2(x)) \xeX}. Define φ: Mf(X) ->

2X by φ(G) = {x e X \ x e G(x)} for each GeMf(X). Using a modifi-

cation of Lemma 3 together with the fact that convergence in (Mf(X), p)
is uniform convergence, it can be shown that φ is upper semi-continuous
(this is a generalization of a result of Wehausen [24] which also
appears in [8]). It follows from a result in [9] that φ is continuous
on a dense subspace of Mf(X). However, φ may be discontinuous
even at some constant functions. In the next example we construct a
sequence {Gn}Z=ι of multi-valued contraction mappings defined on the
unit interval [0,1] which converges uniformly to the mapping given
by G(x) = [0,1] for all x e [0,1] but for which the sequence {<p(Gn)}n=1

does not converge to φ(G) — [0,1]. It is interesting to compare this
phenomenon with results in [8] and [16].

EXAMPLE 4. Let / = [0,1] denote the unit interval of real numbers
(with the usual metric). For each w = l, 2, •••, let Gn:I—>2r be
given by

Gn{x) = \y I 0 ^ y ^ —?— .χ\ U \y
I n + 1 J I n + 1 n

for all x e /. Using Theorem 3 it is easy to see that Gn is a multi-
valued contraction mapping for each n = 1,2, . Clearly, the sequence
{Gn}n=ι converges uniformly to the mapping G: I —> 21 defined by
G(x) = I for each x e I. Since φ(Gn) = {0,1} for all n = 1, 2, . (see
the preceding remark), it follows that {<p(Gn)}Z=1 does not converge to
φ(G) = I.



MULTI-VALUED CONTRACTION MAPPINGS 487

5* Added in proof. In a forthcoming paper with Professor Covitz
on multi-valued contraction mappings in generalized metric spaces the
author has extended Theorems 5 and 6 of this paper to mappings into
CL(X) = {C I C is a nonempty closed subset of X) with the generaliz-
ed Hausdorff distance. These results give an affirmative answer to
problems posed in this remark and show that even boundedness of
point images is not necessary. In addition, it was discovered by the
author that a generalized version of the iteration procedure of Edels-
tein [4] can be carried out to give a proof of Theorem 6 above even
for mappings into the more general space CL(X).
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